STPS20L40C
Low drop power Schottky rectifier
Main product characteristics
I
F(AV)
V
RRM
T
(max) 150° C
j
(max) 0.5 V
V
F
2 x 10 A
40 V
Features and benefits
■ Low forward voltage drop meaning very small
conduction losses
■ Low dynamic losses as a result of the schottky
barrier
■ Insulated package: TO-220FPAB
insulating voltage = 200 V DC
capacitance = 12 pF
■ Avalanche capability specified
Description
Dual center tap Schottky rectifiers designed for
high frequency switched mode power supplies
and DC to DC converters.
A1
A2
TO-220FPAB
STPS20L40CFP
A1
K
A2
K
These devices are intended for use in low voltage,
high frequency inverters, free-wheeling and
polarity protection applications.
March 2007 Rev 5 1/7
www.st.com
7
Characteristics STPS20L40C
1 Characteristics
Table 1. Absolute Ratings (limiting values)
Symbol Parameter Value Unit
V
I
F(RMS)
I
F(AV)
I
I
I
P
T
Repetitive peak reverse voltage 40 V
RRM
RMS forward voltage 30 A
= 115° C
T
Average forward current
Surge non repetitive forward current tp = 10 ms Sinusoidal 180 A
FSM
Peak repetitive reverse current tp = 2 µs square F = 1 kHz 1 A
RRM
Non repetitive peak reverse current tp = 100 µs square 2 A
RSM
Repetitive peak avalanche power tp = 1 µs Tj = 25°C 4000 W
ARM
Storage temperature range -65 to + 150 °C
stg
T
Maximum operating junction temperature
j
c
δ = 0.5
(1)
Per diode
Per device
10
20
150 °C
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
Ptot
--------------
1. condition to avoid thermal runaway for a diode on its own heatsink
dTj
1
--------------------------
<
Rth j a–()
Table 2. Thermal resistances
Symbol Parameter Value Unit
R
th(j-c)
Junction to case
Per diode
To ta l
Coupling
4.5
3.5
2.5
°C/W
When the diodes 1 and 2 are used simultaneously :
ΔTj(diode 1) = P(diode1) x R
Table 3. Static electrical characteristics (per diode)
(Per diode) + P(diode 2) x R
th(j-c)
th(c)
.
A
Symbol Parameter Test Conditions Min. Typ. Max. Unit
T
= 25° C
(1)
I
V
1. Pulse test: tp = 380 µs, δ < 2%
Reverse leakage current
R
(1)
Forward voltage drop
F
j
= 100° C 15 35 mA
T
j
= 25° C IF = 10 A 0.55
T
j
T
= 125° C IF = 10 A 0.44 0.5
j
= 25° C IF = 20 A 0.73
T
j
T
= 125° C IF = 20 A 0.62 0.72
j
To evaluate the conduction losses use the following equation:
P = 0.28 x I
2/7
F(AV)
+ 0.022 I
F2(RMS)
= V
V
R
RRM
V
0.7 mA
STPS20L40C Characteristics
Figure 1. Average forward power
dissipation versus average forward
current (per diode)
P (W)
F(AV)
8
7
6
5
4
3
2
1
0
δ = 0.05
02468101214
δ = 0.1
δ = 0.2
I (A)
F(AV)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3. Normalized avalanche power
derating versus pulse duration
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 5. Non repetitive surge peak forward
current versus overload duration
(maximum values, per diode)
Figure 2. Average forward current versus
ambient temperature
(
δ = 0.5, per diode)
I (A)
F(AV)
12
11
10
9
8
7
6
5
4
3
2
1
=tp/T
δ
0
0 25 50 75 100 125 150
R =15°C/W
th(j-a)
T
tp
T (°C)
amb
R=R
th(j-a) th(j-c)
Figure 4. Normalized avalanche power
derating versus junction
temperature
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
Figure 6. Relative variation of thermal
impedance junction to case versus
pulse duration
I (A)
M
100
90
80
70
60
50
40
30
IM
20
10
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
T =25°C
T =50°C
T =100°C
C
Z/R
th(j-c) th(j-c)
1.0
0.8
0.6
C
C
δ = 0.5
0.4
δ = 0.2
δ = 0.1
0.2
t (s)
Single pulse
0.0
1E-3 1E-2 1E-1 1E+0 1E+1
p
3/7
δ
=tp/T
T
tp