ST STM8S007C8 User Manual

Value line, 24 MHz STM8S 8-bit MCU, 64 Kbytes Flash,
LQFP48 7x7
true data EEPROM, 10-bit ADC, timers, 2 UARTs, SPI, I²C
Features
–Max f
f
CPU
– Advanced STM8 core with Harvard
architecture and 3-stage pipeline – Extended instruction set – Max 20 MIPS @ 24 MHz
Memories
– Program: 64 Kbytes Flash; data retention
20 years at 55 °C after 100 cycles – Data: 128 bytes true data EEPROM;
endurance 100 kcycles – RAM: 6 Kbytes
Clock, reset and supply management
– 2.95 to 5.5 V operating voltage – Low power crystal resonator oscillator – External clock input – Internal, user-trimmable 16 MHz RC – Internal low power 128 kHz RC
– Clock security system with clock monitor – Wait, active-halt, & halt low power modes – Peripheral clocks switched off individually – Permanently active, low consumption
power-on and power-down reset
Interrupt management
– Nested interrupt controller with 32
interrupts – Up to 37 external interrupts on 6 vectors
Timers
– 2x 16-bit general purpose timers, with 2+3
CAPCOM channels (IC, OC or PWM) – Advanced control timer: 16-bit, 4 CAPCOM
channels, 3 complementary outputs, dead-
time insertion and flexible synchronization – 8-bit basic timer with 8-bit prescaler – Auto wakeup timer – Window watchdog, independent watchdog
: up to 24 MHz, 0 wait states @
CPU
16 MHz
STM8S007C8
Datasheet production data
Communications interfaces
– UART with clock output for synchronous
operation - LIN master mode
– UART with LIN 2.1 compliant, master/slave
modes and automatic resynchronization
– SPI interface up to 10 Mbit/s
2
–I
C interface up to 400 Kbit/s
10-bit ADC with up to 16 channels
I/Os
– 38 I/Os including 16 high sink outputs – Highly robust I/O design, immune against
current injection – Development support – Single wire interface module (SWIM) and
debug module (DM)
May 2012 Doc ID 022171 Rev 3 1/90
This is information on a product in full production.
www.st.com
1
Contents STM8S007C8
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Single wire interface module (SWIM) and debug module (DM) . . . . . . . . 12
4.3 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . 12
4.5 Clock controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.8 Auto wakeup counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.9 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.10 TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.11 TIM2, TIM3 - 16-bit general purpose timers . . . . . . . . . . . . . . . . . . . . . . . 16
4.12 TIM4 - 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.13 Analog-to-digital converter (ADC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.14 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.14.1 UART1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.14.2 UART3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.14.3 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.14.4 I
2
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1 Alternate function remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2/90 Doc ID 022171 Rev 3
STM8S007C8 Contents
7 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.1.4 Typical current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.1.5 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.1.6 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.1.7 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.3.1 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.3.2 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.3.3 External clock sources and timing characteristics . . . . . . . . . . . . . . . . . 55
9.3.4 Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 57
9.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.3.6 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.3.7 Reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.3.8 SPI serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.3.9 I
9.3.10 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2
C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 85
11 STM8 development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
11.1 Emulation and in-circuit debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . 86
11.2 Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
11.2.1 STM8 toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Doc ID 022171 Rev 3 3/90
Contents STM8S007C8
11.2.2 C and assembly toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
11.3 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
12 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
13 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4/90 Doc ID 022171 Rev 3
STM8S007C8 List of tables
List of tables
Table 1. STM8S007xx value line features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers . . . . . . . . . . . . . . . 14
Table 3. TIM timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 4. Legend/abbreviations for LQFP48 pin description table . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 5. LQFP48 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 6. Flash, Data EEPROM and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 7. I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 8. General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 9. CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 10. Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 11. Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 12. Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 13. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 14. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 15. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 16. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 17. Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 18. Total current consumption with code execution in run mode at V Table 19. Total current consumption with code execution in run mode at V Table 20. Total current consumption in wait mode at V Table 21. Total current consumption in wait mode at V Table 22. Total current consumption in active halt mode at V Table 23. Total current consumption in active halt mode at V Table 24. Total current consumption in halt mode at V Table 25. Total current consumption in halt mode at V
= 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DD
= 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DD
DD
DD
= 5 V, TA -40 to 85° C . . . . . . . . . . 51
DD
= 3.3 V . . . . . . . . . . . . . . . . . . . . . . 51
DD
= 5 V, TA -40 to 85° C . . . . . . . . . . . . . . . 52
= 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 26. Wakeup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 27. Total current consumption and timing in forced reset state . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 28. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 29. HSE user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 30. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 31. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 32. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 33. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 34. Flash program memory/data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 35. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 36. Output driving current (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 37. Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 38. Output driving current (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 39. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 40. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 41. I
2
C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 42. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 43. ADC accuracy with R Table 44. ADC accuracy with R
< 10 kΩ , V
AIN
< 10 kΩ R
AIN
= 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
DDA
AIN
, V
= 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
DDA
Table 45. EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 46. EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 47. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 48. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
= 5 V. . . . . . . . . . . . . 48
DD
= 3.3 V . . . . . . . . . . . 49
DD
Doc ID 022171 Rev 3 5/90
List of tables STM8S007C8
Table 49. 48-pin low profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 50. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 51. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6/90 Doc ID 022171 Rev 3
STM8S007C8 List of figures
List of figures
Figure 1. STM8S007xx value line block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2. Flash memory organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3. LQFP 48-pin pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 4. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 5. Supply current measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 6. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 7. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 8. f
CPUmax
Figure 9. External capacitor C Figure 10. Typ. I Figure 11. Typ. I
Figure 12. HSE external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 13. HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 14. Typical HSI frequency variation vs V Figure 15. Typical LSI frequency variation vs V Figure 16. Typical V Figure 17. Typical pull-up resistance vs V Figure 18. Typical pull-up current vs V Figure 19. Typ. V Figure 20. Typ. V Figure 21. Typ. V Figure 22. Typ. V Figure 23. Typ. V Figure 24. Typ. V Figure 25. Typ. V Figure 26. Typ. V Figure 27. Typ. V Figure 28. Typ. V Figure 29. Typical NRST V Figure 30. Typical NRST pull-up resistance vs V Figure 31. Typical NRST pull-up current vs V
Figure 32. Recommended reset pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 33. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 34. SPI timing diagram - slave mode and CPHA = 1 Figure 35. SPI timing diagram - master mode Figure 36. Typical application with I
Figure 37. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 38. Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 39. 48-pin low profile quad flat package (7 x 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 40. STM8S007xx value line ordering information scheme
versus V
DD(RUN)
DD(WFI)
IL
@ VDD = 5 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
OL
@ VDD = 3.3 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
OL
@ VDD = 5 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
OL
@ VDD = 3.3 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
OL
@ VDD = 5 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
OL
@ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
OL
- V
DD
- V
DD
- V
DD
- V
DD
DD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
vs VDD, HSI RC osc, f
vs VDD, HSI RC osc, f
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
EXT
= 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
CPU
= 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
CPU
at 3 temperatures. . . . . . . . . . . . . . . . . . . . . . . . . 57
DD
@ 25 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
DD
and VIH vs VDD @ 3 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
@ 3 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
DD
@ 3 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
DD
@ VDD = 5 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
OH
@ VDD = 3.3 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
OH
@ VDD = 5 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
OH
@ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
OH
and VIH vs VDD @ 3 temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
IL
2
C bus and timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
@ 3 temperatures. . . . . . . . . . . . . . . . . . . . . . . . 69
DD
@ 3 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . 70
DD
(1)
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . 88
Doc ID 022171 Rev 3 7/90
Introduction STM8S007C8

1 Introduction

This datasheet contains the description of the STM8S007xx value line features, pinout, electrical characteristics, mechanical data and ordering information.
For complete information on the STM8S microcontroller memory, registers and
peripherals, please refer to the STM8S and STM8A microcontroller families reference manual (RM0016).
For information on programming, erasing and protection of the internal Flash memory
please refer to the PM0051 (How to program STM8S and STM8A Flash program memory and data EEPROM).
For information on the debug and SWIM (single wire interface module) refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).
For information on the STM8 core, please refer to the STM8 CPU programming manual
(PM0044).
8/90 Doc ID 022171 Rev 3
STM8S007C8 Description

2 Description

The STM8S007xx value line 8-bit microcontrollers offer 64 Kbytes Flash program memory. They are referred to as high-density devices in the STM8S microcontroller family reference manual.
All devices of the STM8S007xx value line provide the following benefits: reduced system cost, performance robustness, short development cycles, and product longevity.
The system cost is reduced thanks to a true data EEPROM for up to 100 k write/erase cycles and a high system integration level with internal clock oscillators, watchdog, and brown-out reset.
Device performance is ensured by 20 MIPS at 24 MHz CPU clock frequency and enhanced characteristics which include robust I/O, independent watchdogs (with a separate clock source), and a clock security system.
Short development cycles are guaranteed due to application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals. Full documentation is offered with a wide choice of development tools.
Product longevity is ensured in the STM8S family thanks to their advanced core which is made in a state-of-the art technology for applications with 2.95 V to 5.5 V operating supply.

Table 1. STM8S007xx value line features

Features STM8S007C8
Pin count 48
Max. number of GPIOs (I/O) 38
External interrupt pins 35
Timer CAPCOM channels 9
Timer complementary outputs 3
A/D converter channels 10
HIgh sink I/Os 16
High density Flash program memory 64 Kbytes
Data EEPROM 128 bytes
RAM 6 Kbytes
Doc ID 022171 Rev 3 9/90
Block diagram STM8S007C8
XTAL 1-24 MHz
RC int. 16 MHz
RC int. 128 kHz
STM8 core
Debug/SWIM
I
2
C
SPI
UART1
UART3
AWU ti mer
Reset block
Reset
POR
BOR
Clock controller
Detector
Clock to peripherals and core
10 Mbit/s
LIN master
16 channels
Address and data bus
Window WDG
64 Kbytes high
128 bytes
6 Kbytes RAM
Boot ROM
ADC2
Reset
400 Kbit/s
Master/slave
Single wire
autosynchro
debug interf.
SPI emul.
density program Flash
data EEPROM
16-bit general purpose
16-bit advanced control
timer (TIM1)
timers (TIM2, TIM3)
8-bit basic timer
(TIM4)
Beeper
1/2/4 kHz beep
Independent WDG
4 CAPCOM
channels
Up to
5 CAPCOM
channels
Up to
+ 3 complementary
outputs

3 Block diagram

Figure 1. STM8S007xx value line block diagram

10/90 Doc ID 022171 Rev 3
STM8S007C8 Product overview

4 Product overview

The following section intends to give an overview of the basic features of the STM8S007xx value line functional modules and peripherals.
For more detailed information please refer to the corresponding family reference manual (RM0016).

4.1 Central processing unit STM8

The 8-bit STM8 core is designed for code efficiency and performance.
It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing and 80 instructions.
Architecture and registers
Harvard architecture
3-stage pipeline
32-bit wide program memory bus - single cycle fetching for most instructions
X and Y 16-bit index registers - enabling indexed addressing modes with or without
offset and read-modify-write type data manipulations
8-bit accumulator
24-bit program counter - 16-Mbyte linear memory space
16-bit stack pointer - access to a 64 K-level stack
8-bit condition code register - 7 condition flags for the result of the last instruction
Addressing
20 addressing modes
Indexed indirect addressing mode for look-up tables located anywhere in the address
space
Stack pointer relative addressing mode for local variables and parameter passing
Instruction set
80 instructions with 2-byte average instruction size
Standard data movement and logic/arithmetic functions
8-bit by 8-bit multiplication
16-bit by 8-bit and 16-bit by 16-bit division
Bit manipulation
Data transfer between stack and accumulator (push/pop) with direct stack access
Data transfer using the X and Y registers or direct memory-to-memory transfers
Doc ID 022171 Rev 3 11/90
Product overview STM8S007C8

4.2 Single wire interface module (SWIM) and debug module (DM)

The single wire interface module and debug module permits non-intrusive, real-time in­circuit debugging and fast memory programming.
SWIM
Single wire interface module for direct access to the debug module and memory programming. The interface can be activated in all device operation modes. The maximum data transmission speed is 145 bytes/ms.
Debug module
The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, also CPU operation can be monitored in real­time by means of shadow registers.
R/W to RAM and peripheral registers in real-time
R/W access to all resources by stalling the CPU
Breakpoints on all program-memory instructions (software breakpoints)
Two advanced breakpoints, 23 predefined configurations

4.3 Interrupt controller

Nested interrupts with three software priority levels
32 interrupt vectors with hardware priority
Up to 33 external interrupts on six vectors including TLI
Trap and reset interrupts

4.4 Flash program and data EEPROM memory

64 Kbytes of high density Flash program single voltage Flash memory
128 bytes true data EEPROM
Read while write: Writing in data memory possible while executing code in program
memory.
User option byte area
Write protection (WP)
Write protection of Flash program memory and data EEPROM is provided to avoid unintentional overwriting of memory that could result from a user software malfunction.
There are two levels of write protection. The first level is known as MASS (memory access security system). MASS is always enabled and protects the main Flash program memory, data EEPROM and option bytes.
To perform in-application programming (IAP), this write protection can be removed by writing a MASS key sequence in a control register. This allows the application to write to data EEPROM, modify the contents of main program memory or the device option bytes.
A second level of write protection, can be enabled to further protect a specific area of memory known as UBC (user boot code). Refer to Figure 2.
12/90 Doc ID 022171 Rev 3
STM8S007C8 Product overview
Programmable area from 1 Kbyte
Data
UBC area
Program memory area
Data memory area (up to 2 Kbytes)
(2 first pages) up to 64 Kbytes
EEPROM
Remains write protected during IAP
memory
64 Kbytes
Flash
Write access possible for IAP
program memory
(1 page steps)
Option bytes
The size of the UBC is programmable through the UBC option byte (Ta b le 1 2), in increments of 1 page (512 bytes) by programming the UBC option byte in ICP mode.
This divides the program memory into two areas:
Main program memory: 64 Kbytes minus UBC
User-specific boot code (UBC): Configurable up to 64 Kbytes
The UBC area remains write-protected during in-application programming. This means that the MASS keys do not unlock the UBC area. It protects the memory used to store the boot program, specific code libraries, reset and interrupt vectors, the reset routine and usually the IAP and communication routines.

Figure 2. Flash memory organisation

Read-out protection (ROP)
The read-out protection blocks reading and writing the Flash program memory and data EEPROM memory in ICP mode (and debug mode). Once the read-out protection is activated, any attempt to toggle its status triggers a global erase of the program and data memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller.
Doc ID 022171 Rev 3 13/90
Product overview STM8S007C8

4.5 Clock controller

The clock controller distributes the system clock (f
MASTER)
coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness.
Features
Clock prescaler: To get the best compromise between speed and current
consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
Safe clock switching: Clock sources can be changed safely on the fly in run mode
through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching.
Clock management: To reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
Master clock sources: Four different clock sources can be used to drive the master
clock:
1-24 MHz high-speed external crystal (HSE)
Up to 24 MHz high-speed user-external clock (HSE user-ext)
16 MHz high-speed internal RC oscillator (HSI)
128 kHz low-speed internal RC (LSI)
Startup clock: After reset, the microcontroller restarts by default with an internal 2
MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
Clock security system (CSS): This feature can be enabled by software. If an HSE
clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS and an interrupt can optionally be generated.
Configurable main clock output (CCO): This outputs an external clock for use by the
application.

Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers

Bit
PCKEN17 TIM1 PCKEN13 UART3 PCKEN27 Reserved PCKEN23 ADC
PCKEN16 TIM3 PCKEN12 UART1 PCKEN26 Reserved PCKEN22 AWU
PCKEN15 TIM2 PCKEN11 SPI PCKEN25 Reserved PCKEN21 Reserved
PCKEN14 TIM4 PCKEN10 I
14/90 Doc ID 022171 Rev 3
Peripheral
clock
Bit
Peripheral
clock
2
C PCKEN24 Reserved PCKEN20 Reserved
Bit
Peripheral
clock
Bit
Peripheral
clock
STM8S007C8 Product overview

4.6 Power management

For efficent power management, the application can be put in one of four different low-power modes. You can configure each mode to obtain the best compromise between lowest power consumption, fastest start-up time and available wakeup sources.
Wait mode: In this mode, the CPU is stopped, but peripherals are kept running. The
wakeup is performed by an internal or external interrupt or reset.
Active halt mode with regulator on: In this mode, the CPU and peripheral clocks are
stopped. An internal wakeup is generated at programmable intervals by the auto wake up unit (AWU). The main voltage regulator is kept powered on, so current consumption is higher than in active halt mode with regulator off, but the wakeup time is faster. Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.
Active halt mode with regulator off: This mode is the same as active halt with
regulator on, except that the main voltage regulator is powered off, so the wake up time is slower.
Halt mode: In this mode the microcontroller uses the least power. The CPU and
peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is triggered by external event or reset.

4.7 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications.
Activation of the watchdog timers is controlled by option bytes or by software. Once activated, the watchdogs cannot be disabled by the user program without performing a reset.
Window watchdog timer
The window watchdog is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.
The window function can be used to trim the watchdog behavior to match the application perfectly.
The application software must refresh the counter before time-out and during a limited time window.
A reset is generated in two situations:
1. Timeout: At 16 MHz CPU clock the time-out period can be adjusted between 75 µs up
to 64 ms.
2. Refresh out of window: The downcounter is refreshed before its value is lower than the
one stored in the window register.
Doc ID 022171 Rev 3 15/90
Product overview STM8S007C8
Independent watchdog timer
The independent watchdog peripheral can be used to resolve processor malfunctions due to hardware or software failures.
It is clocked by the 128 kHZ LSI internal RC clock source, and thus stays active even in case of a CPU clock failure
The IWDG time base spans from 60 µs to 1 s.

4.8 Auto wakeup counter

Used for auto wakeup from active halt mode
Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock
LSI clock can be internally connected to TIM3 input capture channel 1 for calibration

4.9 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

4.10 TIM1 - 16-bit advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver
16-bit up, down and up/down autoreload counter with 16-bit prescaler
Four independent capture/compare channels (CAPCOM) configurable as input
capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output
Synchronization module to control the timer with external signals
Break input to force the timer outputs into a defined state
Three complementary outputs with adjustable dead time
Encoder mode
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break

4.11 TIM2, TIM3 - 16-bit general purpose timers

16-bit autoreload (AR) up-counter
15-bit prescaler adjustable to fixed power of 2 ratios 1…32768
Timers with 3 or 2 individually configurable capture/compare channels
PWM mode
Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update
16/90 Doc ID 022171 Rev 3
STM8S007C8 Product overview

4.12 TIM4 - 8-bit basic timer

8-bit autoreload, adjustable prescaler ratio to any power of 2 from 1 to 128
Clock source: CPU clock
Interrupt source: 1 x overflow/update

Table 3. TIM timer features

Counter
Timer
TIM1 16 Any integer from 1 to 65536 Up/down 4 3 Yes
TIM2 16 Any power of 2 from 1 to 32768 Up 3 0 No
TIM3 16 Any power of 2 from 1 to 32768 Up 2 0 No
TIM4 8 Any power of 2 from 1 to 128 Up 0 0 No
size
(bits)
Prescaler
Counting
mode
CAPCOM
channels
Complem.
outputs

4.13 Analog-to-digital converter (ADC2)

STM8S007xx value line products contain a 10-bit successive approximation A/D converter (ADC2) with up to 10 multiplexed input channels and the following main features:
Input voltage range: 0 to V
Conversion time: 14 clock cycles
Single and continuous modes
External trigger input
Trigger from TIM1 TRGO
End of conversion (EOC) interrupt
DDA
Ext.
trigger
Timer
synchr-
onization/
chaining
No

4.14 Communication interfaces

The following communication interfaces are implemented:
UART1: Full feature UART, SPI emulation, LIN2.1 master capability, Smartcard mode,
IrDA mode, single wire mode.
UART3: Full feature UART, LIN2.1 master/slave capability
SPI : Full and half-duplex, 10 Mbit/s
I²C: Up to 400 Kbit/s
Doc ID 022171 Rev 3 17/90
Product overview STM8S007C8

4.14.1 UART1

Main features
One Mbit/s full duplex SCI
SPI emulation
High precision baud rate generator
Smartcard emulation
IrDA SIR encoder decoder
LIN master mode
Single wire half duplex mode
Asynchronous communication (UART mode)
Full duplex communication - NRZ standard format (mark/space)
Programmable transmit and receive baud rates up to 1 Mbit/s (f
following any standard baud rate regardless of the input frequency
Separate enable bits for transmitter and receiver
Two receiver wakeup modes:
Address bit (MSB)
Idle line (interrupt)
Transmission error detection with interrupt generation
Parity control
/16) and capable of
CPU
Synchronous communication
Full duplex synchronous transfers
SPI master operation
8-bit data communication
Maximum speed: 1 Mbit/s at 16 MHz (f
LIN master mode
Emission: Generates 13-bit synch break frame
Reception: Detects 11-bit break frame

4.14.2 UART3

Main features
1 Mbit/s full duplex SCI
LIN master capable
High precision baud rate generator
CPU
/16)
18/90 Doc ID 022171 Rev 3
STM8S007C8 Product overview
Asynchronous communication (UART mode)
Full duplex communication - NRZ standard format (mark/space)
Programmable transmit and receive baud rates up to 1 Mbit/s (f
/16) and capable of
CPU
following any standard baud rate regardless of the input frequency
Separate enable bits for transmitter and receiver
Two receiver wakeup modes:
Address bit (MSB)
Idle line (interrupt)
Transmission error detection with interrupt generation
Parity control
LIN master capability
Emission: Generates 13-bit synch break frame
Reception: Detects 11-bit break frame
LIN slave mode
Autonomous header handling - one single interrupt per valid message header
Automatic baud rate synchronization - maximum tolerated initial clock deviation ±15 %
Synch delimiter checking
11-bit LIN synch break detection - break detection always active
Parity check on the LIN identifier field
LIN error management
Hot plugging support

4.14.3 SPI

Maximum speed: 10 Mbit/s (f
Full duplex synchronous transfers
Simplex synchronous transfers on two lines with a possible bidirectional data line
Master or slave operation - selectable by hardware or software
CRC calculation
1 byte Tx and Rx buffer
Slave/master selection input pin
MASTER
/2) both for master and slave
Doc ID 022171 Rev 3 19/90
Product overview STM8S007C8

4.14.4 I2C

2
I
C master features:
Clock generation
Start and stop generation
2
I
C slave features:
Programmable I
Stop bit detection
Generation and detection of 7-bit/10-bit addressing and general call
Supports different communication speeds:
Standard speed (up to 100 kHz)
Fast speed (up to 400 kHz)
2
C address detection
20/90 Doc ID 022171 Rev 3
STM8S007C8 Pinouts and pin description
44 43 42 41 4039 38 37
36 35
34 33 32 31 30 29 28 27 26 25
24
23
12
13 14 1516 1718 1920 21 22
1 2 3 4 5 6 7 8 9 10 11
48 47 46 45
UART1_CK/(HS) PA6
AIN8/PE7
PC1 (HS)/TIM1_CH1 PE5/SPI_NSS
PG1
AIN9/PE6
PD3 (HS)/TIM2_CH2 [ADC_ETR]
PD2 (HS)/TIM3_CH1 [TIM2_CH3]
PE0 (HS)/CLK_CCO
PE1 (T)/I2C_SCL
PE2 (T)/I2C_SDA
PE3/TIM1_BKIN
PD7/TLI
PD6/UART3_RX
PD5/UART3_TX
PD4 (HS)/TIM2_CH1 [BEEP]
PD1 (HS)/SWIM
PD0 (HS)/TIM3_CH2 [TIM1_BKIN] [CLK_CCO]
V
SSIO_2
PC5 (HS)/SPI_SCK PC4 (HS)/TIM1_CH4 PC3 (HS)/TIM1_CH3
PC2 (HS)/TIM1_CH2
PG0 PC7 (HS)/SPI_MISO PC6 (HS)/SPI_MOSI V
DDIO_2
AIN7/PB7
AIN6/PB6
[I2C_SDA] AIN5/PB5
[I2C_SCL] AIN4/PB4
[TIM1_ETR/AIN3/PB3
[TIM1_CH3N] AIN2/PB2
[TIM1_CH2N] AIN1/PB1
[TIM1_CH1N] AIN0/PB0
V
DDA
V
SSA
V
SS
VCAP
V
DD
V
DDIO_1
[TIM3_CH1] TIM2_CH3/PA3
UART1_RX/(HS) PA4
UART1_TX/(HS) PA5
NRST
OSCIN/PA1
OSCOUT/PA2
V
SSIO_1

5 Pinouts and pin description

Figure 3. LQFP 48-pin pinout

1. (HS) high sink capability.
2. (T) True open drain (P-buffer and protection diode to V
3. [ ] alternate function remapping option (If the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function).
Doc ID 022171 Rev 3 21/90
not implemented).
DD
Pinouts and pin description STM8S007C8

Table 4. Legend/abbreviations for LQFP48 pin description table

Typ e I = input, O = output, S = power supply
floating
Input
wpu = weak pull-up
Ext. interrupt = external interrupt
HS = high sink
O1 = Slow (up to 2 MHz)
Speed
O3 = Fast/slow programmability with slow as default state after reset
Output
O4 = Fast/slow programmability with fast as default state after reset
OD = open drain
PP = push pull
Reset state Bold X
(pin state after internal reset release)
Unless otherwise specified, the pin state is the same during the reset phase and after the internal reset release.

Table 5. LQFP48 pin description

Input Output
Default
Pin number
Pin name
Typ e
wpu
floating
Ext. interrupt
High sink
OD
Speed
PP
Main function
alternate
function
(after reset)
1 NRST I/O X Reset
2 PA1/OSCIN I/O X XO1XXPort A1
3 PA2/OSCOUT I/O X
4V
SSIO_1
5V
SS
S I/O ground
S Digital ground
XX O1XXPort A2
Resonator/ crystal in
Resonator/ crystal out
6 VCAP S 1.8 V regulator capacitor
Alternate
function
after remap
[option bit]
7V
DD
8V
DDIO_1
S Digital power supply
S I/O power supply
9 PA3/TIM2_CH3 I/O X XX O1XXPort A3
(1)
10 PA4/UART1_RX
I/O X XXHSO3XXPort A4 UART1 receive
11 PA5/UART1_TX I/O X XXHSO3XXPort A5
12 PA6/UART1_CK I/O X
13 V
DDA
S Analog power supply
XXHSO3XXPort A6
22/90 Doc ID 022171 Rev 3
Timer 2 ­channel3
UART1 transmit
UART1 synchronous clock
TIM3_CH1 [AFR1]
STM8S007C8 Pinouts and pin description
Table 5. LQFP48 pin description (continued)
Input Output
Alternate
function
after remap
[option bit]
Pin number
14 V
Pin name
SSA
Typ e
wpu
floating
Speed
High sink
Ext. interrupt
OD
PP
Main function
S Analog ground
15 PB7/AIN7 I/O X XX O1XXPort B7
Default
alternate
function
(after reset)
Analog input 7
16 PB6/AIN6 I/O X
17 PB5/AIN5 I/O X
18 PB4/AIN4 I/O X
19 PB3/AIN3 I/O X
XX O1XXPort B6
XX O1XXPort B5
XX O1XXPort B4
XX O1XXPort B3
20 PB2/AIN2 I/O X XX O1XXPort B2
21 PB1/AIN1 I/O X
22 PB0/AIN0 I/O X
23 PE7/AIN8 I/O X
24 PE6/AIN9 I/O X
25 PE5/SPI_NSS I/O X
26 PC1/TIM1_CH1 I/O X
27 PC2/TIM1_CH2 I/O X
XX O1XXPort B1
XX O1XXPort B0
XX O1XXPort E7 Analog input 8
XX O1XXPort E6 Analog input 9
XX O1XXPort E5
XXHSO3XXPort C1
XXHSO3XXPort C2
Analog input 6
Analog input 5
Analog input 4
Analog input 3
Analog input 2
Analog input 1
Analog input 0
SPI master/slave select
Timer 1 ­channel 1
Timer 1­channel 2
2
C_SDA
I [AFR6]
2
C_SCL
I [AFR6]
TIM1_ETR [AFR5]
TIM1_ CH3N [AFR5]
TIM1_ CH2N [AFR5]
TIM1_ CH1N [AFR5]
28 PC3/TIM1_CH3 I/O X
29 PC4/TIM1_CH4 I/O X
30 PC5/SPI_SCK I/O X
31 V
32 V
SSIO_2
DDIO_2
S I/O ground
S I/O power supply
XXHSO3XXPort C3
XXHSO3XXPort C4
Timer 1 ­channel 3
Timer 1 ­channel 4
XXHSO3XXPort C5 SPI clock
Doc ID 022171 Rev 3 23/90
Pinouts and pin description STM8S007C8
Table 5. LQFP48 pin description (continued)
Input Output
Alternate
function
after remap
[option bit]
Pin name
Pin number
Typ e
wpu
floating
Speed
High sink
Ext. interrupt
OD
PP
Main function
33 PC6/SPI_MOSI I/O X XXHSO3XXPort C6
Default
alternate
function
(after reset)
SPI master out/ slave in
34 PC7/SPI_MISO I/O X XXHSO3XXPort C7
35 PG0 I/O X XO1XXPort G0
36 PG1 I/O X
XO1XXPort G1
37 PE3/TIM1_BKIN I/O X XX O1XXPort E3
38 PE2/I
39 PE1/I
2
C_SDA I/O X XO1T
2
C_SCL I/O X XO1T
(2)
(2)
Port E2 I2C data
Port E1 I2C clock
40 PE0/CLK_CCO I/O X XXHSO3XXPort E0
41 PD0/TIM3_CH2 I/O X
42 PD1/SWIM
(3)
I/O X X XHSO4X XPort D1
43 PD2/TIM3_CH1 I/O X
44 PD3/TIM2_CH2 I/O X
PD4/TIM2_CH1/B
45
EEP
I/O X
46 PD5/ UART3_TX I/O X
47
PD6/ UART3_RX
(1)
I/O X XX O1XXPor t D6
XXHSO3XXPort D0
XXHSO3XXPort D2
XXHSO3XXPort D3
XXHSO3XXPort D4
XX O1XXPort D5
SPI master in/ slave out
Timer 1 ­break input
Configurable clock output
Timer 3 ­channel 2
SWIM data interface
Timer 3 ­channel 1
Timer 2 ­channel 2
Timer 2 ­channel 1
UART3 data transmit
UART3 data receive
TIM1_BKIN [AFR3]/ CLK_CCO [AFR2]
TIM2_CH3 [AFR1]
ADC_ETR [AFR0]
BEEP output [AFR7]
48 PD7/TLI I/O X
1. The default state of UART1_RX and UART3_RX pins is controlled by the ROM bootloader. These pins are pulled up as part of the bootloader activation process and returned to the floating state before a return from the bootloader.
2. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to V
3. The PD1 pin is in input pull-up during the reset phase and after the internal reset release.
are not implemented).
DD
XX O1XXPort D7
Top lev e l interrupt
Note: The slope control of true open drain pins cannot be programmed and by default is limited to
2 MHz.
24/90 Doc ID 022171 Rev 3
STM8S007C8 Pinouts and pin description

5.1 Alternate function remapping

As shown in the rightmost column of the pin description table, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function remap) option bits. Refer to Section 8: Option bytes. When the remapping option is active, the default alternate function is no longer available.
To use an alternate function, the corresponding peripheral must be enabled in the peripheral registers.
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO section of the family reference manual, RM0016).
Doc ID 022171 Rev 3 25/90
Memory and register map STM8S007C8
0x0 0 000 0
0x
00 17 FF
0x
00 180 0
0x
00 400 0
0x
00 3F FF
0x
00 407F
0x
00 4080
0x
00 47FF
0x
00 480 0
0x
00 4 87F
0x
00 490 0
0x
00 500 0
0x
00 4F FF
0x
00 57 FF
0x
00 580 0
0x
00 600 0
0x
00 5F FF
0x
00 67 FF
0x
00 680 0
0x
00 7EFF
0x
00 7 F0 0
0x
00 7F FF
0x
00 800 0
0x
00 808 0
0x
00 8 07F
0 x01 7FFF
MS19412V1
(see Table 8 and Table 9)
GPIO and peripheral registers
Reserved
Reserved
Reserved
Reserved
Reserved
1024 bytes stack
128 bytes data EEPROM
Option bytes
RAM
(6 Kbytes)
2 Kbytes boot ROM
CPU/SWIM/debug/ITC register (see Table 10)
32 interrupt vectors
Flash program memory
(64 Kbytes)

6 Memory and register map

6.1 Memory map

Figure 4. Memory map

26/90 Doc ID 022171 Rev 3
STM8S007C8 Memory and register map
Ta bl e 6 lists the boundary addresses for each memory size. The top of the stack is at the
RAM end address in each case.

Table 6. Flash, Data EEPROM and RAM boundary addresses

Memory area Size (bytes) Start address End address
Flash program memory 64 K 0x00 8000 0x01 7FFF
RAM 6 K 0x00 0000 0x00 17FF
Data EEPROM 128 0x00 4000 0x00 407F

6.2 Register map

Table 7. I/O port hardware register map

Address Block Register label Register name
0x00 5000
PA_ODR Port A data output latch register 0x00
Reset
status
0x00 5001 PA_IDR Port A input pin value register 0x00
0x00 5002 PA_DDR Port A data direction register 0x00
Por t A
0x00 5003 PA_CR1 Port A control register 1 0x00
0x00 5004 PA_CR2 Port A control register 2 0x00
0x00 5005
PB_ODR Port B data output latch register 0x00
0x00 5006 PB_IDR Port B input pin value register 0x00
0x00 5007 PB_DDR Port B data direction register 0x00
Por t B
0x00 5008 PB_CR1 Port B control register 1 0x00
0x00 5009 PB_CR2 Port B control register 2 0x00
0x00 500A
PC_ODR Port C data output latch register 0x00
0x00 500B PB_IDR Port C input pin value register 0x00
0x00 500C PC_DDR Port C data direction register 0x00
Por t C
0x00 500D PC_CR1 Port C control register 1 0x00
0x00 500E PC_CR2 Port C control register 2 0x00
0x00 500F
PD_ODR Port D data output latch register 0x00
0x00 5010 PD_IDR Port D input pin value register 0x00
0x00 5011 PD_DDR Port D data direction register 0x00
Por t D
0x00 5012 PD_CR1 Port D control register 1 0x02
0x00 5013 PD_CR2 Port D control register 2 0x00
Doc ID 022171 Rev 3 27/90
Memory and register map STM8S007C8
Table 7. I/O port hardware register map (continued)
Address Block Register label Register name
0x00 5014
0x00 5015 PE_IDR Port E input pin value register 0x00
0x00 5016 PE_DDR Port E data direction register 0x00
0x00 5017 PE_CR1 Port E control register 1 0x00
0x00 5018 PE_CR2 Port E control register 2 0x00
0x00 5019
0x00 501A PF_IDR Port F input pin value register 0x00
0x00 501B PF_DDR Port F data direction register 0x00
0x00 501C PF_CR1 Port F control register 1 0x00
0x00 501D PF_CR2 Port F control register 2 0x00
0x00 501E
0x00 501F PG_IDR Port G input pin value register 0x00
0x00 5020 PG_DDR Port G data direction register 0x00
0x00 5021 PG_CR1 Port G control register 1 0x00
0x00 5022 PG_CR2 Port G control register 2 0x00
0x00 5023
0x00 5024 PH_IDR Port H input pin value register 0x00
Por t E
Por t F
Por t G
PE_ODR Port E data output latch register 0x00
PF_ODR Port F data output latch register 0x00
PG_ODR Port G data output latch register 0x00
PH_ODR Port H data output latch register 0x00
Reset
status
0x00 5025 PH_DDR Port H data direction register 0x00
0x00 5026 PH_CR1 Port H control register 1 0x00
0x00 5027 PH_CR2 Port H control register 2 0x00
0x00 5028
0x00 5029 PI_IDR Port I input pin value register 0x00
0x00 502A PI_DDR Port I data direction register 0x00
0x00 502B PI_CR1 Port I control register 1 0x00
0x00 502C PI_CR2 Port I control register 2 0x00
Por t H
PI_ODR Port I data output latch register 0x00
Por t I
28/90 Doc ID 022171 Rev 3
STM8S007C8 Memory and register map

Table 8. General hardware register map

Address Block Register label Register name
0x00 5050 to
0x00 5059
0x00 505A
FLASH_CR1 Flash control register 1 0x00
Reserved area (10 bytes)
0x00 505B FLASH_CR2 Flash control register 2 0x00
0x00 505C FLASH_NCR2 Flash complementary control register 2 0xFF
0x00 505D FLASH _FPR Flash protection register 0x00
Flash
0x00 505E FLASH _NFPR Flash complementary protection register 0xFF
0x00 505F FLASH _IAPSR
0x00 5060 to
0x00 5061
0x00 5062 Flash FLASH _PUKR
Flash in-application programming status
register
Reserved area (2 bytes)
Flash Program memory unprotection
register
0x00 5063 Reserved area (1 byte)
0x00 5064 Flash FLASH _DUKR Data EEPROM unprotection register 0x00
0x00 5065 to
0x00 509F
0x00 50A0
EXTI_CR1 External interrupt control register 1 0x00
Reserved area (59 bytes)
ITC
0x00 50A1 EXTI_CR2 External interrupt control register 2 0x00
Reset
status
0x00
0x00
0x00 50A2 to
0x00 50B2
Reserved area (17 bytes)
0x00 50B3 RST RST_SR Reset status register 0xXX
0x00 50B4 to
0x00 50BF
0x00 50C0
CLK_ICKR Internal clock control register 0x01
Reserved area (12 bytes)
CLK
0x00 50C1 CLK_ECKR External clock control register 0x00
0x00 50C2 Reserved area (1 byte)
0x00 50C3
CLK_CMSR Clock master status register 0xE1
0x00 50C4 CLK_SWR Clock master switch register 0xE1
0x00 50C5 CLK_SWCR Clock switch control register 0xXX
0x00 50C6 CLK_CKDIVR Clock divider register 0x18
CLK
0x00 50C7 CLK_PCKENR1 Peripheral clock gating register 1 0xFF
0x00 50C8 CLK_CSSR Clock security system register 0x00
0x00 50C9 CLK_CCOR Configurable clock control register 0x00
0x00 50CA CLK_PCKENR2 Peripheral clock gating register 2 0xFF
0x00 50CB Reserved area (1 byte)
(1)
Doc ID 022171 Rev 3 29/90
Memory and register map STM8S007C8
Table 8. General hardware register map (continued)
Address Block Register label Register name
0x00 50CC
CLK_HSITRIMR HSI clock calibration trimming register 0x00
CLK
0x00 50CD CLK_SWIMCCR SWIM clock control register
0x00 50CE to
0x00 50D0
0x00 50D1
WWDG_CR WWDG control register 0x7F
Reserved area (3 bytes)
Reset
status
0bXXXX
XXX0
WWDG
0x00 50D2 WWDG_WR WWDR window register 0x7F
0x00 50D3 to
0x00 50DF
0x00 50E0
0x00 50E1 IWDG_PR IWDG prescaler register 0x00
IWDG
IWDG_KR IWDG key register 0xXX
Reserved area (13 bytes)
0x00 50E2 IWDG_RLR IWDG reload register 0xFF
0x00 50E3 to
0x00 50EF
0x00 50F0
0x00 50F1 AWU_APR AWU asynchronous prescaler buffer register 0x3F
AWU
AWU_CSR1 AWU control/status register 1 0x00
Reserved area (13 bytes)
0x00 50F2 AWU_TBR AWU timebase selection register 0x00
(2)
0x00 50F3 BEEP BEEP_CSR BEEP control/status register 0x1F
0x00 50F4 to
0x00 50FF
0x00 5200
SPI_CR1 SPI control register 1 0x00
Reserved area (12 bytes)
0x00 5201 SPI_CR2 SPI control register 2 0x00
0x00 5202 SPI_ICR SPI interrupt control register 0x00
0x00 5203 SPI_SR SPI status register 0x02
SPI
0x00 5204 SPI_DR SPI data register 0x00
0x00 5205 SPI_CRCPR SPI CRC polynomial register 0x07
0x00 5206 SPI_RXCRCR SPI Rx CRC register 0xFF
0x00 5207 SPI_TXCRCR SPI Tx CRC register 0xFF
0x00 5208 to
0x00 520F
0x00 5210
I2C_CR1 I2C control register 1 0x00
0x00 5211 I2C_CR2 I
0x00 5212 I2C_FREQR I
2
C
I
0x00 5213 I2C_OARL I
0x00 5214 I2C_OARH I
Reserved area (8 bytes)
2
C control register 2 0x00
2
C frequency register 0x00
2
C own address register low 0x00
2
C own address register high 0x00
0x00 5215 Reserved
30/90 Doc ID 022171 Rev 3
STM8S007C8 Memory and register map
Table 8. General hardware register map (continued)
Address Block Register label Register name
0x00 5216
I2C_DR I
0x00 5217 I2C_SR1 I
0x00 5218 I2C_SR2 I
0x00 5219 I2C_SR3 I
2
C
I
0x00 521A I2C_ITR I
0x00 521B I2C_CCRL I
0x00 521C I2C_CCRH I
0x00 521D I2C_TRISER I
0x00 521E to
0x00 522F
0x00 5230
UART1_SR UART1 status register 0xC0
Reserved area (18 bytes)
2
C data register 0x00
2
C status register 1 0x00
2
C status register 2 0x00
2
C status register 3 0x00
2
C interrupt control register 0x00
2
C clock control register low 0x00
2
C clock control register high 0x00
2
C TRISE register 0x02
Reset
status
0x00 5231 UART1_DR UART1 data register 0xXX
0x00 5232 UART1_BRR1 UART1 baud rate register 1 0x00
0x00 5233 UART1_BRR2 UART1 baud rate register 2 0x00
0x00 5234 UART1_CR1 UART1 control register 1 0x00
0x00 5235 UART1_CR2 UART1 control register 2 0x00
UART1
0x00 5236 UART1_CR3 UART1 control register 3 0x00
0x00 5237 UART1_CR4 UART1 control register 4 0x00
0x00 5238 UART1_CR5 UART1 control register 5 0x00
0x00 5239 UART1_GTR UART1 guard time register 0x00
0x00 523A UART1_PSCR UART1 prescaler register 0x00
0x00 523B to
0x00 523F
0x00 5240
UART3_SR UART3 status register C0h
Reserved area (5 bytes)
0x00 5241 UART3_DR UART3 data register 0xXX
0x00 5242 UART3_BRR1 UART3 baud rate register 1 0x00
0x00 5243 UART3_BRR2 UART3 baud rate register 2 0x00
0x00 5244 UART3_CR1 UART3 control register 1 0x00
UART3
0x00 5245 UART3_CR2 UART3 control register 2 0x00
0x00 5246 UART3_CR3 UART3 control register 3 0x00
0x00 5247 UART3_CR4 UART3 control register 4 0x00
0x00 5248 Reserved
0x00 5249 UART3_CR6 UART3 control register 6 0x00
0x00 524A to
0x00 524F
Reserved area (6 bytes)
Doc ID 022171 Rev 3 31/90
Memory and register map STM8S007C8
Table 8. General hardware register map (continued)
Address Block Register label Register name
0x00 5250
0x00 5251 TIM1_CR2 TIM1 control register 2 0x00
0x00 5252 TIM1_SMCR TIM1 slave mode control register 0x00
0x00 5253 TIM1_ETR TIM1 external trigger register 0x00
0x00 5254 TIM1_IER TIM1 Interrupt enable register 0x00
0x00 5255 TIM1_SR1 TIM1 status register 1 0x00
0x00 5256 TIM1_SR2 TIM1 status register 2 0x00
0x00 5257 TIM1_EGR TIM1 event generation register 0x00
0x00 5258 TIM1_CCMR1 TIM1 capture/compare mode register 1 0x00
0x00 5259 TIM1_CCMR2 TIM1 capture/compare mode register 2 0x00
0x00 525A TIM1_CCMR3 TIM1 capture/compare mode register 3 0x00
0x00 525B TIM1_CCMR4 TIM1 capture/compare mode register 4 0x00
0x00 525C TIM1_CCER1 TIM1 capture/compare enable register 1 0x00
0x00 525D TIM1_CCER2 TIM1 capture/compare enable register 2 0x00
0x00 525E TIM1_CNTRH TIM1 counter high 0x00
0x00 525F TIM1_CNTRL TIM1 counter low 0x00
TIM1
0x00 5260 TIM1_PSCRH TIM1 prescaler register high 0x00
TIM1_CR1 TIM1 control register 1 0x00
Reset
status
0x00 5261 TIM1_PSCRL TIM1 prescaler register low 0x00
0x00 5262 TIM1_ARRH TIM1 auto-reload register high 0xFF
0x00 5263 TIM1_ARRL TIM1 auto-reload register low 0xFF
0x00 5264 TIM1_RCR TIM1 repetition counter register 0x00
0x00 5265 TIM1_CCR1H TIM1 capture/compare register 1 high 0x00
0x00 5266 TIM1_CCR1L TIM1 capture/compare register 1 low 0x00
0x00 5267 TIM1_CCR2H TIM1 capture/compare register 2 high 0x00
0x00 5268 TIM1_CCR2L TIM1 capture/compare register 2 low 0x00
0x00 5269 TIM1_CCR3H TIM1 capture/compare register 3 high 0x00
0x00 526A TIM1_CCR3L TIM1 capture/compare register 3 low 0x00
0x00 526B TIM1_CCR4H TIM1 capture/compare register 4 high 0x00
0x00 526C TIM1_CCR4L TIM1 capture/compare register 4 low 0x00
0x00 526D TIM1_BKR TIM1 break register 0x00
0x00 526E TIM1_DTR TIM1 dead-time register 0x00
0x00 526F TIM1_OISR TIM1 output idle state register 0x00
0x00 5270 to
0x00 52FF
Reserved area (147 bytes)
32/90 Doc ID 022171 Rev 3
STM8S007C8 Memory and register map
Table 8. General hardware register map (continued)
Address Block Register label Register name
0x00 5300
0x00 5301 TIM2_IER TIM2 interrupt enable register 0x00
0x00 5302 TIM2_SR1 TIM2 status register 1 0x00
0x00 5303 TIM2_SR2 TIM2 status register 2 0x00
0x00 5304 TIM2_EGR TIM2 event generation register 0x00
0x00 5305 TIM2_CCMR1 TIM2 capture/compare mode register 1 0x00
0x00 5306 TIM2_CCMR2 TIM2 capture/compare mode register 2 0x00
0x00 5307 TIM2_CCMR3 TIM2 capture/compare mode register 3 0x00
0x00 5308 TIM2_CCER1 TIM2 capture/compare enable register 1 0x00
0x00 5309 TIM2_CCER2 TIM2 capture/compare enable register 2 0x00
0x00 530A TIM2_CNTRH TIM2 counter high 0x00
0x00 530B TIM2_CNTRL TIM2 counter low 0x00
00 530C0x TIM2_PSCR TIM2 prescaler register 0x00
0x00 530D TIM2_ARRH TIM2 auto-reload register high 0xFF
0x00 530E TIM2_ARRL TIM2 auto-reload register low 0xFF
0x00 530F TIM2_CCR1H TIM2 capture/compare register 1 high 0x00
0x00 5310 TIM2_CCR1L TIM2 capture/compare register 1 low 0x00
TIM2
TIM2_CR1 TIM2 control register 1 0x00
Reset
status
0x00 5311 TIM2_CCR2H TIM2 capture/compare reg. 2 high 0x00
0x00 5312 TIM2_CCR2L TIM2 capture/compare register 2 low 0x00
0x00 5313 TIM2_CCR3H TIM2 capture/compare register 3 high 0x00
0x00 5314 TIM2_CCR3L TIM2 capture/compare register 3 low 0x00
0x00 5315 to
0x00 531F
0x00 5320
0x00 5321 TIM3_IER TIM3 interrupt enable register 0x00
0x00 5322 TIM3_SR1 TIM3 status register 1 0x00
0x00 5323 TIM3_SR2 TIM3 status register 2 0x00
0x00 5324 TIM3_EGR TIM3 event generation register 0x00
0x00 5325 TIM3_CCMR1 TIM3 capture/compare mode register 1 0x00
0x00 5326 TIM3_CCMR2 TIM3 capture/compare mode register 2 0x00
0x00 5327 TIM3_CCER1 TIM3 capture/compare enable register 1 0x00
0x00 5328 TIM3_CNTRH TIM3 counter high 0x00
0x00 5329 TIM3_CNTRL TIM3 counter low 0x00
0x00 532A TIM3_PSCR TIM3 prescaler register 0x00
TIM3
TIM3_CR1 TIM3 control register 1 0x00
Reserved area (11 bytes)
Doc ID 022171 Rev 3 33/90
Memory and register map STM8S007C8
Table 8. General hardware register map (continued)
Address Block Register label Register name
0x00 532B
TIM3_ARRH TIM3 auto-reload register high 0xFF
Reset
status
0x00 532C TIM3_ARRL TIM3 auto-reload register low 0xFF
0x00 532D TIM3_CCR1H TIM3 capture/compare register 1 high 0x00
TIM3
0x00 532E TIM3_CCR1L TIM3 capture/compare register 1 low 0x00
0x00 532F TIM3_CCR2H TIM3 capture/compare register 2 high 0x00
0x00 5330 TIM3_CCR2L TIM3 capture/compare register 2 low 0x00
0x00 5331 to
0x00 533F
0x00 5340
TIM4_CR1 TIM4 control register 1 0x00
Reserved area (15 bytes)
0x00 5341 TIM4_IER TIM4 interrupt enable register 0x00
0x00 5342 TIM4_SR TIM4 status register 0x00
0x00 5343 TIM4_EGR TIM4 event generation register 0x00
TIM4
0x00 5344 TIM4_CNTR TIM4 counter 0x00
0x00 5345 TIM4_PSCR TIM4 prescaler register 0x00
0x00 5346 TIM4_ARR TIM4 auto-reload register 0xFF
0x00 5347 to
0x00 53FF
Reserved area (185 bytes)
0x00 5400
ADC _CSR ADC control/status register 0x00
0x00 5401 ADC_CR1 ADC configuration register 1 0x00
0x00 5402 ADC_CR2 ADC configuration register 2 0x00
0x00 5403 ADC_CR3 ADC configuration register 3 0x00
ADC2
0x00 5404 ADC_DRH ADC data register high 0xXX
0x00 5405 ADC_DRL ADC data register low 0xXX
0x00 5406 ADC_TDRH ADC Schmitt trigger disable register high 0x00
0x00 5407 ADC_TDRL ADC Schmitt trigger disable register low 0x00
0x00 5408 to
0x00 57FF
1. Depends on the previous reset source.
2. Write only register.
Reserved area (1016 bytes)
34/90 Doc ID 022171 Rev 3
STM8S007C8 Memory and register map

Table 9. CPU/SWIM/debug module/interrupt controller registers

Address Block Register Label Register Name
0x00 7F00
A Accumulator 0x00
Reset
Status
0x00 7F01 PCE Program counter extended 0x00
0x00 7F02 PCH Program counter high 0x00
0x00 7F03 PCL Program counter low 0x00
0x00 7F04 XH X index register high 0x00
(1)
0x00 7F05 XL X index register low 0x00
CPU
0x00 7F06 YH Y index register high 0x00
0x00 7F07 YL Y index register low 0x00
0x00 7F08 SPH Stack pointer high 0x17
0x00 7F09 SPL Stack pointer low 0xFF
0x00 7F0A CCR Condition code register 0x28
0x00 7F0B to
0x00 7F5F
Reserved area (85 bytes)
0x00 7F60 CPU CFG_GCR Global configuration register 0x00
0x00 7F70
ITC_SPR1 Interrupt software priority register 1 0xFF
0x00 7F71 ITC_SPR2 Interrupt software priority register 2 0xFF
0x00 7F72 ITC_SPR3 Interrupt software priority register 3 0xFF
(2)
0x00 7F73 ITC_SPR4 Interrupt software priority register 4 0xFF
ITC
0x00 7F74 ITC_SPR5 Interrupt software priority register 5 0xFF
0x00 7F75 ITC_SPR6 Interrupt software priority register 6 0xFF
0x00 7F76 ITC_SPR7 Interrupt software priority register 7 0xFF
0x00 7F77 ITC_SPR8 Interrupt software priority register 8 0xFF
0x00 7F78 to
0x00 7F79
Reserved area (2 bytes)
0x00 7F80 SWIM SWIM_CSR SWIM control status register 0x00
0x00 7F81 to
0x00 7F8F
Reserved area (15 bytes)
Doc ID 022171 Rev 3 35/90
Memory and register map STM8S007C8
Table 9. CPU/SWIM/debug module/interrupt controller registers (continued)
Address Block Register Label Register Name
0x00 7F90
DM_BK1RE DM breakpoint 1 register extended byte 0xFF
0x00 7F91 DM_BK1RH DM breakpoint 1 register high byte 0xFF
0x00 7F92 DM_BK1RL DM breakpoint 1 register low byte 0xFF
0x00 7F93 DM_BK2RE DM breakpoint 2 register extended byte 0xFF
0x00 7F94 DM_BK2RH DM breakpoint 2 register high byte 0xFF
0x00 7F95 DM_BK2RL DM breakpoint 2 register low byte 0xFF
DM
0x00 7F96 DM_CR1 DM debug module control register 1 0x00
0x00 7F97 DM_CR2 DM debug module control register 2 0x00
0x00 7F98 DM_CSR1 DM debug module control/status register 1 0x10
0x00 7F99 DM_CSR2 DM debug module control/status register 2 0x00
0x00 7F9A DM_ENFCTR DM enable function register 0xFF
0x00 7F9B to
0x00 7F9F
1. Accessible by debug module only
2. Product dependent value, see Figure 4: Memory map.
Reserved area (5 bytes)
Reset
Status
36/90 Doc ID 022171 Rev 3
STM8S007C8 Interrupt vector mapping

7 Interrupt vector mapping

Table 10. Interrupt mapping

IRQ
no.
Source
block
Description
Wakeup from
Halt mode
Wakeup from
Active-halt mode
Vector address
RESET Reset Yes Yes 0x00 8000
TRAP Software interrupt - - 0x00 8004
0 TLI External top level interrupt - - 0x00 8008
1 AWU Auto wake up from halt - Yes 0x00 800C
2 CLK Clock controller - - 0x00 8010
3 EXTI0 Port A external interrupts Yes
(1)
Ye s
(1)
0x00 8014
4 EXTI1 Port B external interrupts Yes Yes 0x00 8018
5 EXTI2 Port C external interrupts Yes Yes 0x00 801C
6 EXTI3 Port D external interrupts Yes Yes 0x00 8020
7 EXTI4 Port E external interrupts Yes Yes 0x00 8024
8 Reserved 0x00 8028
9 Reserved 0x00 802C
10 SPI End of transfer Yes Yes 0x00 8030
11 TIM1
TIM1 update/overflow/underflow/ trigger/break
- - 0x00 8034
12 TIM1 TIM1 capture/compare - - 0x00 8038
13 TIM2 TIM2 update /overflow - - 0x00 803C
14 TIM2 TIM2 capture/compare - - 0x00 8040
15 TIM3 Update/overflow - - 0x00 8044
16 TIM3 Capture/compare - - 0x00 8048
17 UART1 Tx complete - - 0x00 804C
18 UART1 Receive register DATA FULL - - 0x00 8050
19 I
2
CI
2
C interrupt Yes Yes 0x00 8054
20 UART3 Tx complete - - 0x00 8058
21 UART3 Receive register DATA FULL - - 0x00 805C
22 ADC2 ADC2 end of conversion - - 0x00 8060
23 TIM4 TIM4 update/overflow - - 0x00 8064
24 Flash EOP/WR_PG_DIS - - 0x00 8068
Reserved
1. Except PA1
0x00 806C to
0x00 807C
Doc ID 022171 Rev 3 37/90
Option bytes STM8S007C8

8 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated block of the memory. Except for the ROP (read-out protection) byte, each option byte has to be stored twice, in a regular form (OPTx) and a complemented one (NOPTx) for redundancy.
Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address shown in Table 11: Option bytes below. Option bytes can also be modified ‘on the fly’ by the application in IAP mode, except the ROP option that can only be modified in ICP mode (via SWIM).
Refer to the STM8S Flash programming manual (PM0051) and STM8 SWIM communication protocol and debug module user manual (UM0470) for information on SWIM programming procedures.

Table 11. Option bytes

Addr.
4800h
4801h
4802h NOPT1 NUBC[7:0] FFh
4803h Alternate
4804h NOPT2 NAFR7 NAFR6 NAFR5 NAFR4 NAFR3 NAFR2 NAFR1 NAFR0 FFh
4805h
4806h NOPT3 Reserved
4807h
4808h NOPT4 Reserved
4809h
480Ah NOPT5 NHSECNT[7:0] FFh
480Bh
480Ch NOPT6 Reserved FFh
480Dh
480Eh NOPT7 Reserved Nwait state FFh
Option
name
Read-out
protection
(ROP)
User boot
code(UBC)
function
remapping
(AFR)
Watchdog
option
Clock option
HSE clock
startup
Reserved
Flash wait
states
Option
byte no.
OPT0 ROP[7:0] 00h
OPT1 UBC[7:0] 00h
OPT2 AFR7 AFR6 AFR5 Reserved AFR3 AFR2 AFR1 AFR0 00h
OPT3 Reserved
OPT4 Reserved
OPT5 HSECNT[7:0] 00h
OPT6 Reserved 00h
OPT7 Reserved Wait state 00h
76543210
Option bits Factory
default setting
LSI
_EN
NLSI
_EN
EXT
CLK
NEXT
CLK
IWDG
_HW
NIWDG
_HW
CKAWU
SEL
NCKAWUSELNPR
WWDG
_HW
NWWDG_
HW
PRS
C1
SC1
WWDG
_HALT
NWWDG
_HALT
PRS
C0
NPR
SC0
00h
FFh
00h
FFh
487Eh
Bootloader
487Fh NOPTBL NBL[7:0] FFh
OPTBL BL[7:0] 00h
38/90 Doc ID 022171 Rev 3
STM8S007C8 Option bytes

Table 12. Option byte description

Option byte no. Description
ROP[7:0] Memory readout protection (ROP)
OPT0
OPT1
OPT2
0xAA: Enable readout protection (write access via SWIM protocol)
Note: Refer to the family reference manual (RM0016) section on Flash/EEPROM memory readout protection for details.
UBC[7:0] User boot code area
0x00: no UBC, no write-protection 0x01: Pages 0 to 1 defined as UBC, memory write-protected 0x02: Pages 0 to 3 defined as UBC, memory write-protected 0x03: Pages 0 to 4 defined as UBC, memory write-protected ... 0xFE: Pages 0 to 255 defined as UBC, memory write-protected 0xFF: Reserved
Note: Refer to the family reference manual (RM0016) section on Flash/EEPROM write protection for more details.
AFR7Alternate function remapping option 7
0: Port D4 alternate function = TIM2_CH1 1: Port D4 alternate function = BEEP
AFR6 Alternate function remapping option 6
0: Port B5 alternate function = AIN5, port B4 alternate function = AIN4 1: Port B5 alternate function = I
2
C_SDA, port B4 alternate function =
I2C_SCL
AFR5 Alternate function remapping option 5
0: Port B3 alternate function = AIN3, port B2 alternate function = AIN2, port B1 alternate function = AIN1, port B0 alternate function = AIN0 1: Port B3 alternate function = TIM1_ETR, port B2 alternate function = TIM1_CH3N, port B1 alternate function = TIM1_CH2N, port B0 alternate function = TIM1_CH1N
AFR4 Alternate function remapping option 4
Reserved
AFR3 Alternate function remapping option 3
0: Port D0 alternate function = TIM3_CH2 1: Port D0 alternate function = TIM1_BKIN
AFR2 Alternate function remapping option 2
0: Port D0 alternate function = TIM3_CH2 1: Port D0 alternate function = CLK_CCO Note: AFR2 option has priority over AFR3 if both are activated
AFR1 Alternate function remapping option 1
0: Port A3 alternate function = TIM2_CH3, port D2 alternate function TIM3_CH1 1: Port A3 alternate function = TIM3_CH1, port D2 alternate function TIM2_CH3
AFR0 Alternate function remapping option 0
0: Port D3 alternate function = TIM2_CH2 1: Port D3 alternate function = ADC_ETR
Doc ID 022171 Rev 3 39/90
Option bytes STM8S007C8
Table 12. Option byte description (continued)
Option byte no. Description
LSI_EN: Low speed internal clock enable
0: LSI clock is not available as CPU clock source 1: LSI clock is available as CPU clock source
IWDG_HW: Independent watchdog
0: IWDG Independent watchdog activated by software
OPT3
OPT4
1: IWDG Independent watchdog activated by hardware
WWDG_HW: Window watchdog activation
0: WWDG window watchdog activated by software 1: WWDG window watchdog activated by hardware
WWDG_HALT: Window watchdog reset on halt
0: No reset generated on halt if WWDG active 1: Reset generated on halt if WWDG active
EXTCLK: External clock selection
0: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN
CKAWUSEL: Auto wakeup unit/clock
0: LSI clock source selected for AWU 1: HSE clock with prescaler selected as clock source for for AWU
PRSC[1:0] AWU clock prescaler
00: 24 MHz to 128 kHz prescaler 01: 16 MHz to 128 kHz prescaler 10: 8 MHz to 128 kHz prescaler 11: 4 MHz to 128 kHz prescaler
HSECNT[7:0]: HSE crystal oscillator stabilization time
This configures the stabilisation time.
OPT5
OPT6 Reserved
OPT7
0x00: 2048 HSE cycles 0xB4: 128 HSE cycles 0xD2: 8 HSE cycles 0xE1: 0.5 HSE cycles
WAITSTATE Wait state configuration
This option configures the number of wait states inserted when reading from the Flash/data EEPROM memory. 1 wait state is required if f 0: No wait state 1: 1 wait state
> 16 MHz.
CPU
40/90 Doc ID 022171 Rev 3
STM8S007C8 Option bytes
Table 12. Option byte description (continued)
Option byte no. Description
BL[7:0] Bootloader option byte
For STM8S products, this option is checked by the boot ROM code after reset. Depending on the content of addresses 0x487E, 0x487F, and 0x8000 (reset vector), the CPU jumps to the bootloader or to
OPTBL
the reset vector. Refer to the UM0560 (STM8L/S bootloader manual) for more details. For STM8L products, the bootloader option bytes are on addresses 0xXXXX and 0xXXXX+1 (2 bytes). These option bytes control whether the bootloader is active or not. For more details, refer to the UM0560 (STM8L/S bootloader manual) for more details.
Doc ID 022171 Rev 3 41/90
Electrical characteristics STM8S007C8
V
DD
V
DDA
V
DDIO
V
SS
V
SSA
V
SSIO
A
5 V or 3.3 V

9 Electrical characteristics

9.1 Parameter conditions

Unless otherwise specified, all voltages are referred to VSS.

9.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100 % of the devices with an ambient temperature at T the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ± 3 Σ).

9.1.2 Typical values

= 25 °C and TA = T
A
Amax
(given by
Unless otherwise specified, typical data are based on TA = 25 °C, V only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated

9.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

9.1.4 Typical current consumption

For typical current consumption measurements, VDD, V together in the configuration shown in Figure 5.
Figure 5. Supply current measurement conditions
(mean ± 2 Σ).
DDIO
and V
= 5 V. They are given
DD
are connected
DDA
42/90 Doc ID 022171 Rev 3
STM8S007C8 Electrical characteristics
50 pF
STM8 pin
V
IN
STM8 pin

9.1.5 Pin loading conditions

9.1.6 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 6.
Figure 6. Pin loading conditions

9.1.7 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 7.
Figure 7. Pin input voltage
Doc ID 022171 Rev 3 43/90
Electrical characteristics STM8S007C8

9.2 Absolute maximum ratings

Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 13. Voltage characteristics

Symbol Ratings Min Max Unit
V
- VSSSupply voltage (including V
DDx
DDA and VDDIO
Input voltage on true open drain pins (PE1, PE2)
V
IN
|V
- VDD| Variations between different power pins 50
DDx
- VSS| Variations between all the different ground pins 50
|V
SSx
V
ESD
Input voltage on any other pin
Electrostatic discharge voltage
(2)
(1)
)
(2)
-0.3 6.5
V
- 0.3 6.5
SS
V
- 0.3 V
SS
DD
V
+ 0.3
mV
see Absolute maximum
ratings (electrical
sensitivity) on page 80
1. All power (VDD, V external power supply
2. I
must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
INJ(PIN)
cannot be respected, the injection current must be limited externally to the I injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain pads, there is no positive injection current, and the corresponding V
DDIO
, V
) and ground (VSS, V
DDA
SSIO
, V
) pins must always be connected to the
SSA
value. A positive
INJ(PIN)
maximum must always be respected
IN
44/90 Doc ID 022171 Rev 3
STM8S007C8 Electrical characteristics

Table 14. Current characteristics

60
60
200
100
160
80
±4
±20
(1)
Unit
mA
Symbol Ratings Max.
I
VDD
I
VSS
Total current into V
Total current out of V
power lines (source)
DD
ground lines (sink)
SS
(2)
(2)
Output current sunk by any I/O and control pin 20
I
IO
ΣI
IO
Output current source by any I/Os and control pin 20
Total output current sourced (sum of all I/O and control pins) for devices with two V
DDIO
Total output current sourced (sum of all I/O and control pins) for devices with one V
DDIO
Total output current sunk (sum of all I/O and control pins) for devices with two V
SSIO
pins
Total output current sunk (sum of all I/O and control pins) for devices with one V
SSIO
pin
pins
pin
(3)
(3)
(3)
(3)
Injected current on NRST pin ±4
(4)(5)
I
INJ(PIN)
ΣI
INJ(PIN)
1. Data based on characterization results, not tested in production.
2. All power (VDD, V external supply.
3. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package between the V
4. I
5. Negative injection disturbs the analog performance of the device. See note in Section 9.3.10: 10-bit ADC
6. When several inputs are submitted to a current injection, the maximum ΣI
must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
INJ(PIN)
cannot be respected, the injection current must be limited externally to the I injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain pads, there is no positive injection current, and the corresponding VIN maximum must always be respected
characteristics on page 76.
positive and negative injected currents (instantaneous values). These results are based on characterization with
Injected current on OSCIN pin ±4
SSIO
(6)
(6)
, V
) pins must always be connected to the
SSA
INJ(PIN)
INJ(PIN)
Injected current on any other pin
(4)
Total injected current (sum of all I/O and control pins)
, V
DDIO
DDIO/VSSIO
) and ground (VSS, V
DDA
pins.
Σ
I
maximum current injection on four I/O port pins of the device.
INJ(PIN)
value. A positive
is the absolute sum of the

Table 15. Thermal characteristics

Symbol Ratings Value Unit
T
STG
T
J
Storage temperature range -65 to 150
Maximum junction temperature 150
Doc ID 022171 Rev 3 45/90
°C
Electrical characteristics STM8S007C8

9.3 Operating conditions

The device must be used in operating conditions that respect the parameters in Tab l e 1 6. In addition, full account must be taken of all physical capacitor characteristics and tolerances.

Table 16. General operating conditions

Symbol Parameter Conditions Min Max Unit
f
CPU
V
DD/VDD_IO
V
CAP
Internal CPU clock frequency
0 16 MHz
Standard operating voltage 2.95 5.5 V
C
: capacitance of
EXT
external capacitor
(1)
ESR of external capacitor
At 1 MHz
(2)
470 3300 nF
0.3 Ohm
ESL of external capacitor 15 nH
48-pin devices, with output
0 24 MHz
D
T
A
T
1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter dependency on temperature, DC bias and frequency in addition to other factors. The parameter specifications must be respected for the full application range.
2. This frequency of 1 MHz as a condition for V
3. To calculate P
characteristics on page 84) with the value for T Table 50: Thermal characteristics.
4. Refer to Section 10.2: Thermal characteristics on page 84 for the calculation method.
TA = 85° C for suffix 6
Ambient temperature for 6 suffix version
Junction temperature range -40 105
J
), use the formula P
Dmax(TA
Power dissipation at
(3)
P
on 8 standard ports, 2 high sink ports and 2 open drain ports simultaneously
(4)
443 mW
Maximum power dissipation -40 85
parameters is given by the design of the internal regulator.
CAP
= (T
Dmax
- TA)/Θ
Jmax
given in Ta bl e 1 6 above and the value for Θ
Jmax
(see Section 10.2: Thermal
JA
given in
JA
°C
46/90 Doc ID 022171 Rev 3
STM8S007C8 Electrical characteristics
f
CP U
[MH z]
Supply voltage [V]
24
12
8
4 0
2.95 4.0 5.0
16
5. 5
Functionality not
guaranteed in
this area
MS19413V1
Functionality guaranteed
with 0 wait state
Functionality guaranteed
with 1 wait state
C
Rleak
ESR ESL
Figure 8. f

Table 17. Operating conditions at power-up/power-down

CPUmax
versus VDD
Symbol Parameter Conditions Min Typ
(1)
(1)
2.65 2.8 2.95 V
2.58 2.73 2.88 V
t
VDD
t
TEMP
V
IT+
V
VDD rise time rate 2
fall time rate 2
V
DD
Reset release delay
rising 1.7
V
DD
Power-on reset threshold
IT-
Brown-out reset threshold
Max Unit
µs/V
(1)
ms
V
HYS(BOR)
1. Guaranteed by design, not tested in production.
Brown-out reset hysteresis

9.3.1 VCAP external capacitor

Stabilization for the main regulator is achieved connecting an external capacitor C V
pin. C
CAP
to less than 15 nH.
Figure 9. External capacitor C
1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.
is specified in Ta bl e 1 6 . Care should be taken to limit the series inductance
EXT
70 mV
to the
EXT
EXT
Doc ID 022171 Rev 3 47/90
Electrical characteristics STM8S007C8

9.3.2 Supply current characteristics

The current consumption is measured as described in Figure 5 on page 42.
Total current consumption in run mode
The MCU is placed under the following conditions:
All I/O pins in input mode with a static value at V
All peripherals are disabled (clock stopped by Peripheral Clock Gating registers) except
if explicitly mentioned.
When the MCU is clocked at 24 MHz, T
Subject to general operating conditions for V
Table 18. Total current consumption with code execution in run mode at VDD = 5 V
Symbol Parameter Conditions Typ Max Unit
85 °C and the WAITSTATE option bit is set.
A
and TA.
DD
or VSS (no load)
DD
Supply current in
f
f
CPU
CPU
= f
= f
MASTER
MASTER
= 24 MHz
= 16 MHz
run mode, code executed from RAM
f
f
CPU
CPU
= f
= f
MASTER
MASTER
/128 = 125 kHz
/128 =
15.625 kHz
I
DD(RUN)
Supply current in
f
f
CPU
CPU
CPU
= f
= f
= f
MASTER
MASTER
MASTER
= 128 kHz LSI RC osc. (128 kHz) 0.45
= 24 MHz
= 16 MHz
f
run mode, code executed from Flash
f
f
f
CPU
CPU
CPU
= f
= f
= f
MASTER
MASTER
MASTER
= 2 MHz HSI RC osc. (16 MHz/8)
/128 = 125 kHz HSI RC osc. (16 MHz) 1.1
/128 =
15.625 kHz
= f
f
CPU
MASTER
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
= 128 kHz LSI RC osc. (128 kHz) 0.55
HSE crystal osc. (24 MHz) 4.4
HSE user ext. clock (24 MHz) 3.7 7.3
HSE crystal osc. (16 MHz) 3.3
HSE user ext. clock (16 MHz) 2.7 5.8
HSI RC osc. (16 MHz) 2.5 3.4
HSE user ext. clock (16 MHz) 1.2 4.1
HSI RC osc. (16 MHz) 1.0 1.3
HSI RC osc. (16 MHz/8) 0.55
HSE crystal osc. (24 MHz) 11.4
HSE user ext. clock (24 MHz) 10.8 18
HSE crystal osc. (16 MHz) 9.0
HSE user ext. clock (16 MHz) 8.2 15.2
HSI RC osc.(16 MHz) 8.1 13.2
(2)
1.5
HSI RC osc. (16 MHz/8) 0.6
(1)
(1)
(1)
mA
(1)
(1)
(1)
48/90 Doc ID 022171 Rev 3
STM8S007C8 Electrical characteristics
Table 19. Total current consumption with code execution in run mode at VDD = 3.3 V
Symbol Parameter Conditions Typ Max
(1)
Unit
Supply current in
f
f
CPU
CPU
= f
= f
MASTER
MASTER
= 24 MHz
= 16 MHz
run mode, code executed from RAM
f
f
CPU
CPU
= f
= f
MASTER
MASTER
/128 = 125 kHz
/128 =
15.625 kHz
I
DD(RUN)
Supply current in
f
f
f
CPU
CPU
CPU
= f
= f
= f
MASTER
MASTER
MASTER
= 128 kHz LSI RC osc. (128 kHz) 0.45
= 24 MHz
= 16 MHz
run mode, code executed from Flash
f
f
f
CPU
CPU
CPU
= f
= f
= f
MASTER
MASTER
MASTER
= 2 MHz HSI RC osc. (16 MHz/8)
/128 = 125 kHz HSI RC osc. (16 MHz) 1.1
/128 =
15.625 kHz
= f
f
CPU
MASTER
1. Data based on characterization results, not tested in production.
2. Default clock configuration.
= 128 kHz LSI RC osc. (128 kHz) 0.55
HSE crystal osc. (24 MHz) 4.0
HSE user ext. clock (24 MHz) 3.7 7.3
HSE crystal osc. (16 MHz) 2.9
HSE user ext. clock (16 MHz) 2.7 5.8
HSI RC osc. (16 MHz) 2.5 3.4
HSE user ext. clock (16 MHz) 1.2 4.1
HSI RC osc. (16 MHz) 1.0 1.3
HSI RC osc. (16MHz/8) 0.55
HSE crystal osc. (24 MHz) 11.0
HSE user ext. clock (24 MHz) 10.8 18.0
HSE crystal osc. (16 MHz) 8.4
HSE user ext. clock (16 MHz) 8.2 15.2
HSI RC osc. (16 MHz) 8.1 13.2
(2)
1.5
HSI RC osc. (16 MHz/8) 0.6
mA
Doc ID 022171 Rev 3 49/90
Electrical characteristics STM8S007C8
Total current consumption in wait mode
Table 20. Total current consumption in wait mode at VDD = 5 V
Symbol Parameter Conditions Typ Max
(1)
Unit
f
CPU
= f
MASTER
= 24 MHz
HSE user ext. clock (24 MHz) 1.8 4.7
HSE crystal osc. (16 MHz) 2.0
HSE crystal osc. (24 MHz) 2.4
f
I
DD(WFI)
Supply current in
CPU
= f
MASTER
= 16 MHz
HSE user ext. clock (16 MHz) 1.4 4.4
HSI RC osc. (16 MHz) 1.2 1.6
wait mode
f
= f
CPU
= f
f
CPU
15.625 kHz
f
= f
CPU
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
Table 21. Total current consumption in wait mode at VDD = 3.3 V
/128 = 125 kHz HSI RC osc. (16 MHz) 1.0
MASTER
/128 =
MASTER
= 128 kHz LSI RC osc. (128 kHz) 0.5
MASTER
HSI RC osc. (16 MHz/8)
(2)
0.55
Symbol Parameter Conditions Typ Max
HSE crystal osc. (24 MHz) 2.0
f
CPU
= f
MASTER
= 24 MHz
HSE user ext. clock (24 MHz) 1.8 4.7
HSE crystal osc. (16 MHz) 1.6
f
I
DD(WFI)
Supply current in wait mode
= f
CPU
MASTER
f
= f
CPU
MASTER
= f
f
CPU
MASTER
15.625 kHz
= 16 MHz
HSE user ext. clock (16 MHz) 1.4 4.4
HSI RC osc. (16 MHz) 1.2 1.6
/128 = 125 kHz HSI RC osc. (16 MHz) 1.0
/128 =
HSI RC osc. (16 MHz/8)
(2)
0.55
(1)
mA
Unit
mA
f
= f
CPU
MASTER
15.625 kHz
1. Data based on characterization results, not tested in production.
2. Default clock configuration measured with all peripherals off.
/128 =
LSI RC osc. (128 kHz) 0.5
50/90 Doc ID 022171 Rev 3
STM8S007C8 Electrical characteristics
Total current consumption in active halt mode
Table 22. Total current consumption in active halt mode at VDD = 5 V, TA -40 to 85° C
Conditions
Symbol Parameter
Main voltage
regulator
(2)
(MVR)
Flash mode
(3)
Clock source
HSE crystal oscillator (16 MHz)
Operating mode
LSI RC oscillator (128 kHz)
On
I
DD(AH)
Supply current in active halt mode
Powerdown mode
HSE crystal oscillator (16 MHz)
LSI RC oscillator (128 kHz)
Off
Operating mode
Powerdown mode 11 45
1. Data based on characterization results, not tested in production.
2. Configured by the REGAH bit in the CLK_ICKR register.
3. Configured by the AHALT bit in the FLASH_CR1 register.
Table 23. Total current consumption in active halt mode at VDD = 3.3 V
LSI RC oscillator 128 kHz)
Conditions
Symbol Parameter
Main voltage
regulator
(2)
(MVR)
Flash mode
(3)
Clock source
Typ Max
1000
200 260
940
140
68
Typ
(1)
(1)
Unit
µA
Unit
Operating mode
On
I
DD(AH)
Supply current in active halt mode
Powerdown mode
Operating mode
Off
Powerdown mode 9
1. Data based on characterization results, not tested in production.
2. Configured by the REGAH bit in the CLK_ICKR register.
3. Configured by the AHALT bit in the FLASH_CR1 register.
Doc ID 022171 Rev 3 51/90
HSE crystal osc. (16 MHz) 600
LSI RC osc. (128 kHz) 200
HSE crystal osc. (16 MHz) 540
µA
LSI RC osc. (128 kHz) 140
66
LSI RC osc. (128 kHz)
Electrical characteristics STM8S007C8
Total current consumption in halt mode
Table 24. Total current consumption in halt mode at VDD = 5 V, TA -40 to 85° C
Symbol Parameter Conditions Typ Max Unit
Flash in operating mode, HSI clock after wakeup
I
DD(H)
Supply current in halt mode
Flash in powerdown mode, HSI clock after wakeup
Table 25. Total current consumption in halt mode at VDD = 3.3 V
63.5
6.5 35
Symbol Parameter Conditions Typ Unit
I
DD(H)
Flash in operating mode, HSI clock after wakeup
Supply current in halt mode
Flash in powerdown mode, HSI clock after wakeup
61.5
4.5
Low power mode wakeup times
Table 26. Wakeup times
Symbol Parameter Conditions Typ Max
t
WU(WFI)
t
WU(AH)
t
WU(H)
Wakeup time from wait mode to run mode
Wakeup time active halt mode to run mode.
Wakeup time from halt mode to run mode
(3)
(3)
(3)
= f
f
CPU
MASTER
MVR voltage
regulator on
MVR voltage
regulator off
Flash in operating mode
= 16 MHz. 0.56
Flash in operating
(5)
mode
(4)
Flash in powerdown
(5)
mode
Flash in operating
(5)
mode
(4)
Flash in powerdown
(5)
mode
(5)
Flash in powerdown mode
(5)
HSI (after wakeup)
48
50
1
3
52
54
(6)
(6)
(6)
(6)
See
note
2
(1)
(2)
(6)
µA
µA
Unit
µs
1. Data guaranteed by design, not tested in production.
WU(WFI)
= 2 x 1/f
2. t
3. Measured from interrupt event to interrupt vector fetch.
4. Configured by the REGAH bit in the CLK_ICKR register.
5. Configured by the AHALT bit in the FLASH_CR1 register.
6. Plus 1 LSI clock depending on synchronization.
master
+ 7 x 1/f
CPU
52/90 Doc ID 022171 Rev 3
STM8S007C8 Electrical characteristics
Total current consumption and timing in forced reset state
Table 27. Total current consumption and timing in forced reset state
Symbol Parameter Conditions Typ Max
I
DD(R)
t
RESETBL
1. Data guaranteed by design, not tested in production.
Supply current in reset state
Reset release to bootloader vector fetch
V
= 5 V 1.6
DD
= 3.3 V 0.8
V
DD
(1)
Unit
mA
150 µs
Current consumption of on-chip peripherals
Subject to general operating conditions for VDD and TA.
HSI internal RC/f
Table 28. Peripheral current consumption
CPU
= f
MASTER
= 16 MHz.
Symbol Parameter Typ. Unit
(2)
(2)
(1)
(1)
(2)
(2)
(1)
(1)
(3)
220
120
100
25
90
110
40
50
1000
µA
I
DD(TIM1)
I
DD(TIM2)
I
DD(TIM3)
I
DD(TIM4)
I
DD(UART1)
I
DD(UART3)
I
DD(SPI)
I
DD(I2C)
I
DD(ADC2)
1. Data based on a differential IDD measurement between reset configuration and timer counter running at 16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.
2. Data based on a differential IDD measurement between the on-chip peripheral when kept under reset and not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling. Not tested in production.
3. Data based on a differential IDD measurement between reset configuration and continuous A/D conversions. Not tested in production.
TIM1 supply current
TIM2 supply current
TIM3 timer supply current
TIM4 timer supply current
UART1 supply current
UART3 supply current
SPI supply current
I2C supply current
ADC2 supply current when converting
Doc ID 022171 Rev 3 53/90
Electrical characteristics STM8S007C8
0
0.5
1
1.5
2
2.5
2.5 3 3.5 4 4.5 5 5.5 6
DD(WFI)HSI
DD
ai18797
Current consumption curves
Figure 10 and Figure 11 show typical current consumption measured with code executing in
RAM.
Figure 10. Typ. I
[mA]
I
Figure 11. Typ. I
DD(RUN)
4
3.5
3
2.5
2
1.5
DD(RUN)HSI
1
0.5
0
DD(WFI)
vs VDD, HSI RC osc, f
2.5 3 3.5 4 4.5 5 5.5 6
vs VDD, HSI RC osc, f
V
DD
= 16 MHz
CPU
[V]
= 16 MHz
CPU
25°C
85°C
ai18796
[mA]
I
V
54/90 Doc ID 022171 Rev 3
25°C
85°C
[V]
STM8S007C8 Electrical characteristics
OSCIN
f
HSE
External clock
STM8
source
V
HSEL
V
HSEH

9.3.3 External clock sources and timing characteristics

HSE user external clock
Subject to general operating conditions for VDD and TA.
Table 29. HSE user external clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
HSE_ext
V
HSEH
V
HSEL
I
LEAK_HSE
1. Data based on characterization results, not tested in production.
User external clock source frequency
OSCIN input pin high level
(1)
voltage
OSCIN input pin low level
(1)
voltage
OSCIN input leakage current
< V
V
SS
IN
< V
DD
Figure 12. HSE external clock source
024MHz
V
0.7 x V
DD
DD
+ 0.3 V
V
V
SS
0.3 x V
DD
-1 1 µA
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).
Doc ID 022171 Rev 3 55/90
Electrical characteristics STM8S007C8
OSCOUT
OSCIN
f
HSE
to core
C
L1
C
L2
R
F
STM8
Resonator
Consumption
control
g
m
R
m
C
m
L
m
C
O
Resonator
g
mcrit
2 Π× f
HSE
×()
2
Rm× 2Co C+()
2
=
Table 30. HSE oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
HSE
R
C
I
DD(HSE)
g
t
SU(HSE)
1. C is approximately equivalent to 2 x crystal Cload.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small R Refer to crystal manufacturer for more details
3. Data based on characterization results, not tested in production.
4. t
SU(HSE)
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
External high speed oscillator frequency
Feedback resistor 220 kΩ
F
(1)
Recommended load capacitance
(2)
C = 20 pF,
f
= 24 MHz
HSE oscillator power consumption
OSC
C = 10 pF,
= 24 MHz
f
OSC
Oscillator transconductance 5 mA/V
m
(4)
Startup time VDD is stabilized 1 ms
is the start-up time measured from the moment it is enabled (by software) to a stabilized 24 MHz oscillation is
124MHz
20 pF
6 (startup)
2 (stabilized)
6 (startup)
1.5 (stabilized)
(3)
value.
m
(3)
Figure 13. HSE oscillator circuit diagram
mA
HSE oscillator critical g
: Notional resistance (see crystal specification)
R
m
L
: Notional inductance (see crystal specification)
m
C
: Notional capacitance (see crystal specification)
m
formula
m
Co: Shunt capacitance (see crystal specification) C
L1=CL2
g
m
56/90 Doc ID 022171 Rev 3
=C: Grounded external capacitance
>> g
mcrit
STM8S007C8 Electrical characteristics
-3%
-2%
-1%
0%
1%
2%
3%
2.5 3 3.5 4 4.5 5 5.5 6
DD
ai15067b

9.3.4 Internal clock sources and timing characteristics

Subject to general operating conditions for VDD and TA. f
HSE
High speed internal RC oscillator (HSI)
Table 31. HSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
ACC
t
su(HSI)
I
DD(HSI)
1. Guaranteeed by design, not tested in production.
2. Data based on characterization results, not tested in production
Frequency 16 MHz
HSI
Tr i m m e d by th e
Accuracy of HSI oscillator
CLK_HSITRIMR register for given V
and TA
DD
-1.0
(1)
1.0
conditions
HSI
VDD = 5 V, TA = 25 °C 5
Accuracy of HSI oscillator
V
= 5 V,
(factory calibrated)
HSI oscillator wakeup time including calibration
HSI oscillator power consumption
DD
-40 °C ≤ TA ≤ 85 °C
-5 5
1.0
170 250
(1)
(2)
%
µs
µA
Figure 14. Typical HSI frequency variation vs VDD at 3 temperatures
% accuracy
V
[V]
-40°C
25°C
85°C
Doc ID 022171 Rev 3 57/90
Electrical characteristics STM8S007C8
ai15070
-3%
-2%
-1%
0%
1%
2%
3%
2.5 3 3.5 4 4.5 5 5.5 6
V
DD
[V]
% accuracy
Low speed internal RC oscillator (LSI)
Subject to general operating conditions for VDD and TA.
Table 32. LSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
t
su(LSI)
I
DD(LSI)
Frequency 128 kHz
LSI
LSI oscillator wakeup time 7
LSI oscillator power consumption 5 µA
1. Guaranteeed by design, not tested in production.
Figure 15. Typical LSI frequency variation vs VDD @ 25 °C
(1)
µs
58/90 Doc ID 022171 Rev 3
STM8S007C8 Electrical characteristics

9.3.5 Memory characteristics

RAM and hardware registers
Table 33. RAM and hardware registers
Symbol Parameter Conditions Min Unit
V
RM
1. Minimum supply voltage without losing data stored in RAM (in halt mode or under reset) or in hardware registers (only in halt mode). Guaranteed by design, not tested in production.
2. Refer to Table 17 on page 47 for the value of V
Data retention mode
(1)
IT-max
Halt mode (or reset) V
.
Flash program memory/data EEPROM memory
General conditions: TA = -40 to 85 °C.
Table 34. Flash program memory/data EEPROM memory
Symbol Parameter Conditions Min
(1)
IT-max
(2)
V
Typ Max Unit
V
t
prog
t
erase
N
t
RET
I
DD
Operating voltage
DD
(all modes, execution/write/erase)
f
16 MHz 2.95 5.5 V
CPU
Standard programming time (including erase) for byte/word/block
6.0 6.6 ms
(1 byte/4 bytes/128 bytes)
Fast programming time for 1 block (128 bytes)
3.0 3.3 ms
Erase time for 1 block (128 bytes) 3.0 3.3 ms
Erase/write cycles (program memory)
RW
Erase/write cycles (data memory)
(2)
(2)
100
TA = 85 °C
100 k
Data retention (program memory) after 100 erase/write cycles at T
= 85 °C
A
10 k erase/write cycles at TA = 85 °C
Data retention (data memory) after 100 k erase/write cycles at T
= 85 °C
A
Supply current (Flash programming or erasing for 1 to 128 bytes)
T
= 55° C
RET
= 85° C 1
T
RET
20
20
2.0 mA
cycles
yearsData retention (data memory) after
1. Data based on characterization results, not tested in production.
2. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte.
Doc ID 022171 Rev 3 59/90
Electrical characteristics STM8S007C8

9.3.6 I/O port pin characteristics

General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.
Table 35. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
V
IL
V
IH
V
hys
R
pu
tR, t
F
I
lkg
I
lkg ana
I
lkg(inj)
Input low level voltage
Input high level
= 5 V
V
DD
voltage
Hysteresis
(1)
Pull-up resistor VDD = 5 V, V
Fast I/Os
Rise and fall time (10% - 90%)
Load = 50 pF
Standard and high sink I/Os Load = 50 pF
Input leakage current,
VIN≤ V
V
SS
analog and digital
Analog input leakage current
Leakage current in adjacent I/O
VIN≤ V
V
SS
Injection current ±4 mA ±1
IN
= V
DD
DD
SS
-0.3 0.3 x V
0.7 x V
DD
VDD + 0.3 V V
DD
700 mV
30 55 80 kΩ
(2)
20
(2)
ns
125
±1 µA
(3)
±250
(3)
V
ns
nA
µA
1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.
2. Guaranteed by design.
3. Data based on characterization results, not tested in production.
60/90 Doc ID 022171 Rev 3
STM8S007C8 Electrical characteristics
0
1
2
3
4
5
6
2.5 3 3.5 4 4.5 5 5.5 6
IL
IH
DD
ai18798
30
35
45
50
55
60
2.5 3 3.5 4 4.5 5 5.5 6
ull-Up resistance [
Ω
DD
ai18799
Figure 16. Typical VIL and VIH vs VDD @ 3 temperatures
C
-40°
25°C
85°C
[V]
/ V V
V
[V]
Figure 17. Typical pull-up resistance vs V
@ 3 temperatures
DD
-40°C
25°C
85°C
] k
P
V
[V]
Doc ID 022171 Rev 3 61/90
Electrical characteristics STM8S007C8
ai15068b
0
20
40
60
80
100
120
140
0123456
DD
Figure 18. Typical pull-up current vs VDD @ 3 temperatures
-40°C
25°C
Pull- Up current [μA]
1. The pull-up is a pure resistor (slope goes through 0).
Table 36. Output driving current (standard ports)
V
[V]
85°C
Symbol Parameter Conditions Min Max Unit
V
OL
Output low level with 4 pins sunk I
Output high level with 8 pins sourced IIO = 10 mA, V
V
OH
Output high level with 4 pins sourced I
1. Data based on characterization results, not tested in production
Output low level with 8 pins sunk I
Table 37. Output driving current (true open drain ports)
= 10 mA, V
IO
= 4 mA, V
IO
= 4 mA, V
IO
= 5 V 2
DD
= 3.3 V 1
DD
= 5 V 2.8
DD
= 3.3 V 2.1
DD
(1)
(1)
Symbol Parameter Conditions Max Unit
I
= 10 mA, V
IO
V
Output low level with 2 pins sunk
OL
= 10 mA, V
IO
IIO = 20 mA, V
1. Data based on characterization results, not tested in production
= 5 V 1
DD
= 3.3 V 1.5
DD
= 5 V 2
DD
(1)
(1)
VI
V
V
62/90 Doc ID 022171 Rev 3
STM8S007C8 Electrical characteristics
0
0.25
0.5
0.75
1
1.25
1.5
024681012
OL
MS19400V1
Table 38. Output driving current (high sink ports)
Symbol Parameter Conditions Min Max Unit
Output low level with 8 pins sunk IIO = 10 mA,V
V
Output low level with 4 pins sunk I
OL
= 10 mA,V
IO
Output low level with 4 pins sunk IIO = 20 mA,V
Output high level with 8 pins sourced IIO = 10 mA, V
V
Output high level with 4 pins sourced I
OH
= 10 mA, V
IO
Output high level with 4 pins sourced IIO = 20 mA, V
1. Data based on characterization results, not tested in production
= 5 V 0.8
DD
= 3.3 V 1
DD
= 5 V 1.5
DD
= 5 V 4.0
DD
= 3.3 V 2.1
DD
= 5 V 3.3
DD
(1)
(1)
(1)
(1)
Typical output level curves
Figure 20 to Figure 27 show typical output level curves measured with output on a single
pin.
Figure 19. Typ. V
@ VDD = 5 V (standard ports)
OL
-40°C
25°C
85°C
V
[V]
V
IOL[mA]
Doc ID 022171 Rev 3 63/90
Electrical characteristics STM8S007C8
0
0.25
0.5
0.75
1
1.25
1.5
01234567
OL
OL
MS19401V1
MS19402V1
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
0 5 10 15 20 25
OL
OL
Figure 20. Typ. VOL @ VDD = 3.3 V (standard ports)
-40°C
25°C
85°C
[V]
V
I
[mA]
Figure 21. Typ. VOL @ VDD = 5 V (true open drain ports)
-40°C
25°C
85°C
[V]
V
I
[mA]
64/90 Doc ID 022171 Rev 3
STM8S007C8 Electrical characteristics
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
02468101214
OL
OL
MS19403V1
0
0.25
0.5
0.75
1
1.25
1.5
0 5 10 15 20 25
OL
OL
MS19404V1
Figure 22. Typ. VOL @ VDD = 3.3 V (true open drain ports)
-40°C
25°C
85°C
[V]
V
I
[mA]
Figure 23. Typ. V
[V]
V
@ VDD = 5 V (high sink ports)
OL
-40°C
25°C
85°C
I
[mA]
Doc ID 022171 Rev 3 65/90
Electrical characteristics STM8S007C8
.47
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
024681012
DD
OH
OH
Figure 24. Typ. VOL @ VDD = 3.3 V (high sink ports)
[V]
OL
V
Figure 25. Typ. V
1.5
1.25
1
0.75
0.5
0.25
0
02468101214
DD - VOH
-40°C
25°C
85°C
I
[mA]
OL
@ VDD = 5 V (standard ports)
MS19405V1
-40°C
25°C
85°C
[V]
-V
V
I
66/90 Doc ID 022171 Rev 3
[mA]
STM8S007C8 Electrical characteristics
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
0 5 10 15 20 25
DD
OH
OH
MS19408V1
Figure 26. Typ. V
1.75
1.5
1.25
[V]
OH
-V
DD
V
0.75
0.5
0.25
Figure 27. Typ. V
DD - VOH
2
@ VDD = 3.3 V (standard ports)
-40°C
25°C
85°C
1
0
01234567
DD - VOH
@ VDD = 5 V (high sink ports)
I
[mA]
OH
MS19407V1
-40°C
25°C
85°C
[V]
-V
V
I
[mA]
Doc ID 022171 Rev 3 67/90
Electrical characteristics STM8S007C8
Figure 28. Typ. V
[V]
OH
-V
DD
V
DD - VOH
2
1.75
1.5
1.25
1
0.75
0.5
0.25
0
@ VDD = 3.3 V (high sink ports)
-40°C
25°C
85°C
02468101214
I
[mA]
OH

9.3.7 Reset pin characteristics

Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 39. NRST pin characteristics
Symbol Parameter Conditions Min Typ
V
IL(NRST)
IH(NRST)
V
OL(NRST)
R
PU(NRST)
t
IFP(NRST)
t
INFP(NRST)
t
OP(NRST)
1. Data based on characterization results, not tested in production.
2. The R
3. Data guaranteed by design, not tested in production.
(2)
(3)
(1)
(3)
(1)
(1)
IOL= 2 mA 0.5
NRST Input low level voltage
NRST Input high level voltage
NRST Output low level voltage
NRST Pull-up resistor
NRST Input filtered pulse
NRST Input not filtered pulse
NRST output pulse
pull-up equivalent resistor is based on a resistive transistor
PU
(1)
-0.3 V 0.3 x V
0.7 x V
DD
30 55 80 kΩ
500 ns
15 µs
MS19409V1
1)
VDD + 0.3
Max Unit
DD
VV
75 ns
68/90 Doc ID 022171 Rev 3
STM8S007C8 Electrical characteristics
MS19410V1
0
1
2
3
4
5
6
2.5 3 3.5 4 4.5 5 5.5 6
IL
IH
DD
30
35
40
45
50
55
60
2.5 3 3.5 4 4.5 5 5.5 6
ESET Pull-Up resistance [
DD
MS19411V1
Figure 29. Typical NRST VIL and VIH vs VDD @ 3 temperatures
-40°C
25°C
85°C
[V]
/ V V
V
[V]
Figure 30. Typical NRST pull-up resistance vs V
@ 3 temperatures
DD
-40°C
25°C
] k
NR
V
[V]
85°C
Doc ID 022171 Rev 3 69/90
Electrical characteristics STM8S007C8
ai15069b
0
20
40
60
80
100
120
140
0123456
DD
NRESET Pull-Up current [μA]
0.1µF
External
reset
circuit
STM8
Filter
R
PU
V
DD
Internal reset
NRST
(optional)
Figure 31. Typical NRST pull-up current vs VDD @ 3 temperatures
-40°C
25°C
85°C
V
[V]
The reset network shown in Figure 32 protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the V
max. level specified in
IL
Ta bl e 3 5 . Otherwise the reset is not taken into account internally. For power consumption
sensitive applications, the capacity of the external reset capacitor can be reduced to limit charge/discharge current. If the NRST signal is used to reset the external circuitry, care must be taken of the charge/discharge time of the external capacitor to fulfill the external device’s reset timing conditions. The minimum recommended capacity is 10 nF.
Figure 32. Recommended reset pin protection
70/90 Doc ID 022171 Rev 3
STM8S007C8 Electrical characteristics
9.3.8

SPI serial peripheral interface

Unless otherwise specified, the parameters given in Ta b le 4 0 are derived from tests performed under ambient temperature, f conditions. t
MASTER
= 1/f
MASTER
.
MASTER
frequency and VDD supply voltage
Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 40. SPI characteristics
Symbol Parameter Conditions Min Max Unit
f
SCK
1/t
c(SCK)
t
r(SCK)
t
f(SCK)
t
su(NSS)
t
h(NSS)
t
w(SCKH)
t
w(SCKL)
t
su(MI)
t
su(SI)
t
h(MI)
t
h(SI)
t
a(SO)
t
dis(SO)
t
v(SO)
t
v(MO)
t
h(SO)
t
h(MO)
1. Values based on design simulation and/or characterization results, and not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.
Master mode 0 10
SPI clock frequency
Slave mode 0 6
SPI clock rise and fall time Capacitive load: C = 30 pF 25
(1)
NSS setup time Slave mode 4 x t
(1)
NSS hold time Slave mode 70
(1)
SCK high and low time Master mode t
(1)
(1)
Data input setup time
(1)
(1)
Data input hold time
(1)
(1)(2)
Data output access time Slave mode 3 x t
(1)(3)
Data output disable time Slave mode 25
(1)
Data output valid time Slave mode (after enable edge) 75
(1)
Data output valid time Master mode (after enable edge) 30
(1)
Data output hold time
(1)
Master mode 5
Slave mode 5
Master mode 7
Slave mode 10
Slave mode (after enable edge) 31
Master mode (after enable edge) 12
MASTER
/2 - 15 t
SCK
SCK
/2 + 15
MASTER
MHz
ns
Doc ID 022171 Rev 3 71/90
Electrical characteristics STM8S007C8
ai14134
SCK Input
CPHA=0
MOSI
INPUT
MISO
OUT PUT
CPHA=0
MS B O U T
MSB IN
BI T6 O UT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSS input
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT PUT
CPHA=1
MS B O U T
MSB IN
BI T6 O UT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
NSS input
Figure 33. SPI timing diagram - slave mode and CPHA = 0
Figure 34. SPI timing diagram - slave mode and CPHA = 1
1. Measurement points are done at CMOS levels: 0.3 V
and 0.7 V
DD
DD.
(1)
72/90 Doc ID 022171 Rev 3
STM8S007C8 Electrical characteristics
ai14136V2
SCK Output
CPHA=0
MOSI
OUTPUT
MISO
INP U T
CPHA=0
MSBIN
M SB OUT
BIT6 IN
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
t
c(SCK)
t
w(SCKH)
t
w(SCKL)
t
r(SCK)
t
f(SCK)
t
h(MI)
High
SCK Output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
t
su(MI)
t
v(MO)
t
h(MO)
Figure 35. SPI timing diagram - master mode
(1)
1. Measurement points are done at CMOS levels: 0.3 V
and 0.7 V
DD
DD.
Doc ID 022171 Rev 3 73/90
Electrical characteristics STM8S007C8

9.3.9 I2C interface characteristics

Table 41. I2C characteristics
Symbol Parameter
Standard mode I
(2)
Min
Max
2
C Fast mode I2C
(2)
Min
(2)
Max
(1)
(2)
Unit
t
w(SCLL)
t
w(SCLH)
t
su(SDA)
t
h(SDA)
t
r(SDA)
t
r(SCL)
t
f(SDA)
t
f(SCL)
t
h(STA)
t
su(STA)
t
su(STO)
t
w(STO:STA)
C
1. f
MASTER
Data based on standard I
2.
The maximum hold time of the start condition has only to be met if the interface does not stretch the low
3. time
The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
4. undefined region of the falling edge of SCL
SCL clock low time 4.7 1.3
SCL clock high time 4.0 0.6
SDA setup time 250 100
SDA data hold time 0
(3)
(4)
0
SDA and SCL rise time 1000 300
SDA and SCL fall time 300 300
START condition hold time 4.0 0.6
Repeated START condition setup time 4.7 0.6
STOP condition setup time 4.0 0.6 µs
STOP to START condition time (bus free)
Capacitive load for each bus line 400 400 pF
b
, must be at least 8 MHz to achieve max fast I2C speed (400kHz)
2
C protocol requirement, not tested in production
4.7 1.3 µs
900
µs
(3)
ns
µs
74/90 Doc ID 022171 Rev 3
STM8S007C8 Electrical characteristics
ai17490
START
SD A
I²C bus
V
DD
V
DD
STM8S20xxx
SDA
SCL
t
f(SDA)
t
r(SDA)
SCL
t
h(STA)
t
w(SCLH)
t
w(SCLL)
t
su(SDA)
t
r(SCL)
t
f(SCL)
t
h(SDA)
S TART REPEATED
START
t
su(STA)
t
su(STO)
STOP
t
su(STA:STO)
2
Figure 36.
Typical application with I
C bus and timing diagram
1. Measurement points are made at CMOS levels: 0.3 x VDD and 0.7 x V
DD
Doc ID 022171 Rev 3 75/90
Electrical characteristics STM8S007C8

9.3.10 10-bit ADC characteristics

Subject to general operating conditions for V
DDA
, f
MASTER
, and TA unless otherwise
specified.
Table 42. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
V
f
ADC clock frequency
ADC
V
V
V
V
V
C
t
t
STAB
t
CONV
1. Data guaranteed by design, not tested in production..
2. During the sample time the input capacitance C
Analog supply 3 5.5 V
DDA
Positive reference voltage 2.75
REF+
Negative reference voltage V
REF-
Conversion voltage range
AIN
Internal sample and hold
ADC
capacitor
(2)
Sampling time
S
(2)
Wakeup time from standby 7 µs
Total conversion time (including sampling time, 10-bit resolution)
source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t the conversion result. Values for the sample clock tS depend on programming.
After the end of the sample time tS, changes of the analog input voltage have no effect on
S.
AIN
3 to 5.5 V 1 4
DDA =
MHz
4.5 to 5.5 V 1 6
DDA =
V
(1)
SSA
SSA
V
0.5
V
DDA
(1)
DDA
3pF
f
= 4 MHz 0.75
ADC
= 6 MHz 0.5
f
ADC
= 4 MHz 3.5 µs
f
ADC
= 6 MHz 2.33 µs
f
ADC
14 1/f
(3 pF max) can be charged/discharged by the external
V
V
V
µs
ADC
76/90 Doc ID 022171 Rev 3
STM8S007C8 Electrical characteristics
Table 43. ADC accuracy with R
Symbol Parameter Conditions Typ Max Unit
|ET| Total unadjusted error
|EO| Offset error
|EG| Gain error
(1)
(1)
|ED| Differential linearity error
|E
| Integral linearity error
L
1. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I ΣI
in Section 9.3.6 does not affect the ADC accuracy.
INJ(PIN)
(1)
(1)
AIN
(1)
< 10 kΩ , V
f
ADC
f
ADC
f
ADC
f
ADC
f
ADC
f
ADC
f
ADC
f
ADC
f
ADC
f
ADC
f
ADC
f
ADC
f
ADC
f
ADC
f
ADC
= 5 V
DDA
= 2 MHz 1 2.5
= 4 MHz 1.4 3
= 6 MHz 1.6 3.5
= 2 MHz 0.6 2
= 4 MHz 1.1 2.5
= 6 MHz 1.2 2.5
= 2 MHz 0.2 2
= 4 MHz 0.6 2.5
= 6 MHz 0.8 2.5
= 2 MHz 0.7 1.5
= 4 MHz 0.7 1.5
= 6 MHz 0.8 1.5
= 2 MHz 0.6 1.5
= 4 MHz 0.6 1.5
= 6 MHz 0.6 1.5
INJ(PIN)
LSB
and
Table 44. ADC accuracy with R
< 10 kΩ R
AIN
AIN
, V
DDA
= 3.3 V
Symbol Parameter Conditions Typ Max Unit
f
= 2 MHz 1.1 2
|E
| Total unadjusted error
T
|E
| Offset error
O
|E
| Gain error
G
(1)
(1)
(1)
|ED| Differential linearity error
|E
| Integral linearity error
L
(1)
(1)
ADC
= 4 MHz 1.6 2.5
f
ADC
f
= 2 MHz 0.7 1.5
ADC
f
= 4 MHz 1.3 2
ADC
f
= 2 MHz 0.2 1.5
ADC
= 4 MHz 0.5 2
f
ADC
f
= 2 MHz 0.7 1
ADC
= 4 MHz 0.7 1
f
ADC
f
= 2 MHz 0.6 1.5
ADC
= 4 MHz 0.6 1.5
f
ADC
LSB
Doc ID 022171 Rev 3 77/90
Electrical characteristics STM8S007C8
E
O
E
G
1LSB
IDEAL
1LSB
IDEAL
V
DDAVSSA
1024
----------------------------- ------------=
1023
1022 1021
5
4
3
2
1
0
7
6
1234567
1021102210231024
(1)
(2)
E
T
E
D
E
L
(3)
V
DDA
V
SSA
AINx
STM8
V
DD
I
L
±1µA
V
T
0.6V
V
T
0.6V
C
ADC
V
AIN
R
AIN
10-bit A/D
conversion
C
AIN
Figure 37. ADC accuracy characteristics
1. Example of an actual transfer curve.
2. The ideal transfer curve
3. End point correlation line
= Total unadjusted error: maximum deviation between the actual and the ideal transfer curves.
E
T
E
= Offset error: deviation between the first actual transition and the first ideal one.
O
EG = Gain error: deviation between the last ideal transition and the last actual one. ED = Differential linearity error: maximum deviation between actual steps and the ideal one. E
= Integral linearity error: maximum deviation between any actual transition and the end point correlation
L
line.
Figure 38. Typical application with ADC
78/90 Doc ID 022171 Rev 3
STM8S007C8 Electrical characteristics

9.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device
until a functional disturbance occurs. This test conforms with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to V
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.
and VSS
DD
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).
Table 45. EMS data
Symbol Parameter Conditions Level/class
= 5 V, TA= 25 °C,
V
V
V
Voltage limits to be applied on any I/O pin to
FESD
induce a functional disturbance
Fast transient voltage burst limits to be applied through 100pF on VDD and V
EFTB
to induce a functional disturbance
SS
pins
DD
f
MASTER
conforming to IEC 61000-4-2
VDD= 5 V, TA= 25 °C, f
MASTER
conforming to IEC 61000-4-4
= 16 MHz,
= 16 MHz,
2B
4A
Doc ID 022171 Rev 3 79/90
Electrical characteristics STM8S007C8
Electromagnetic interference (EMI)
Emission tests conform to the SAE IEC 61967-2 standard for test software, board layout and pin loading.
Table 46. EMI data
Conditions
Symbol Parameter
General conditions
frequency band
0.1MHz to 30 MHz 14 13 24
V
= 5 V
Peak level
S
EMI
SAE EMI level
1. Data based on characterization results, not tested in production.
DD
TA = 25 °C LQFP48 package conforming to SAE IEC 61967-2
130 MHz to 1 GHz -4 -4 7
SAE EMI level 1.5 2 2.5
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.
Table 47. ESD absolute maximum ratings
Monitored
Max f
16 MHz/
8 MHz
HSE/fCPU
16 MHz/
16 MHz
(1)
Unit
24 MHz/
24 MHz
dBµV30 MHz to 130 MHz 19 23 17
Symbol Ratings Conditions Class
V
ESD(HBM)
V
ESD(CDM)
1. Data based on characterization results, not tested in production.
Electrostatic discharge voltage (Human body model)
Electrostatic discharge voltage (Charge device model)
TA = 25°C, conforming to JESD22-A114
TA= 25°C, conforming to JESD22-C101
80/90 Doc ID 022171 Rev 3
Maximum
value
(1)
Unit
A2000V
IV 1000 V
STM8S007C8 Electrical characteristics
Static latch-up
Two complementary static tests are required on 10 parts to assess the latch-up performance:
A supply overvoltage (applied to each power supply pin)
A current injection (applied to each input, output and configurable I/O pin) is performed
on each sample.
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.
Table 48. Electrical sensitivities
Symbol Parameter Conditions Class
(1)
LU Static latch-up class
TA = 25 °C A
= 85 °C A
T
A
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).
Doc ID 022171 Rev 3 81/90
Package characteristics STM8S007C8

10 Package characteristics

To meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at www.st.com. ECOPACK® is an ST trademark.
82/90 Doc ID 022171 Rev 3
STM8S007C8 Package characteristics
5B_ME
L
A1 K
L1
c
A
A2
ccc
C
D
D1
D3
E3
E1 E
24
25
36
37
b
48
1
Pin 1 identification
12
13

10.1 Package mechanical data

Figure 39. 48-pin low profile quad flat package (7 x 7)

Table 49. 48-pin low profile quad flat package mechanical data

mm inches
(1)
Symbol
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 5.500 0.2165
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 5.500 0.2165
e 0.500 0.0197
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
Doc ID 022171 Rev 3 83/90
L1 1.000 0.0394
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc 0.080 0.0031
1. Values in inches are converted from mm and rounded to four decimal places.
Package characteristics STM8S007C8

10.2 Thermal characteristics

The maximum chip junction temperature (T
) must never exceed the values given in
Jmax
Table 16: General operating conditions.
The maximum chip-junction temperature, T
, in degrees Celsius, may be calculated
Jmax
using the following equation:
T
Jmax
= T
Amax
+ (P
Dmax
x ΘJA)
Where:
T
Θ
P
P
is the maximum ambient temperature in °C
Amax
is the package junction-to-ambient thermal resistance in ° C/W
JA
is the sum of P
Dmax
is the product of I
INTmax
INTmax
DD
and P
I/Omax (PDmax
= P
INTmax
+ P
and VDD, expressed in Watts. This is the maximum chip
I/Omax
)
internal power.
P
P VOH/I

Table 50. Thermal characteristics

Symbol Parameter Value Unit
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.
represents the maximum power dissipation on output pins, where:
I/Omax
I/Omax =
Θ
JA
Σ (VOL*IOL) + Σ((VDD-V
of the I/Os at low and high level in the application.
OH
Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm
OH)*IOH
(1)
), and taking account of the actual VOL/I
57 °C/W
OL
and

10.2.1 Reference document

JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org.
84/90 Doc ID 022171 Rev 3
STM8S007C8 Package characteristics

10.2.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the order code (see
Figure 40: STM8S007xx value line ordering information scheme(1)).
The following example shows how to calculate the temperature range needed for a given application.
Assuming the following application conditions:
Maximum ambient temperature T
I
Maximum eight standard I/Os used at the same time in output at low level with I
mA, V
Maximum four high sink I/Os used at the same time in output at low level with I
mA, V
Maximum two true open drain I/Os used at the same time in output at low level with
I
P
P
This gives: P
P
Thus: P
= 15 mA, VDD = 5.5 V
DDmax
= 2 V
OL
= 1.5 V
OL
= 20 mA, VOL= 2 V
OL
INTmax =
IOmax =
Dmax
15 mA x 5.5 V = 82.5 mW
(10 mA x 2 V x 8 ) + (20 mA x 2 V x 2) + (20 mA x 1.5 V x 4) = 360 mW
INTmax
= 82.5 mW + 360 mW
= 443 mW
Dmax
= 82.5 mW and P
Using the values obtained in Table 50: Thermal characteristics on page 84 T calculated as follows for LQFP64 10 x 10 mm = 46 °C/W:
= 82 °C (measured according to JESD51-2)
Amax
360 mW:
IOmax
Jmax
is
OL
OL
= 10
= 20
T
= 82 °C + (46 °C/W x 443 mW) = 82 °C + 20 °C = 102 °C
Jmax
This is within the range of the suffix 6 version parts (-40 < T
< 105 °C).
J
In this case, parts must be ordered at least with the temperature range suffix 6.
Doc ID 022171 Rev 3 85/90
STM8 development tools STM8S007C8

11 STM8 development tools

Development tools for the STM8 microcontrollers include the full-featured STice emulation system supported by a complete software tool package including C compiler, assembler and integrated development environment with high-level language debugger. In addition, the STM8 is to be supported by a complete range of tools including starter kits, evaluation boards and a low-cost in-circuit debugger/programmer.

11.1 Emulation and in-circuit debugging tools

The STice emulation system offers a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8 application development is supported by a low-cost in-circuit debugger/programmer.
The STice is the fourth generation of full featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including profiling and coverage to help detect and eliminate bottlenecks in application execution and dead code when fine tuning an application.
In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller.
For improved cost effectiveness, STice is based on a modular design that allows you to order exactly what you need to meet your development requirements and to adapt your emulation system to support existing and future ST microcontrollers.
STice key features
Occurrence and time profiling and code coverage (new features)
Advanced breakpoints with up to 4 levels of conditions
Data breakpoints
Program and data trace recording up to 128 KB records
Read/write on the fly of memory during emulation
In-circuit debugging/programming via SWIM protocol
8-bit probe analyzer
1 input and 2 output triggers
Power supply follower managing application voltages between 1.62 to 5.5 V
Modularity that allows you to specify the components you need to meet your
development requirements and adapt to future requirements
Supported by free software tools that include integrated development environment
(IDE), programming software interface and assembler for STM8.
86/90 Doc ID 022171 Rev 3
STM8S007C8 STM8 development tools

11.2 Software tools

STM8 development tools are supported by a complete, free software package from STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic and Raisonance C compilers for STM8. A free version that outputs up to 32 Kbytes of code is available.

11.2.1 STM8 toolset

STM8 toolset with STVD integrated development environment and STVP programming software is available for free download at www.st.com/mcu. This package includes:
ST Visual Develop – Full-featured integrated development environment from ST, featuring
Seamless integration of C and ASM toolsets
Full-featured debugger
Project management
Syntax highlighting editor
Integrated programming interface
Support of advanced emulation features for STice such as code profiling and coverage
ST Visual Programmer (STVP) – Easy-to-use, unlimited graphical interface allowing read, write and verify of your STM8 microcontroller’s Flash program memory, data EEPROM and option bytes. STVP also offers project mode for saving programming configurations and automating programming sequences.

11.2.2 C and assembly toolchains

Control of C and assembly toolchains is seamlessly integrated into the STVD integrated development environment, making it possible to configure and control the building of your application directly from an easy-to-use graphical interface.
Available toolchains include:
Cosmic C compiler for STM8 – One free version that outputs up to 32 Kbytes of code
is available. For more information, see www.cosmic-software.com.
Raisonance C compiler for STM8 – One free version that outputs up to 32 Kbytes of
code. For more information, see www.raisonance.com.
STM8 assembler linker – Free assembly toolchain included in the STVD toolset,
which allows you to assemble and link your application source code.

11.3 Programming tools

During the development cycle, STice provides in-circuit programming of the STM8 Flash microcontroller on your application board via the SWIM protocol. Additional tools are to include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for programming your STM8.
For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.
Doc ID 022171 Rev 3 87/90
Ordering information STM8S007C8
STM8 S 007 C 8 T 6 TR
Product class
STM8 microcontroller
Pin count
C = 48 pins
Package type
T = LQFP
Example:
Sub-family type
(2)
007 = peripheral set
Family type
S = standard
Temperature range
6 = -40 °C to 85 °C
Program memory size
8 = 64 Kbyte
Package pitch
No character = 0.5 mm
Packing
No character = Tray or tube
TR = Tape and reel

12 Ordering information

Figure 40. STM8S007xx value line ordering information scheme
(1)
1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further information on any aspect of this device, please go to www.st.com to you.
2. Refer to Table 1: STM8S007xx value line features for detailed description.
or contact the ST Sales Office nearest
88/90 Doc ID 022171 Rev 3
STM8S007C8 Revision history

13 Revision history

Table 51. Document revision history

Date Revision Changes
31-Oct-2011 1 Initial release.
Table 34: Flash program memory/data EEPROM memory: updated
06-Jan-2012 2
26-Apr-2012 3
VDD condition; updated t
Table 39: NRST pin characteristics: updated typ and max values of
the NRST Pull-up resistor.
Added document status on page 1 (datasheet-production data). Modified temperature range and ACC
oscillator characteristics on page 57 (ACC
Modified Figure 35: SPI timing diagram - master mode(1) on page 73 (SCK output instead of SCK input).
parameters.
RET
values in Table 31: HSI
HSI
parameter).
HSI
Doc ID 022171 Rev 3 89/90
STM8S007C8
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
90/90 Doc ID 022171 Rev 3
Loading...