ST STM8S003K3, STM8S003F3 User Manual

STM8S003K3 STM8S003F3
LQFP32 7x7
TSSOP20
UFQFPN20 3x3
Value line, 16 MHz STM8S 8-bit MCU, 8 Kbytes Flash, 128 bytes
data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C
Interrupt management
Nested interrupt controller with 32 interrupts
Up to 27 external interrupts on 6 vectors
Timers
Advanced control timer: 16-bit, 4 CAPCOM
channels, 3 complementary outputs, dead-time insertion and flexible synchronization
16-bit general purpose timer, with 3 CAPCOM
channels (IC, OC or PWM)
8-bit basic timer with 8-bit prescaler
Features
16 MHz advanced STM8 core with Harvard
architecture and 3-stage pipeline
Extended instruction set
Memories
Program memory: 8 Kbytes Flash; data retention
20 years at 55 °C after 100 cycles
RAM: 1 Kbytes
Data memory: 128 bytes of true data EEPROM;
endurance up to 100 000 write/erase cycles
Clock, reset and supply management
2.95 to 5.5 V operating voltage
Flexible clock control, 4 master clock sources:
Low power crystal resonator oscillator
-
External clock input
-
Internal, user-trimmable 16 MHz RC
-
Internal low power 128 kHz RC
-
Clock security system with clock monitor
Power management:
Low power modes (wait, active-halt, halt)
-
Switch-off peripheral clocks individually
-
Auto wake-up timer
Window watchdog and independent watchdog
timers
Communications interfaces
UART with clock output for synchronous
operation, Smartcard, IrDA, LIN master mode
SPI interface up to 8 Mbit/s
I2C interface up to 400 Kbit/s
Analog to digital converter (ADC)
10-bit, ±1 LSB ADC with up to 5 multiplexed
channels, scan mode and analog watchdog
I/Os
Up to 28 I/Os on a 32-pin package including 21
high sink outputs
Highly robust I/O design, immune against current
injection
Development support
Embedded single wire interface module (SWIM)
for fast on-chip programming and non intrusive debugging
Permanently active, low consumption power-on
and power-down reset
June 2012
DocID018576 Rev 3
1/100
www.st.com
STM8S003K3 STM8S003F3Contents

Contents

1 Introduction ..............................................................................................................7
2 Description ...............................................................................................................8
3 Block diagram ..........................................................................................................9
4 Product overview ...................................................................................................10
4.1 Central processing unit STM8 .....................................................................................10
4.2 Single wire interface module (SWIM) and debug module (DM) ..................................10
4.3 Interrupt controller .......................................................................................................11
4.4 Flash program memory and data EEPROM ................................................................11
4.5 Clock controller ............................................................................................................12
4.6 Power management ....................................................................................................13
4.7 Watchdog timers ..........................................................................................................13
4.8 Auto wakeup counter ...................................................................................................14
4.9 Beeper ........................................................................................................................14
4.10 TIM1 - 16-bit advanced control timer .........................................................................14
4.11 TIM2 - 16-bit general purpose timer ..........................................................................15
4.12 TIM4 - 8-bit basic timer ..............................................................................................15
4.13 Analog-to-digital converter (ADC1) ............................................................................15
4.14 Communication interfaces .........................................................................................16
4.14.1 UART1 ...............................................................................................16
4.14.2 SPI .....................................................................................................17
4.14.3 I²C ......................................................................................................17
5 Pinout and pin description ...................................................................................18
5.1 STM8S003K3 LQFP32 pinout and pin description ......................................................18
5.2 STM8S003F3 TSSOP20/UFQFPN20 pinout and pin description ...............................21
5.2.1 STM8S003F3 TSSOP20 pinout and pin description ............................21
5.2.2 STM8S003F3 UFQFPN20 pinout ........................................................22
5.2.3 STM8S003F3 TSSOP20/UFQFPN20 pin description ..........................22
5.3 Alternate function remapping .......................................................................................24
6 Memory and register map .....................................................................................25
6.1 Memory map ................................................................................................................25
6.2 Register map ...............................................................................................................26
6.2.1 I/O port hardware register map ............................................................26
6.2.2 General hardware register map ..........................................................27
6.2.3 CPU/SWIM/debug module/interrupt controller registers .....................36
7 Interrupt vector mapping ......................................................................................39
8 Option bytes ...........................................................................................................41
8.1 Alternate function remapping bits ................................................................................43
DocID018576 Rev 32/100
ContentsSTM8S003K3 STM8S003F3
9 Electrical characteristics ......................................................................................46
9.1 Parameter conditions ...................................................................................................46
9.1.1 Minimum and maximum values ...........................................................46
9.1.2 Typical values .......................................................................................46
9.1.3 Typical curves ......................................................................................46
9.1.4 Loading capacitor .................................................................................46
9.1.5 Pin input voltage ...................................................................................46
9.2 Absolute maximum ratings ..........................................................................................47
9.3 Operating conditions ....................................................................................................49
9.3.1 VCAP external capacitor ......................................................................50
9.3.2 Supply current characteristics ..............................................................51
9.3.3 External clock sources and timing characteristics ...............................60
9.3.4 Internal clock sources and timing characteristics .................................62
9.3.5 Memory characteristics ........................................................................64
9.3.6 I/O port pin characteristics ...................................................................66
9.3.7 Reset pin characteristics ......................................................................74
9.3.8 SPI serial peripheral interface ..............................................................77
9.3.9 I2C interface characteristics .................................................................80
9.3.10 10-bit ADC characteristics ..................................................................81
9.3.11 EMC characteristics ...........................................................................85
10 Package information ...........................................................................................89
10.1 32-pin LQFP package mechanical data ....................................................................89
10.2 20-pin TSSOP package mechanical data ..................................................................90
10.3 20-lead UFQFPN package mechanical data .............................................................92
11 Thermal characteristics .......................................................................................94
11.1 Reference document .................................................................................................94
11.2 Selecting the product temperature range ..................................................................94
12 Ordering information ...........................................................................................96
13 STM8 development tools ....................................................................................97
13.1 Emulation and in-circuit debugging tools ...................................................................97
13.2 Software tools ............................................................................................................97
13.2.1 STM8 toolset ......................................................................................98
13.2.2 C and assembly toolchains ................................................................98
13.3 Programming tools ....................................................................................................98
14 Revision history ...................................................................................................99
3/100DocID018576 Rev 3
STM8S003K3 STM8S003F3List of tables
List of tables
Table 1. STM8S003xx value line features ................................................................................................8
Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers ..................................13
Table 3. TIM timer features ....................................................................................................................15
Table 4. Legend/abbreviations for pinout tables ...................................................................................18
Table 5. LQFP32 pin description ............................................................................................................19
Table 6. STM8S003F3 pin description ...................................................................................................22
Table 7. I/O port hardware register map ................................................................................................26
Table 8. General hardware register map ...............................................................................................27
Table 9. CPU/SWIM/debug module/interrupt controller registers .........................................................36
Table 10. Interrupt mapping ...................................................................................................................39
Table 11. Option bytes ...........................................................................................................................99
Table 12. Option byte description ...........................................................................................................41
Table 13. STM8S003K3 alternate function remapping bits for 32-pin devices ......................................43
Table 14. STM8S003F3 alternate function remapping bits for 20-pin devices ......................................44
Table 15. Voltage characteristics ...........................................................................................................47
Table 16. Current characteristics ...........................................................................................................47
Table 17. Thermal characteristics ..........................................................................................................48
Table 18. General operating conditions .................................................................................................49
Table 19. Operating conditions at power-up/power-down ......................................................................50
Table 20. Total current consumption with code execution in run mode at VDD= 5 V .............................51
Table 21. Total current consumption with code execution in run mode at VDD= 3.3 V ..........................52
Table 22. Total current consumption in wait mode at VDD= 5 V ............................................................53
Table 23. Total current consumption in wait mode at VDD= 3.3 V .........................................................53
Table 24. Total current consumption in active halt mode at VDD= 5 V ..................................................54
Table 25. Total current consumption in active halt mode at VDD= 3.3 V ...............................................54
Table 26. Total current consumption in halt mode at VDD= 5 V .............................................................55
Table 27. Total current consumption in halt mode at VDD= 3.3 V ..........................................................55
Table 28. Wakeup times .........................................................................................................................56
Table 29. Total current consumption and timing in forced reset state ....................................................57
Table 30. Peripheral current consumption .............................................................................................57
Table 31. HSE user external clock characteristics .................................................................................60
Table 32. HSE oscillator characteristics .................................................................................................61
Table 33. HSI oscillator characteristics ..................................................................................................62
Table 34. LSI oscillator characteristics ...................................................................................................64
Table 35. RAM and hardware registers ..................................................................................................64
Table 36. Flash program memory and data EEPROM ...........................................................................65
Table 37. I/O static characteristics .........................................................................................................66
Table 38. Output driving current (standard ports) ..................................................................................68
Table 39. Output driving current (true open drain ports) ........................................................................68
Table 40. Output driving current (high sink ports) ..................................................................................69
Table 41. NRST pin characteristics ........................................................................................................74
Table 42. SPI characteristics ..................................................................................................................78
Table 43. I2C characteristics ..................................................................................................................80
Table 44. ADC characteristics ................................................................................................................82
Table 45. ADC accuracy with R Table 46. ADC accuracy with R
Table 47. EMS data ................................................................................................................................86
< 10 kΩ , VDD= 5 V .........................................................................82
AIN
< 10 kΩ R
AIN
, VDD= 3.3 V ..............................................................83
AIN
DocID018576 Rev 34/100
List of tablesSTM8S003K3 STM8S003F3
Table 48. EMI data .................................................................................................................................86
Table 49. ESD absolute maximum ratings .............................................................................................87
Table 50. Electrical sensitivities .............................................................................................................88
Table 51. 32-pin low profile quad flat package mechanical data ............................................................89
Table 52. 20-pin, 4.40 mm body, 0.65 mm pitch mechanical data .........................................................91
Table 53. 20-lead ultra thin fine pitch quad flat no-lead package (3x3) mechanical data ......................92
Table 54. Thermal characteristics ..........................................................................................................94
Table 55. Document revision history ......................................................................................................99
5/100DocID018576 Rev 3
STM8S003K3 STM8S003F3List of figures
List of figures
Figure 1. Block diagram ...........................................................................................................................9
Figure 2. Flash memory organization ....................................................................................................12
Figure 3. STM8S003K3 LQFP32 pinout ................................................................................................18
Figure 4. STM8S003F3 TSSOP20 pinout ..............................................................................................21
Figure 5. STM8S003F3 UFQFPN20-pin pinout .....................................................................................22
Figure 6. Memory map ...........................................................................................................................25
Figure 7. Pin loading conditions .............................................................................................................46
Figure 8. Pin input voltage .....................................................................................................................47
Figure 9. f
CPUmax
Figure 10. External capacitor C Figure 11. Typ I Figure 12. Typ I Figure 13. Typ I Figure 14. Typ I Figure 15. Typ I Figure 16. Typ I
Figure 17. HSE external clock source ....................................................................................................61
Figure 18. HSE oscillator circuit diagram ...............................................................................................62
Figure 19. Typical HSI frequency variation vs VDD@ 4 temperatures ..................................................63
Figure 20. Typical LSI frequency variation vs VDD@ 4 temperatures ...................................................64
Figure 21. Typical VILand VIHvs VDD@ 4 temperatures ......................................................................67
Figure 22. Typical pull-up resistance vs VDD@ 4 temperatures ............................................................67
Figure 23. Typical pull-up current vs VDD@ 4 temperatures .................................................................68
Figure 24. Typ. VOL@ VDD= 5 V (standard ports) ................................................................................70
Figure 25. Typ. VOL@ VDD= 3.3 V (standard ports) .............................................................................70
Figure 26. Typ. VOL@ VDD= 5 V (true open drain ports) ......................................................................71
Figure 27. Typ. VOL@ VDD= 3.3 V (true open drain ports) ...................................................................71
Figure 28. Typ. VOL@ VDD= 5 V (high sink ports) ................................................................................72
Figure 29. Typ. VOL@ VDD= 3.3 V (high sink ports) .............................................................................72
Figure 30. Typ. VDD- VOH@ VDD= 5 V (standard ports) .......................................................................73
Figure 31. Typ. VDD- VOH@ VDD= 3.3 V (standard ports) ...................................................................73
Figure 32. Typ. VDD- VOH@ VDD= 5 V (high sink ports) .......................................................................74
Figure 33. Typ. VDD- VOH@ VDD= 3.3 V (high sink ports) ....................................................................74
Figure 34. Typical NRST VILand VIHvs VDD@ 4 temperatures ...........................................................76
Figure 35. Typical NRST pull-up resistance vs VDD@ 4 temperatures .................................................76
Figure 36. Typical NRST pull-up current vs VDD@ 4 temperatures ......................................................77
Figure 37. Recommended reset pin protection ......................................................................................77
Figure 38. SPI timing diagram - slave mode and CPHA = 0 ..................................................................79
Figure 39. SPI timing diagram - slave mode and CPHA = 1 ..................................................................79
Figure 40. SPI timing diagram - master mode
Figure 41. Typical application with I2C bus and timing diagram ............................................................84
Figure 42. ADC accuracy characteristics ...............................................................................................84
Figure 43. Typical application with ADC ................................................................................................85
Figure 44. 32-pin low profile quad flat package (7 x 7) ..........................................................................89
Figure 45. 20-pin, 4.40 mm body, 0.65 mm pitch ...................................................................................90
Figure 46. 20-lead ultra thin fine pitch quad flat no-lead package outline (3x3) ....................................92
Figure 47. STM8S003x value line ordering information scheme ...........................................................96
versus V
DD(RUN)
DD(RUN)
DD(RUN)
DD(WFI)
DD(WFI)
DD(WFI)
................................................................................................................50
DD
.......................................................................................................50
EXT
vs. VDDHSE user external clock, f vs. f vs. VDDHSI RC osc, f
HSE user external clock, VDD= 5 V ....................................................58
CPU
= 16 MHz .................................................................59
CPU
vs. VDDHSE user external clock, f vs. f vs. VDDHSI RC osc, f
HSE user external clock, VDD= 5 V .....................................................60
CPU
= 16 MHz .................................................................60
CPU
(1)
...................................................................................80
= 16 MHz .............................................58
CPU
= 16 MHz ..............................................59
CPU
DocID018576 Rev 36/100

IntroductionSTM8S003K3 STM8S003F3

Introduction1
This datasheet contains the description of the device features, pinout, electrical characteristics, mechanical data and ordering information.
For complete information on the STM8S microcontroller memory, registers and peripherals,
please refer to the STM8S microcontroller family reference manual (RM0016).
For information on programming, erasing and protection of the internal Flash memory
please refer to the STM8S Flash programming manual (PM0051).
For information on the debug and SWIM (single wire interface module) refer to the STM8
SWIM communication protocol and debug module user manual (UM0470).
For information on the STM8 core, please refer to the STM8 CPU programming manual
(PM0044).
7/100DocID018576 Rev 3

STM8S003K3 STM8S003F3Description

Description2
The STM8S003x value line 8-bit microcontrollers feature 8 Kbytes Flash program memory, plus integrated true data EEPROM. The STM8S microcontroller family reference manual (RM0016) refers to devices in this family as low-density. They provide the following benefits: performance, robustness, and reduced system cost.
Device performance and robustness are ensured by integrated true data EEPROM supporting up to 100000 write/erase cycles, advanced core and peripherals made in a state-of-the art technology, a 16 MHz clock frequency, robust I/Os, independent watchdogs with separate clock source, and a clock security system.
The system cost is reduced thanks to high system integration level with internal clock oscillators, watchdog and brown-out reset.
Full documentation is offered as well as a wide choice of development tools.
Table 1: STM8S003xx value line features
STM8S003F3STM8S003K3Device
2032Pin count
1628Maximum number of GPIOs (I/Os)
1627Ext. interrupt pins
True data EEPROM (bytes)
Peripheral set
(1)
Without read-while-write capability.
77Timer CAPCOM channels
23Timer complementary outputs
54A/D converter channels
1221High sink I/Os
8K8KLow density Flash program memory (bytes)
1K1KRAM (bytes)
128
(1)
128
(1)
Multipurpose timer (TIM1), SPI, I2C, UART window WDG,independent WDG, ADC, PWM timer (TIM2), 8-bit timer (TIM4)
DocID018576 Rev 38/100
XTAL 1-16MHz
RC int. 16MHz
RC int. 128kHz
STM8 core
Debug/SWIM
SPI
UART1
16-bit general purpose
AWU timer
Reset block
Reset
POR
BOR
Clock controller
Detector
Clock to peripherals and core
8 Mbit/s
LIN master
Address and databus
Window WDG
8-Kbyte
1-Kbyte
ADC1
4 CAPCOM
Reset
400 Kbit/s
Single wire
debug interf.
SPI emul.
channels +3
program
Flash
16-bit advanced
control timer (TIM1)
8-bit basic timer
RAM
Up to
Beeper
1/2/4 kHz
beep
Independent WDG
(TIM4)
3 CAPCOM channels
Up to
complementary outputs
timer (TIM2)
Up to 5
channels
I2C
128-byte
data EEPROM

Block diagramSTM8S003K3 STM8S003F3

Block diagram3
Figure 1: Block diagram
9/100DocID018576 Rev 3

STM8S003K3 STM8S003F3Product overview

Product overview4
The following section intends to give an overview of the basic features of the device functional modules and peripherals.
For more detailed information please refer to the corresponding family reference manual (RM0016).

Central processing unit STM84.1

The 8-bit STM8 core is designed for code efficiency and performance.
It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing and 80 instructions.
Architecture and registers
Harvard architecture
3-stage pipeline
32-bit wide program memory bus - single cycle fetching for most instructions
X and Y 16-bit index registers - enabling indexed addressing modes with or without offset
and read-modify-write type data manipulations
8-bit accumulator
24-bit program counter - 16-Mbyte linear memory space
16-bit stack pointer - access to a 64 K-level stack
8-bit condition code register - 7 condition flags for the result of the last instruction
Addressing
20 addressing modes
Indexed indirect addressing mode for look-up tables located anywhere in the address
space
Stack pointer relative addressing mode for local variables and parameter passing
Instruction set
80 instructions with 2-byte average instruction size
Standard data movement and logic/arithmetic functions
8-bit by 8-bit multiplication
16-bit by 8-bit and 16-bit by 16-bit division
Bit manipulation
Data transfer between stack and accumulator (push/pop) with direct stack access
Data transfer using the X and Y registers or direct memory-to-memory transfers

Single wire interface module (SWIM) and debug module (DM)4.2

The single wire interface module and debug module permits non-intrusive, real-time in-circuit debugging and fast memory programming.
DocID018576 Rev 310/100
Product overviewSTM8S003K3 STM8S003F3
SWIM
Single wire interface module for direct access to the debug module and memory programming. The interface can be activated in all device operation modes. The maximum data transmission speed is 145 bytes/ms.
Debug module
The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, also CPU operation can be monitored in real-time by means of shadow registers.
R/W to RAM and peripheral registers in real-time
R/W access to all resources by stalling the CPU
Breakpoints on all program-memory instructions (software breakpoints)
Two advanced breakpoints, 23 predefined configurations

Interrupt controller4.3

Nested interrupts with three software priority levels
32 interrupt vectors with hardware priority
Up to 27 external interrupts on 6 vectors including TLI
Trap and reset interrupts

Flash program memory and data EEPROM4.4

8 Kbytes of Flash program single voltage Flash memory
128 bytes of true data EEPROM
User option byte area
Write protection (WP)
Write protection of Flash program memory and data EEPROM is provided to avoid unintentional overwriting of memory that could result from a user software malfunction.
There are two levels of write protection. The first level is known as MASS (memory access security system). MASS is always enabled and protects the main Flash program memory, the data EEPROM, and the option bytes.
To perform in-application programming (IAP), this write protection can be removed by writing a MASS key sequence in a control register. This allows the application to modify the content of the main program memory and data EEPROM, or to reprogram the device option bytes.
A second level of write protection, can be enabled to further protect a specific area of memory known as UBC (user boot code). Refer to the figure below.
The size of the UBC is programmable through the UBC option byte, in increments of 1 page (64-byte block) by programming the UBC option byte in ICP mode.
This divides the program memory into two areas:
Main program memory: 8 Kbytes minus UBC
User-specific boot code (UBC): Configurable up to 8 Kbytes
The UBC area remains write-protected during in-application programming. This means that the MASS keys do not unlock the UBC area. It protects the memory used to store the boot
11/100DocID018576 Rev 3
UBC area
Program memory area
Remains write protected during IAP
Write access possible for IAP
Option bytes
Programmable bytes(1 page)
up to 8 Kbytes (in 1 page steps)
area from 64
Low density Flash program memory (8 Kbytes)
Data EEPROM (128 bytes)
STM8S003K3 STM8S003F3Product overview
program, specific code libraries, reset and interrupt vectors, the reset routine and usually the IAP and communication routines.
Figure 2: Flash memory organization
Read-out protection (ROP)
The read-out protection blocks reading and writing from/to the Flash program memory and the data EEPROM in ICP mode (and debug mode). Once the read-out protection is activated, any attempt to toggle its status triggers a global erase of the program memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller.

Clock controller4.5

The clock controller distributes the system clock (f to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness.
Features
Clock prescaler: To get the best compromise between speed and current consumption
the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
Safe clock switching: Clock sources can be changed safely on the fly in run mode
through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching.
Clock management: To reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
Master clock sources: Four different clock sources can be used to drive the master
clock:
1-16 MHz high-speed external crystal (HSE)
-
Up to 16 MHz high-speed user-external clock (HSE user-ext)
-
16 MHz high-speed internal RC oscillator (HSI)
-
128 kHz low-speed internal RC (LSI)
-
MASTER
) coming from different oscillators
DocID018576 Rev 312/100
Bit
Product overviewSTM8S003K3 STM8S003F3
Startup clock: After reset, the microcontroller restarts by default with an internal 2 MHz
clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
Clock security system (CSS): This feature can be enabled by software. If an HSE clock
failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS and an interrupt can optionally be generated.
Configurable main clock output (CCO): This outputs an external clock for use by the
application.
Table 2: Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers
Peripheral clock
ADCPCKEN23ReservedPCKEN27UART1PCKEN13TIM1PCKEN17
AWUPCKEN22ReservedPCKEN26ReservedPCKEN12ReservedPCKEN16
ReservedPCKEN21ReservedPCKEN25SPIPCKEN11TIM2PCKEN15
ReservedPCKEN20ReservedPCKEN24I2CPCKEN10TIM4PCKEN14
clock
BitPeripheral
clock
BitPeripheral
clock
BitPeripheral

Power management4.6

For efficent power management, the application can be put in one of four different low-power modes. You can configure each mode to obtain the best compromise between lowest power consumption, fastest start-up time and available wakeup sources.
Wait mode: In this mode, the CPU is stopped, but peripherals are kept running. The
wakeup is performed by an internal or external interrupt or reset.
Active halt mode with regulator on: In this mode, the CPU and peripheral clocks are
stopped. An internal wakeup is generated at programmable intervals by the auto wake up unit (AWU). The main voltage regulator is kept powered on, so current consumption is higher than in active halt mode with regulator off, but the wakeup time is faster. Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.
Active halt mode with regulator off: This mode is the same as active halt with regulator
on, except that the main voltage regulator is powered off, so the wake up time is slower.
Halt mode: In this mode the microcontroller uses the least power. The CPU and peripheral
clocks are stopped, the main voltage regulator is powered off. Wakeup is triggered by external event or reset.

Watchdog timers4.7

The watchdog system is based on two independent timers providing maximum security to the applications.
Activation of the watchdog timers is controlled by option bytes or by software. Once activated, the watchdogs cannot be disabled by the user program without performing a reset.
13/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Product overview
Window watchdog timer
The window watchdog is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.
The window function can be used to trim the watchdog behavior to match the application perfectly.
The application software must refresh the counter before time-out and during a limited time window.
A reset is generated in two situations:
1. Timeout: At 16 MHz CPU clock the time-out period can be adjusted between 75 µs up to 64 ms.
2. Refresh out of window: The downcounter is refreshed before its value is lower than the one stored in the window register.
Independent watchdog timer
The independent watchdog peripheral can be used to resolve processor malfunctions due to hardware or software failures.
It is clocked by the 128 kHZ LSI internal RC clock source, and thus stays active even in case of a CPU clock failure
The IWDG time base spans from 60 µs to 1 s.

Auto wakeup counter4.8

Used for auto wakeup from active halt mode
Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock
LSI clock can be internally connected to TIM1 input capture channel 1 for calibration

Beeper4.9

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.
The beeper output port is only available through the alternate function remap option bit AFR7.

TIM1 - 16-bit advanced control timer4.10

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver
16-bit up, down and up/down autoreload counter with 16-bit prescaler
Four independent capture/compare channels (CAPCOM) configurable as input capture,
output compare, PWM generation (edge and center aligned mode) and single pulse mode output
Synchronization module to control the timer with external signals
Break input to force the timer outputs into a defined state
Three complementary outputs with adjustable dead time
DocID018576 Rev 314/100
Product overviewSTM8S003K3 STM8S003F3
Encoder mode
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break

TIM2 - 16-bit general purpose timer4.11

16-bit autoreload (AR) up-counter
15-bit prescaler adjustable to fixed power of 2 ratios 1…32768
3 individually configurable capture/compare channels
PWM mode
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update

TIM4 - 8-bit basic timer4.12

8-bit autoreload, adjustable prescaler ratio to any power of 2 from 1 to 128
Clock source: CPU clock
Interrupt source: 1 x overflow/update
Table 3: TIM timer features
Timer
Counter size (bits)
16TIM1
16TIM2
8TIM4
Prescaler
Any integer from 1 to 65536
Any power of 2 from 1 to 32768
Any power of 2 from 1 to 128
Counting mode
CAPCOM channels
Complem. outputs
Ext. trigger
Yes34Up/down
No03Up
No00Up
Timer synchronization/ chaining
No

Analog-to-digital converter (ADC1)4.13

The STM8S003xx products contain a 10-bit successive approximation A/D converter (ADC1) with up to 5 external multiplexed inputs channels and the following features:
Input voltage range: 0 to V
Conversion time: 14 clock cycles
Single and continuous and buffered continuous conversion modes
Buffer size (n x 10 bits) where n = number of input channels
Scan mode for single and continuous conversion of a sequence of channels
Analog watchdog capability with programmable upper and lower thresholds
Analog watchdog interrupt
DD
15/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Product overview
External trigger input
Trigger from TIM1 TRGO
End of conversion (EOC) interrupt

Communication interfaces4.14

The following communication interfaces are implemented:
UART1: Full feature UART, synchronous mode, SPI master mode, Smartcard mode, IrDA
mode, single wire mode, LIN2.1 master capability
SPI : Full and half-duplex, 8 Mbit/s
I²C: Up to 400 Kbit/s

UART14.14.1

Main features
One Mbit/s full duplex SCI
SPI emulation
High precision baud rate generator
Smartcard emulation
IrDA SIR encoder decoder
LIN master mode
Single wire half duplex mode
Asynchronous communication (UART mode)
Full duplex communication - NRZ standard format (mark/space)
Programmable transmit and receive baud rates up to 1 Mbit/s (f
following any standard baud rate regardless of the input frequency
Separate enable bits for transmitter and receiver
Two receiver wakeup modes:
Address bit (MSB)
-
Idle line (interrupt)
-
Transmission error detection with interrupt generation
Parity control
Synchronous communication
Full duplex synchronous transfers
SPI master operation
8-bit data communication
Maximum speed: 1 Mbit/s at 16 MHz (f
LIN master mode
Emission: Generates 13-bit synch break frame
Reception: Detects 11-bit break frame
CPU
/16)
/16) and capable of
CPU
DocID018576 Rev 316/100
Product overviewSTM8S003K3 STM8S003F3
SPI4.14.2
Maximum speed: 8 Mbit/s (f
Full duplex synchronous transfers
Simplex synchronous transfers on two lines with a possible bidirectional data line
Master or slave operation - selectable by hardware or software
CRC calculation
1 byte Tx and Rx buffer
Slave/master selection input pin
I²C4.14.3
I²C master features:
Clock generation
-
Start and stop generation
-
I²C slave features:
Programmable I2C address detection
-
Stop bit detection
-
MASTER
/2) both for master and slave
Generation and detection of 7-bit/10-bit addressing and general call
Supports different communication speeds:
Standard speed (up to 100 kHz)
-
Fast speed (up to 400 kHz)
-
17/100DocID018576 Rev 3
I
2
C_SCL/(T) PB4
TIM1_ETR/AIN3/(HS) PB3
TIM1_CH3N/ AIN2/(HS)PB2
TIM1_CH2N/ AIN1/(HS) PB1
TIM1_CH1N/AIN0/(HS) PB0
PB7
PB6
I
2
C_SDA/ (T) PB5
32 31 30 29 28 27 26 25
24 23 22 21 20 19 18 17
9 10 11 12 13 14 15
16
1 2 3 4 5 6 7 8
VCAP
V
DD
[SPI_NSS] TIM2_CH3/(HS)PA3
PF4
NRST
OSCIN/PA1
OSCOUT/PA2
V
SS
PC3 (HS)/TIM1_CH3 PC2 (HS)/TIM1_CH2
PC1 (HS)/TIM1_CH1/UART1_CK PE5 (HS)/SPI_NSS
PC7 (HS)/SPI_MISO PC6 (HS)/SPI_MOSI PC5 (HS)/SPI_SCK PC4 (HS)/TIM1_CH4/CLK_CCO
PD3 (HS)/TIM2_CH2/ADC_ETR
PD2 (HS) [TIM2_CH3]
PD1 (HS)/SWIM
PD0 (HS)/ TIM1_BKIN [CLK_CCO]
PD7 (HS)/TLI [TIM1_CH4]
PD6 (HS)/UART1_RX
PD5 (HS)/UART1_TX
PD4 (HS)/BEEP/TIM2_CH1

STM8S003K3 STM8S003F3Pinout and pin description

Pinout and pin description5
Table 4: Legend/abbreviations for pinout tables
I= Input, O = Output, S = Power supplyType
Output speed
configuration
Reset state

STM8S003K3 LQFP32 pinout and pin description5.1

InputLevel
CM = CMOS
HS = High sinkOutput
O1 = Slow (up to 2 MHz)
O2 = Fast (up to 10 MHz)
O3 = Fast/slow programmability with slow as default state after reset
O4 = Fast/slow programmability with fast as default state after reset
float = floating, wpu = weak pull-upInputPort and control
Output
T = True open drain, OD = Open drain, PP = Push pull
Bold X (pin state after internal reset release).
Unless otherwise specified, the pin state is the same during the reset phase and after the internal reset release.
Figure 3: STM8S003K3 LQFP32 pinout
DocID018576 Rev 318/100
Pinout and pin descriptionSTM8S003K3 STM8S003F3
1. (HS) high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDDnot implemented).
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it
indicates an exclusive choice not a duplication of the function).
Table 5: LQFP32 pin description
Pin no.
2
4
6
7
Pin
name
PA1/ OSCI
SS
DD
TIM2_CH3 [SPI_NSS]
(2)
Type
OutputInput
Ext.
wpufloating
interrupt
High sink
(1)
PPODSpeed
Main function (after reset)
ResetXI/ONRST1
Port A1XXO1XXXI/O
Port A2XXO1XXXI/OPA2/ OSCOUT3
Digital groundSV
1.8 V regulator capacitorSVCAP5
Digital power supplySV
Port A3XXO3HSXXXI/OPA3/
Port F4XXO1XXI/OPF48
Default alternate function
Resonator/ crystal in
Resonator/ crystal out
Timer 2 channel 3
Alternate function after remap [option bit]
SPI master/ slave select [AFR1]
13
14
TIM1_ETR
TIM1_CH3N
Port B7XXO1XXXI/OPB79
Port B6XXO1XXXI/OPB610
O1XXI/OPB5/ I2C_SDA11
O1XXI/OPB4/ I2C_SCL12
(3)
T
(3)
T
Port B3XXO3HSXXXI/OPB3/AIN3/
Port B2XXO3HSXXXI/OPB2/AIN2/
I2C dataPort B5
I2C clockPort B4
Analog input 3/ Timer 1 external trigger
Analog input 2/ Timer 1 ­inverted channel 3
19/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Pinout and pin description
Pin no.
15
16
17
18
19
Pin
name
TIM1_CH2N
TIM1_CH1N
SPI_NSS
TIM1_CH1/ UART1_CK
TIM1_CH2
Type
OutputInput
Ext.
wpufloating
interrupt
High sink
(1)
PPODSpeed
Main function (after reset)
Port B1XXO3HSXXXI/OPB1/AIN1/
Port B0XXO3HSXXXI/OPB0/AIN0/
Port E5XXO3HSXXXI/OPE5/
Port C1XXO3HSXXXI/OPC1/
Port C2XXO3HSXXXI/OPC2/
Default alternate function
Analog input 1/ Timer 1 ­inverted channel 2
Analog input 0/ Timer 1 ­inverted channel 1
SPI master/slave select
Timer 1 ­channel 1 UART1 clock
Timer 1 ­channel 2
Alternate function after remap [option bit]
20
21
25
26
27
TIM1_CH3
TIM1_CH4/ CLK_CCO
TIM1_BKIN [CLK_CCO]
(4)
[TIM2_CH3]
Port C3XXO3HSXXXI/OPC3/
Port C4XXO3HSXXXI/OPC4/
Port C6XXO3HSXXXI/OPC6/ PI_MOSI23
Port C7XXO3HSXXXI/OPC7/ PI_MISO24
Port D0XXO3HSXXXI/OPD0/
Port D1XXO4HSXXXI/OPD1/ SWIM
Port D2XXO3HSXXXI/OPD2
Timer 1 ­channel 3
Timer 1 ­channel 4 /configurable clock output
SPI clockPort C5XXO3HSXXXI/OPC5/ SPI_SCK22
SPI master out/slave in
SPI master in/ slave out
Timer 1 - break input
SWIM data interface
Configurable clock output [AFR5]
Timer 2 ­channel 3[AFR1]
DocID018576 Rev 320/100
20 19 18 17 16 15 14 13
1 2 3 4 5 6 7 8
UART1_CK/TIM2_CH1/BEEP/(HS)PD4
NRST
V
DD
VCAP
V
SS
OSCOUT/PA2
PD3 (HS)/AIN4/TIM2_CH2/ADC_ETR
PD1(HS)/SWIM
PB4 (T)/I2C_SCL [ADC_ETR]
PC3 (HS)/TIM1_CH3 [TLI] [TIM1_CH1N]
PC4 (HS)/TIM1_CH4/CLK_CCO/AIN2/[TIM1_CH2N]
PC5 (HS)/SPI_SCK [TIM2_CH1]
12 11
9 10
[SPI_NSS] TIM2_CH3/(HS) PA3
PD2 (HS)/AIN3/[TIM2_CH3]
OSCIN/PA1
PB5 (T)/I2C_SDA [TIM1_BKIN]
UART1_TX/AIN5/(HS) PD5 UART1_RX/AIN6/(HS) PD6
PC6 (HS)/SPI_MOSI [TIM1_CH1]
PC7 (HS)/SPI_MISO [TIM1_CH2]
Pinout and pin descriptionSTM8S003K3 STM8S003F3
Pin no.
28
29
Pin
name
TIM2_CH2/ ADC_ETR
TIM2_CH1
Type
OutputInput
Ext.
wpufloating
interrupt
High sink
(1)
PPODSpeed
Main function (after reset)
Port D3XXO3HSXXXI/OPD3/
Default alternate function
Timer 2 ­channel 2/ADC external trigger
Port D4XXO3HSXXXI/OPD4/BEEP/
Timer 2 ­channel
Alternate function after remap [option bit]
1/BEEP output
30
31
32
UART1_TX
Port D5XXO3HSXXXI/OPD5/
Port D6XXO3HSXXXI/OPD6/
UART1_RX
Port D7XXO3HSXXXI/OPD7/ TLI
[TIM1_CH4]
UART1 data transmit
UART1 data receive
Top level interrupt
Timer 1 ­channel 4 [AFR6]
(1)
I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the total driven current must respect the absolute maximum ratings (see Electrical characteristics). (2)
When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode if Halt/Active-halt is used in the application. (3)
In the open-drain output column, "T" defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDDare not implemented). (4)
The PD1 pin is in input pull-up during the reset phase and after internal reset release.

STM8S003F3 TSSOP20/UFQFPN20 pinout and pin description5.2

STM8S003F3 TSSOP20 pinout and pin description5.2.1

Figure 4: STM8S003F3 TSSOP20 pinout
1. HS high sink capability.
21/100DocID018576 Rev 3
2
1
3
4
5
6 7 8
9
11
12
13
14
15
16171819
VCAP
V
SS
OSCOUT/PA2
OSCIN/PA1
[SPI_NSS] TIM2_CH3/(HS) PA3
NRST
PD4 (HS)/BEEP / TIM2_CH1/UART1_CK
PD5(HS)/AIN5/UART1_TX
PD3 (HS)/AIN4/TIM2_CH2/ADC_ETR
PD2(HS)/AIN3/{TIM2_CH3]
PC4(HS)/TIM1_CH4/CLK_CCO/AIN2/[TIM1_CH2N]
PC5 (HS)/SPI_SCK [TIM2_CH1]
PC6(HS)/SPI_MOSI [TIM1_CH1]
PC7(HS)/SPI_MISO[TIM1_CH2]
PD1(HS)/SWIM
[TIM1_BKIN] I
2
C_SDA/(T)PB5
10
PD6(HS)/AIN6/UART1_RX
20
V
DD
[ADC_ETR] I
2
C_SCL/(T)PB4
STM8S003K3 STM8S003F3Pinout and pin description
2. (T) True open drain (P-buffer and protection diode to VDDnot implemented).
3. [ ] alternate function remapping option (If the same alternate function is shown twice, it
indicates an exclusive choice not a duplication of the function).

STM8S003F3 UFQFPN20 pinout5.2.2

Figure 5: STM8S003F3 UFQFPN20-pin pinout
Pin no.
1. HS high sink capability.
2. (T) True open drain (P-buffer and protection diode to VDDnot implemented).
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it
indicates an exclusive choice not a duplication of the function).

STM8S003F3 TSSOP20/UFQFPN20 pin description5.2.3

181
TIM2_ CH1/ UART1 _CK
Table 6: STM8S003F3 pin description
OutputInput
TypePin name
wpufloatingUFQFPN20TSSOP20
DocID018576 Rev 322/100
Ext. interr.
High sink
(1)
PPODSpeed
XXO3HSXXXI/OPD4/ BEEP/
Main function (after reset)
Port D4
Default alternate function
Timer 2 ­channel 1/BEEP output/
Alternate function after remap [option bit]
Pinout and pin descriptionSTM8S003K3 STM8S003F3
Pin no.
OutputInput
TypePin name
192
203
25
36
47
UART1 _TX
UART1 _RX
(2)
OSCOUT
SS
SVCAP58
wpufloatingUFQFPN20TSSOP20
Ext. interr.
High sink
(1)
Main function (after
PPODSpeed
reset)
Port
XXO3HSXXXI/OPD5/ AIN5/
D5
Port
XXO3HSXXXI/OPD6/ AIN6/
D6
ResetXI/ONRST14
Port
XXO1XXXI/OPA1/ OSCIN
A1
Port
XXO1XXXI/OPA2/
A2
Digital groundSV
1.8 V regulator capacitor
Default alternate function
UART1 clock
Analog input 5/ UART1 data transmit
Analog input 6/ UART1 data receive
Resonator/ crystal in
Resonator/ crystal out
Alternate function after remap [option bit]
69
710
811
912
1013
1114
1215
DD
CH3 [SPI_ NSS]
SDA [TIM1_ BKIN]
SCL
TIM1_CH3 [TLI] [TIM1_ CH1N]
CLK_CCO/ TIM1_ CH4/AIN2/[TIM1_ CH2N]
SPI_SCK [TIM2_ CH1]
T
O1XXI/OPB5/ I2C_
(3)
(3)
O1XXI/OPB4/ I2C_
T
Digital power supplySV
Port
XXO3HSXXXI/OPA3/ TIM2_
A3
B5
B4
Port
XXO3HSXXXI/OPC3/
C3
Port
XXO3HSXXXI/OPC4/
C4
XXO3HSXXXI/OPC5/
C5
Timer 2 channel 3
I2C dataPort
I2C clockPort
Timer 1 ­channel 3
Configurable clock output/Timer 1 - channel 4/Analog input 2
SPI clockPort
SPI master/ slave select [AFR1]
Timer 1 ­break input [AFR4]
ADC external trigger [AFR4]
Top level interrupt [AFR3] Timer 1 - inverted channel 1 [AFR7]
Timer 1 ­inverted channel 2 [AFR7]
Timer 2 ­channel 1 [AFR0]
23/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Pinout and pin description
Ext. interr.
OutputInput
High sink
(1)
PPODSpeed
XXO3HSXXXI/OPC6/
XXO3HSXXXI/OPC7/
XXO4HSXXXI/OPD1/
XXO3HSXXXI/OPD2/AIN3/[TIM2_
XXO3HSXXXI/OPD3/ AIN4/
Main function (after reset)
Port C6
Port C7
Port D1
Port D2
Port D3
Default alternate function
SPI master out/slave in
SPI master in/ slave out
SWIM data interface
Analog input 3
Analog input 4/ Timer 2 ­channel 2/ADC external trigger
Alternate function after remap [option bit]
Timer 1 ­channel 1 [AFR0]
Timer 1 ­channel 2 [AFR0]
Timer 2 ­channel 3 [AFR1]
Pin no.
TypePin name
1316
1417
1518
1619
1720
(1)
I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the total driven current must respect the absolute maximum ratings. (2)
When the MCU is in halt/active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode if halt/active-halt is used in the application. (3)
In the open-drain output column, "T" defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDDare not implemented). (4)
The PD1 pin is in input pull-up during the reset phase and after internal reset release.
SPI_MOSI [TIM1_ CH1]
SPI_MISO [TIM1_ CH2]
(4)
SWIM
CH3]
TIM2_ CH2/ ADC_ ETR
wpufloatingUFQFPN20TSSOP20

Alternate function remapping5.3

As shown in the rightmost column of the pin description table, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function remap) option bits. When the remapping option is active, the default alternate function is no longer available.
To use an alternate function, the corresponding peripheral must be enabled in the peripheral registers.
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO section of the family reference manual, RM0016).
DocID018576 Rev 324/100
0x00 9FFF
Flash program memory
(8 Kbytes)
0x00 0000
RAM
0x00 03FF
(1 Kbyte)
513 bytes stack
Reserved
Reserved
0x00 A000
0x02 7FFF
0x00 47FF
0x00 8000
32 interrupt vectors
0x00 807F
GPIO and periph. reg.
0x00 5000
0x00 57FF
0x00 5800
0x00 7FFF
0x00 480B
0x00 4FFF
0x00 7EFF
CPU/SWIM/debug/ITC
registers
0x00 7F00
Reserved
Option bytes
0x00 480A
0x00 4800
0x00 0800
0x00 8080
Reserved
0x00 407F
Data EEPROM
0x00 4000
Reserved

Memory and register mapSTM8S003K3 STM8S003F3

Memory and register map6

Memory map6.1

Figure 6: Memory map
25/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Memory and register map

Register map6.2

I/O port hardware register map6.2.1

Table 7: I/O port hardware register map
0x00 5000
0x00 5005
0x00 500A
Port A
Port B
Port C
Register nameRegister labelBlockAddress
Reset status
0x00Port A data output latch registerPA_ODR
(1)
Port A input pin value registerPA_IDR0x00 5001
0xXX
0x00Port A data direction registerPA_DDR0x00 5002
0x00Port A control register 1PA_CR10x00 5003
0x00Port A control register 2PA_CR20x00 5004
0x00Port B data output latch registerPB_ODR
(1)
Port B input pin value registerPB_IDR0x00 5006
0xXX
0x00Port B data direction registerPB_DDR0x00 5007
0x00Port B control register 1PB_CR10x00 5008
0x00Port B control register 2PB_CR20x00 5009
0x00Port C data output latch registerPC_ODR
(1)
Port C input pin value registerPB_IDR0x00 500B
0xXX
0x00Port C data direction registerPC_DDR0x00 500C
0x00 500F
0x00 5014
Port D
Port E
0x00Port C control register 1PC_CR10x00 500D
0x00Port C control register 2PC_CR20x00 500E
0x00Port D data output latch registerPD_ODR
(1)
Port D input pin value registerPD_IDR0x00 5010
0xXX
0x00Port D data direction registerPD_DDR0x00 5011
0x02Port D control register 1PD_CR10x00 5012
0x00Port D control register 2PD_CR20x00 5013
0x00Port E data output latch registerPE_ODR
(1)
Port E input pin value registerPE_IDR0x00 5015
0xXX
0x00Port E data direction registerPE_DDR0x00 5016
0x00Port E control register 1PE_CR10x00 5017
DocID018576 Rev 326/100
Memory and register mapSTM8S003K3 STM8S003F3
0x00 5019
Port F
(1)
Depends on the external circuitry.

General hardware register map6.2.2

Register nameRegister labelBlockAddress
Port F input pin value registerPF_IDR0x00 501A
Table 8: General hardware register map
Register nameRegister labelBlockAddress
Reset status
0x00Port E control register 2PE_CR2Port E0x00 5018
0x00Port F data output latch registerPF_ODR
0xXX
0x00Port F data direction registerPF_DDR0x00 501B
0x00Port F control register 1PF_CR10x00 501C
0x00Port F control register 2PF_CR20x00 501D
Reset status
(1)
0x00 5059
0x00 5061
Reserved area (60 bytes)0x00 501E to
Flash0x00 505A
0x00Flash control register 1FLASH_CR1
0x00Flash control register 2FLASH_CR20x00 505B
0xFFFlash complementary control register 2FLASH_NCR20x00 505C
0x00Flash protection registerFLASH _FPR0x00 505D
0xFFFlash complementary protection registerFLASH _NFPR0x00 505E
FLASH _IAPSR0x00 505F
0x00Flash in-application programming status
register
Reserved area (2 bytes)0x00 5060 to
FLASH _PUKRFlash0x00 5062
0x00Flash program memory unprotection
register
27/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Memory and register map
0x00 509F
0x00 50B2
0x00 50BF
Register nameRegister labelBlockAddress
Reset status
Reserved area (1 byte)0x00 5063
0x00Data EEPROM unprotection registerFLASH_DUKRFlash0x00 5064
Reserved area (59 bytes)0x00 5065 to
0x00External interrupt control register 1EXTI_CR1ITC0x00 50A0
0x00External interrupt control register 2EXTI_CR20x00 50A1
Reserved area (17 bytes)0x00 50A2 to
(1)
Reset status registerRST_SRRST0x00 50B3
0xXX
Reserved area (12 bytes)0x00 50B4 to
0x01Internal clock control registerCLK_ICKRCLK0x00 50C0
0x00External clock control registerCLK_ECKR0x00 50C1
Reserved area (1 byte)0x00 50C2
0xE1Clock master status registerCLK_CMSRCLK0x00 50C3
0xE1Clock master switch registerCLK_SWR0x00 50C4
0xXXClock switch control registerCLK_SWCR0x00 50C5
0x18Clock divider registerCLK_CKDIVR0x00 50C6
0xFFPeripheral clock gating register 1CLK_PCKENR10x00 50C7
0x00Clock security system registerCLK_CSSR0x00 50C8
0x00Configurable clock control registerCLK_CCOR0x00 50C9
0xFFPeripheral clock gating register 2CLK_PCKENR20x00 50CA
DocID018576 Rev 328/100
Memory and register mapSTM8S003K3 STM8S003F3
0x00 50D0
50DF
Register nameRegister labelBlockAddress
Reset status
0x00HSI clock calibration trimming registerCLK_HSITRIMR0x00 50CC
SWIM clock control registerCLK_SWIMCCR0x00 50CD
0bXXXX XXX0
ReservLK ed area (3 bytes)0x00 50CE to
0x7FWWDG control registerWWDG_CRWWDG0x00 50D1
0x7FWWDR window registerWWDG_WR0x00 50D2
Reserved area (13 bytes)0x00 50D3 to 00
(2)
IWDG key registerIWDG_KRIWDG0x00 50E0
0xXX
0x00IWDG prescaler registerIWDG_PR0x00 50E1
0x00 50EF
0x00 50FF
0xFFIWDG reload registerIWDG_RLR0x00 50E2
Reserved area (13 bytes)0x00 50E3 to
0x00AWU control/status register 1AWU_CSR1AWU0x00 50F0
AWU_APR0x00 50F1
0x3FAWU asynchronous prescaler buffer
register
0x00AWU timebase selection registerAWU_TBR0x00 50F2
0x1FBEEP control/status registerBEEP_CSRBEEP0x00 50F3
Reserved area (12 bytes)0x00 50F4 to
0x00SPI control register 1SPI_CR1SPI0x00 5200
0x00SPI control register 2SPI_CR20x00 5201
29/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Memory and register map
0x00 520F
Register nameRegister labelBlockAddress
Reset status
0x00SPI interrupt control registerSPI_ICR0x00 5202
0x02SPI status registerSPI_SR0x00 5203
0x00SPI data registerSPI_DR0x00 5204
0x07SPI CRC polynomial registerSPI_CRCPR0x00 5205
0xFFSPI Rx CRC registerSPI_RXCRCR0x00 5206
0xFFSPI Tx CRC registerSPI_TXCRCR0x00 5207
Reserved area (8 bytes)0x00 5208 to
0x00I2C control register 1I2C_CR1I2C0x00 5210
0x00I2C control register 2I2C_CR20x00 5211
0x00I2C frequency registerI2C_FREQR0x00 5212
0x00I2C Own address register lowI2C_OARL0x00 5213
0x00I2C Own address register highI2C_OARH0x00 5214
Reserved0x00 5215
0x00I2C data registerI2C_DR0x00 5216
0x00I2C status register 1I2C_SR10x00 5217
0x00I2C status register 2I2C_SR20x00 5218
0x0XI2C status register 3I2C_SR30x00 5219
0x00I2C interrupt control registerI2C_ITR0x00 521A
0x00I2C Clock control register lowI2C_CCRL0x00 521B
DocID018576 Rev 330/100
Memory and register mapSTM8S003K3 STM8S003F3
0x00 522F
Register nameRegister labelBlockAddress
Reset status
0x00I2C Clock control register highI2C_CCRH0x00 521C
0x02I2C TRISE registerI2C_TRISER0x00 521D
0x00I2C packet error checking registerI2C_PECR0x00 521E
Reserved area (17 bytes)0x00 521F to
0xC0UART1 status registerUART1_SRUART10x00 5230
0xXXUART1 data registerUART1_DR0x00 5231
0x00UART1 baud rate register 1UART1_BRR10x00 5232
0x00UART1 baud rate register 2UART1_BRR20x00 5233
0x00 523F
0x00UART1 control register 1UART1_CR10x00 5234
0x00UART1 control register 2UART1_CR20x00 5235
0x00UART1 control register 3UART1_CR30x00 5236
0x00UART1 control register 4UART1_CR40x00 5237
0x00UART1 control register 5UART1_CR50x00 5238
0x00UART1 guard time registerUART1_GTR0x00 5239
0x00UART1 prescaler registerUART1_PSCR0x00 523A
Reserved area (21 bytes)0x00 523B to
0x00TIM1 control register 1TIM1_CR1TIM10x00 5250
0x00TIM1 control register 2TIM1_CR20x00 5251
31/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Memory and register map
Register nameRegister labelBlockAddress
Reset status
0x00TIM1 slave mode control registerTIM1_SMCR0x00 5252
0x00TIM1 external trigger registerTIM1_ETR0x00 5253
0x00TIM1 interrupt enable registerTIM1_IER0x00 5254
0x00TIM1 status register 1TIM1_SR10x00 5255
0x00TIM1 status register 2TIM1_SR20x00 5256
0x00TIM1 event generation registerTIM1_EGR0x00 5257
0x00TIM1 capture/compare mode register 1TIM1_CCMR10x00 5258
0x00TIM1 capture/compare mode register 2TIM1_CCMR20x00 5259
0x00TIM1 capture/compare mode register 3TIM1_CCMR30x00 525A
0x00TIM1 capture/compare mode register 4TIM1_CCMR40x00 525B
0x00TIM1 capture/compare enable register 1TIM1_CCER10x00 525C
0x00TIM1 capture/compare enable register 2TIM1_CCER20x00 525D
0x00TIM1 counter highTIM1_CNTRH0x00 525E
0x00TIM1 counter lowTIM1_CNTRL0x00 525F
0x00TIM1 prescaler register highTIM1_PSCRH0x00 5260
0x00TIM1 prescaler register lowTIM1_PSCRL0x00 5261
0xFFTIM1 auto-reload register highTIM1_ARRH0x00 5262
0xFFTIM1 auto-reload register lowTIM1_ARRL0x00 5263
0x00TIM1 repetition counter registerTIM1_RCR0x00 5264
DocID018576 Rev 332/100
Memory and register mapSTM8S003K3 STM8S003F3
Register nameRegister labelBlockAddress
Reset status
0x00TIM1 capture/compare register 1 highTIM1_CCR1H0x00 5265
0x00TIM1 capture/compare register 1 lowTIM1_CCR1L0x00 5266
0x00TIM1 capture/compare register 2 highTIM1_CCR2H0x00 5267
0x00TIM1 capture/compare register 2 lowTIM1_CCR2L0x00 5268
0x00TIM1 capture/compare register 3 highTIM1_CCR3H0x00 5269
0x00TIM1 capture/compare register 3 lowTIM1_CCR3L0x00 526A
0x00TIM1 capture/compare register 4 highTIM1_CCR4H0x00 526B
0x00TIM1 capture/compare register 4 lowTIM1_CCR4L0x00 526C
0x00TIM1 break registerTIM1_BKR0x00 526D
0x00 52FF
0x00TIM1 dead-time registerTIM1_DTR0x00 526E
0x00TIM1 output idle state registerTIM1_OISR0x00 526F
Reserved area (147 bytes)0x00 5270 to
0x00TIM2 control register 1TIM2_CR1TIM20x00 5300
Reserved0x00 5301
Reserved0x00 5302
0x00TIM2 Interrupt enable registerTIM2_IER0x00 5303
0x00TIM2 status register 1TIM2_SR10x00 5304
0x00TIM2 status register 2TIM2_SR20x00 5305
0x00TIM2 event generation registerTIM2_EGR0x00 5306
33/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Memory and register map
Register nameRegister labelBlockAddress
Reset status
0x00TIM2 capture/compare mode register 1TIM2_CCMR10x00 5307
0x00TIM2 capture/compare mode register 2TIM2_CCMR20x00 5308
0x00TIM2 capture/compare mode register 3TIM2_CCMR30x00 5309
0x00TIM2 capture/compare enable register 1TIM2_CCER10x00 530A
0x00TIM2 capture/compare enable register 2TIM2_CCER20x00 530B
0x00TIM2 counter highTIM2_CNTRH0x00 530C
0x00TIM2 counter lowTIM2_CNTRL0x00 530D
0x00TIM2 prescaler registerTIM2_PSCR0x00 530E
0xFFTIM2 auto-reload register highTIM2_ARRH0x00 530F
0x00 533F
0xFFTIM2 auto-reload register lowTIM2_ARRL0x00 5310
0x00TIM2 capture/compare register 1 highTIM2_CCR1H0x00 5311
0x00TIM2 capture/compare register 1 lowTIM2_CCR1L0x00 5312
0x00TIM2 capture/compare reg. 2 highTIM2_CCR2H0x00 5313
0x00TIM2 capture/compare register 2 lowTIM2_CCR2L0x00 5314
0x00TIM2 capture/compare register 3 highTIM2_CCR3H0x00 5315
0x00TIM2 capture/compare register 3 lowTIM2_CCR3L0x00 5316
Reserved area (43 bytes)0x00 5317 to
0x00TIM4 control register 1TIM4_CR1TIM40x00 5340
Reserved0x00 5341
DocID018576 Rev 334/100
Memory and register mapSTM8S003K3 STM8S003F3
0x00 53DF
Register nameRegister labelBlockAddress
Reset status
Reserved0x00 5342
0x00TIM4 interrupt enable registerTIM4_IER0x00 5343
0x00TIM4 status registerTIM4_SR0x00 5344
0x00TIM4 event generation registerTIM4_EGR0x00 5345
0x00TIM4 counterTIM4_CNTR0x00 5346
0x00TIM4 prescaler registerTIM4_PSCR0x00 5347
0xFFTIM4 auto-reload registerTIM4_ARR0x00 5348
Reserved area (153 bytes)0x00 5349 to
0x00 53F3
0x00 53FF
0x00ADC data buffer registersADC _DBxRADC10x00 53E0 to
Reserved area (12 bytes)0x00 53F4 to
0x00ADC control/status registerADC _CSRADC10x00 5400
0x00ADC configuration register 1ADC_CR10x00 5401
0x00ADC configuration register 2ADC_CR20x00 5402
0x00ADC configuration register 3ADC_CR30x00 5403
0xXXADC data register highADC_DRH0x00 5404
0xXXADC data register lowADC_DRL0x00 5405
0x00ADC Schmitt trigger disable register highADC_TDRH0x00 5406
0x00ADC Schmitt trigger disable register lowADC_TDRL0x00 5407
35/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Memory and register map
Register nameRegister labelBlockAddress
Reset status
0x03ADC high threshold register highADC_HTRH0x00 5408
0xFFADC high threshold register lowADC_HTRL0x00 5409
0x00ADC low threshold register highADC_LTRH0x00 540A
0x00ADC low threshold register lowADC_LTRL0x00 540B
ADC_AWSRH0x00 540C
0x00ADC analog watchdog status register
high
0x00ADC analog watchdog status register lowADC_AWSRL0x00 540D
ADC _AWCRH0x00 540E
0x00ADC analog watchdog control register
high
ADC_AWCRL0x00 540F
0x00ADC analog watchdog control register
low
Reserved area (1008 bytes)0x00 5410 to
0x00 57FF
(1)
Depends on the previous reset source.
(2)
Write only register.

CPU/SWIM/debug module/interrupt controller registers6.2.3

Table 9: CPU/SWIM/debug module/interrupt controller registers
0x00 7F00
(1)
CPU
Reset statusRegister nameRegister labelBlockAddress
0x00AccumulatorA
0x00Program counter extendedPCE0x00 7F01
0x00Program counter highPCH0x00 7F02
0x00Program counter lowPCL0x00 7F03
0x00X index register highXH0x00 7F04
0x00X index register lowXL0x00 7F05
DocID018576 Rev 336/100
Memory and register mapSTM8S003K3 STM8S003F3
Reset statusRegister nameRegister labelBlockAddress
0x00Y index register highYH0x00 7F06
0x00Y index register lowYL0x00 7F07
0x03Stack pointer highSPH0x00 7F08
0xFFStack pointer lowSPL0x00 7F09
0x28Condition code registerCCR0x00 7F0A
0x00 7F0B to 0x00 7F5F
0x00 7F70
0x00 7F78 to 0x00 7F79
0x00 7F81 to 0x00 7F8F
Reserved area (85 bytes)
0x00Global configuration registerCFG_GCRCPU0x00 7F60
0xFFInterrupt software priority register 1ITC_SPR1
0xFFInterrupt software priority register 2ITC_SPR20x00 7F71
0xFFInterrupt software priority register 3ITC_SPR30x00 7F72
0xFFInterrupt software priority register 4ITC_SPR40x00 7F73
ITC
0xFFInterrupt software priority register 5ITC_SPR50x00 7F74
0xFFInterrupt software priority register 6ITC_SPR60x00 7F75
0xFFInterrupt software priority register 7ITC_SPR70x00 7F76
0xFFInterrupt software priority register 8ITC_SPR80x00 7F77
Reserved area (2 bytes)
0x00SWIM control status registerSWIM_CSRSWIM0x00 7F80
Reserved area (15 bytes)
0x00 7F90
DM
DM_BK1RE
DM_BK2RE0x00 7F93
0xFFDM breakpoint 1 register extended
byte
0xFFDM breakpoint 1 register high byteDM_BK1RH0x00 7F91
0xFFDM breakpoint 1 register low byteDM_BK1RL0x00 7F92
0xFFDM breakpoint 2 register extended
byte
0xFFDM breakpoint 2 register high byteDM_BK2RH0x00 7F94
0xFFDM breakpoint 2 register low byteDM_BK2RL0x00 7F95
0x00DM debug module control register 1DM_CR10x00 7F96
0x00DM debug module control register 2DM_CR20x00 7F97
37/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Memory and register map
Reset statusRegister nameRegister labelBlockAddress
0x00 7F9F
(1)
Accessible by debug module only
DM_CSR10x00 7F98
0x10DM debug module control/status
register 1
DM_CSR20x00 7F99
0x00DM debug module control/status
register 2
0xFFDM enable function registerDM_ENFCTR0x00 7F9A
Reserved area (5 bytes)0x00 7F9B to
DocID018576 Rev 338/100

Interrupt vector mappingSTM8S003K3 STM8S003F3

Interrupt vector mapping7
Table 10: Interrupt mapping
IRQ no.
block
DescriptionSource
Port A external interruptsEXTI03
Wakeup from halt mode
(1)
Yes
active-halt mode
(1)
Vector addressWakeup from
0x00 8000YesYesResetRESET
0x00 8004--Software interruptTRAP
0x00 8008--External top level interruptTLI0
0x00 800CYes-Auto wake up from haltAWU1
0x00 8010--Clock controllerCLK2
0x00 8014Yes
0x00 8018YesYesPort B external interruptsEXTI14
0x00 801CYesYesPort C external interruptsEXTI25
0x00 8020YesYesPort D external interruptsEXTI36
0x00 8024YesYesPort E external interruptsEXTI47
0x00 8028--Reserved8
0x00 802C--Reserved9
0x00 8030YesYesEnd of transferSPI10
11
22
TIM1
ADC1
0x00 8034--TIM1 update/ overflow/ underflow/
trigger/ break
0x00 8038--TIM1 capture/ compareTIM112
0x00 803C--TIM2 update/ overflowTIM213
0x00 8040--TIM2 capture/ compareTIM214
0x00 8044--Reserved15
0x00 8048--Reserved16
0x00 804C--Tx completeUART117
0x00 8050--Receive register DATA FULLUART118
0x00 8054YesYesI2C interruptI2C19
0x00 8058--Reserved20
0x00 805C--Reserved21
0x00 8060--ADC1 end of conversion/ analog
watchdog interrupt
39/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Interrupt vector mapping
IRQ
block
no.
(1)
Except PA1
DescriptionSource
Wakeup from halt mode
active-halt mode
Vector addressWakeup from
0x00 8064--TIM4 update/ overflowTIM423
0x00 8068--EOP/WR_PG_DISFlash24
Reserved
0x00 806C to 0x00 807C
DocID018576 Rev 340/100

Option bytesSTM8S003K3 STM8S003F3

Option bytes8
Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated block of the memory. Except for the ROP (read-out protection) byte, each option byte has to be stored twice, in a regular form (OPTx) and a complemented one (NOPTx) for redundancy.
Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address shown in the table below.
Option bytes can also be modified ‘on the fly’ by the application in IAP mode, except the ROP option that can only be modified in ICP mode (via SWIM).
Refer to the STM8S Flash programming manual (PM0051) and STM8 SWIM communication protocol and debug module user manual (UM0470) for information on SWIM programming procedures.
Table 11: Option bytes
Addr.
0x4800
0x4801
0x4803
0x4805h
0x4807
0x4809
Option name
protection (ROP)
code(UBC)
function remapping (AFR)
option
option
startup
byte no.
Option bitsOption
01234567
AFR6AFR7OPT2Alternate
ReservedOPT3Miscell.
ReservedNOPT30x4806
ReservedNOPT40x4808
TRIM
NHSI TRIM
LSI_ ENHSI
NLSI_ EN
EXT CLKReservedOPT4Clock
NEXT CLK
IWDG _HW
NIWDG _HW
SEL
WUSEL
WWDG _HW
NWWDG _HW
NPRSC1NCKA
_HALT
G_HALT
SC0
Factory default setting
0x00ROP [7:0]OPT0Read-out
0x00UBC [7:0]OPT1User boot
0xFFNUBC [7:0]NOPT10x4802
0x00AFR0AFR1AFR2AFR3AFR4AFR5
0xFFNAFR0NAFR1NAFR2NAFR3NAFR4NAFR5NAFR6NAFR7NOPT20x4804
0x00WWDG
0xFFNWW
0x00PRS C0PRS C1CKAWU
0xFFNPR
0x00HSECNT [7:0]OPT5HSE clock
0xFFNHSECNT [7:0]NOPT50x480A
OPT0
Table 12: Option byte description
DescriptionOption byte no.
ROP[7:0] Memory readout protection (ROP)
0xAA: Enable readout protection (write access via SWIM protocol)
41/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Option bytes
DescriptionOption byte no.
Note: Refer to the family reference manual (RM0016) section on Flash/EEPROM memory readout protection for details.
OPT1
OPT2
OPT3
UBC[7:0] User boot code area
0x00: no UBC, no write-protection
0x01: Page 0 defined as UBC, memory write-protected
0x02: Pages 0 to 1 defined as UBC, memory write-protected.
Page 0 and 1 contain the interrupt vectors.
...
0x7F: Pages 0 to 126 defined as UBC, memory write-protected
Other values: Pages 0 to 127 defined as UBC, memory write-protected
Note: Refer to the family reference manual (RM0016) section on Flash write protection for more details.
AFR[7:0]
Refer to following section for alternate function remapping decriptions of bits [7:2] and [1:0] respectively.
HSITRIM:High speed internal clock trimming register size
0: 3-bit trimming supported in CLK_HSITRIMR register
1: 4-bit trimming supported in CLK_HSITRIMR register
LSI_EN:Low speed internal clock enable
0: LSI clock is not available as CPU clock source
1: LSI clock is available as CPU clock source
IWDG_HW: Independent watchdog
0: IWDG Independent watchdog activated by software
1: IWDG Independent watchdog activated by hardware
WWDG_HW: Window watchdog activation
0: WWDG window watchdog activated by software
1: WWDG window watchdog activated by hardware
WWDG_HALT: Window watchdog reset on halt
DocID018576 Rev 342/100
DescriptionOption byte no.
0: No reset generated on halt if WWDG active
1: Reset generated on halt if WWDG active
Option bytesSTM8S003K3 STM8S003F3
OPT4
OPT5
EXTCLK: External clock selection
0: External crystal connected to OSCIN/OSCOUT
1: External clock signal on OSCIN
CKAWUSEL:Auto wake-up unit/clock
0: LSI clock source selected for AWU
1: HSE clock with prescaler selected as clock source for for AWU
PRSC[1:0] AWU clock prescaler
0x: 16 MHz to 128 kHz prescaler
10: 8 MHz to 128 kHz prescaler
11: 4 MHz to 128 kHz prescaler
HSECNT[7:0]:HSE crystal oscillator stabilization time
0x00: 2048 HSE cycles
0xB4: 128 HSE cycles
0xD2: 8 HSE cycles
0xE1: 0.5 HSE cycles

Alternate function remapping bits8.1

Table 13: STM8S003K3 alternate function remapping bits for 32-pin devices
Option byte no.
OPT2
Description
AFR7 Alternate function remapping option 7
Reserved.
AFR6 Alternate function remapping option 6
0: AFR6 remapping option inactive: Default alternate function
1: Port D7 alternate function = TIM1_CH4.
AFR5 Alternate function remapping option 5
0: AFR5 remapping option inactive: Default alternate function
(1)
(2)
.
(2)
.
43/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Option bytes
Option byte no.
Description
(1)
1: Port D0 alternate function = CLK_CCO.
AFR[4:2] Alternate function remapping options 4:2
Reserved.
AFR1 Alternate function remapping option 1
0: AFR1 remapping option inactive: Default alternate functions
1: Port A3 alternate function = SPI_NSS; port D2 alternate function = TIM2_CH3.
AFR0 Alternate function remapping option 0
Reserved.
(1)
Do not use more than one remapping option in the same port. It is forbidden to enable
both AFR1 and AFR0.
(2)
Refer to pinout description.
Table 14: STM8S003F3 alternate function remapping bits for 20-pin devices
DescriptionOption byte no.
(2)
.
OPT2
AFR7 Alternate function remapping option 7
0: AFR7 remapping option inactive: Default alternate functions
(1)
.
1: Port C3 alternate function = TIM1_CH1N; port C4 alternate function = TIM1_CH2N.
AFR6 Alternate function remapping option 6
Reserved.
AFR5 Alternate function remapping option 5
Reserved.
AFR4 Alternate function remapping option 4
0: AFR4 remapping option inactive: Default alternate functions
(1)
.
1: Port B4 alternate function = ADC_ETR; port B5 alternate function = TIM1_BKIN.
AFR3 Alternate function remapping option 3
0: AFR3 remapping option inactive: Default alternate function
(1)
.
1: Port C3 alternate function = TLI.
AFR2 Alternate function remapping option 2
DocID018576 Rev 344/100
Option bytesSTM8S003K3 STM8S003F3
DescriptionOption byte no.
Reserved
AFR1 Alternate function remapping option 1
(2)
0: AFR1 remapping option inactive: Default alternate functions
(1)
.
1: Port A3 alternate function = SPI_NSS; port D2 alternate function = TIM2_CH3.
AFR0 Alternate function remapping option 0
0: AFR0 remapping option inactive: Default alternate functions
(1)
.
1: Port C5 alternate function = TIM2_CH1; port C6 alternate function = TIM1_CH1; port C7 alternate function = TIM1_CH2.
(1)
Refer to pinout description.
(2)
Do not use more than one remapping option in the same port. It is forbidden to enable
both AFR1 and AFR0.
(2)
45/100DocID018576 Rev 3
50 pF
STM8 pin

STM8S003K3 STM8S003F3Electrical characteristics

Electrical characteristics9

Parameter conditions9.1

Unless otherwise specified, all voltages are referred to VSS.

Minimum and maximum values9.1.1

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100 % of the devices with an ambient temperature at TA= 25 °C and TA= T the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ± 3 Σ).

Typical values9.1.2

Unless otherwise specified, typical data are based on TA= 25 °C, VDD= 5 V. They are given only as design guidelines and are not tested.
Amax
(given by
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean ± 2 Σ).

Typical curves9.1.3

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

Loading capacitor9.1.4

The loading conditions used for pin parameter measurement are shown in the following figure.
Figure 7: Pin loading conditions

Pin input voltage9.1.5

The input voltage measurement on a pin of the device is described in the following figure.
DocID018576 Rev 346/100
STM8 pin
V
IN
V
DDx
- V
Electrical characteristicsSTM8S003K3 STM8S003F3
Figure 8: Pin input voltage

Absolute maximum ratings9.2

Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
Table 15: Voltage characteristics
SS
Supply voltage
(1)
6.5-0.3
UnitMaxMinRatingsSymbol
V
|V
|V
V
IN
DDx
SSx
ESD
- VDD|
- VSS|
Input voltage on true open drain pins
Input voltage on any other pin
(2)
Variations between different power pins
Variations between all the different ground pins
Electrostatic discharge voltage
(2)
6.5VSS- 0.3
VDD+ 0.3VSS- 0.3
50
50
See "Absolute maximum ratings
V
mV
(electrical sensitivity)"
(1)
All power (VDD) and ground (VSS) pins must always be connected to the external power supply
(2)
I
cannot be respected, the injection current must be limited externally to the I
must never be exceeded. This is implicitly insured if VINmaximum is respected. If VINmaximum
INJ(PIN)
INJ(PIN)
value. A positive injection is induced by VIN>VDDwhile a negative injection is induced by VIN<VSS. For true open-drain pads, there is no positive injection current, and the corresponding VINmaximum must always be respected
Table 16: Current characteristics
I
VDD
RatingsSymbol
Total current into VDDpower lines (source)
(2)
Max
(1)
Unit
mA100
47/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Electrical characteristics
RatingsSymbol
I
VSS
I
IO
Total current out of VSSground lines (sink)
Output current sunk by any I/O and control pin
(2)
Output current source by any I/Os and control pin
I
INJ(PIN)
(3) (4)
Injected current on NRST pin
Injected current on OSCIN pin
Injected current on any other pin
ΣI
INJ(PIN)
(1)
Data based on characterization results, not tested in production.
(2)
All power (VDD) and ground (VSS) pins must always be connected to the external supply.
(3)
I
(3)
Total injected current (sum of all I/O and control pins)
must never be exceeded. This is implicitly insured if VINmaximum is respected. If VINmaximum
INJ(PIN)
cannot be respected, the injection current must be limited externally to the I
(5)
(5)
INJ(PIN)
value. A positive
Max
80
20
- 20
± 4
± 4
± 4
± 20
(1)
Unit
injection is induced by VIN>VDDwhile a negative injection is induced by VIN<VSS. For true open-drain pads, there is no positive injection current, and the corresponding VINmaximum must always be respected
(4)
ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I
INJ(PIN)
(5)
and ΣI
INJ(PIN)
in the I/O port pin characteristics section does not affect the ADC accuracy.
When several inputs are submitted to a current injection, the maximum ΣI
INJ(PIN)
is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with ΣI
INJ(PIN)
maximum current injection on four I/O port pins of the device.
STG
J
Table 17: Thermal characteristics
UnitValueRatingsSymbol
-65 to +150Storage temperature rangeT °C
150Maximum junction temperatureT
DocID018576 Rev 348/100
Electrical characteristicsSTM8S003K3 STM8S003F3

Operating conditions9.3

Table 18: General operating conditions
UnitMaxMinConditionsParameterSymbol
CPU
DD
VCAP
(3)
P
D
T
A
T
J
(1)
C
: capacitance of
EXT
external capacitor
ESR of external
capacitor
ESL of external
capacitor
Power dissipation at TA= 85 °C
for suffix 6
version
Junction temperature range for suffix 6
at 1 MHz
Maximum power dissipationAmbient temperature for 6 suffix
(2)
MHz160Internal CPU clock frequencyf
V5.52.95Standard operating voltageV
nF3300470
Ω0.3-
nH15-
238-TSSOP20
220-UFQFPN20
mW
330-LQFP32
85-40
°C
105-40
(1)
Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum value must be respected for the full application range.
(2)
This frequency of 1 MHz as a condition for VCAP parameters is given by design of internal regulator.
(3)
To calculate P value for T
Dmax(TA
given in the previous table and the value for ΘJAgiven in Thermal characteristics.
Jmax
), use the formula P
Dmax
=(T
- TA)/ΘJA(see Thermal characteristics ) with the
Jmax
49/100DocID018576 Rev 3
16
12
8 4
0
2.95
4.0
5.0
5.5
f
CPU
(MHz)
Functionality guaranteed
@TA-40 to 85 °C
Supply voltage
Functionality not guaranteed in this area
C
Rleak
ESR ESL
STM8S003K3 STM8S003F3Electrical characteristics
t
VDD
Figure 9: f
CPUmax
versus V
DD
Table 19: Operating conditions at power-up/power-down
(1)
UnitMaxTypMinConditionsParameterSymbol
2VDDrise time rate
μs/V
2VDDfall time rate
TEMP
IT+
IT-
HYS(BOR)
(1)
Reset is always generated after a t
delay. The application must ensure that VDDis still above the
TEMP
minimum ooperating voltage (VDDmin) when the t

VCAP external capacitor9.3.1

Stabilization for the main regulator is achieved connecting an external capacitor C V
pin. C
CAP
the series inductance to less than 15 nH.
is specified in the Operating conditions section. Care should be taken to limit
EXT
Figure 10: External capacitor C
delay has elapsed.
TEMP
EXT
ms1.7VDDrisingReset release delayt
2.852.72.6Power-on reset thresholdV V
2.82.652.5Brown-out reset thresholdV
mV70Brown-out reset hysteresisV
to the
EXT
1. ESR is the equivalent series resistance and ESL is the equivalent inductance.
DocID018576 Rev 350/100
Electrical characteristicsSTM8S003K3 STM8S003F3

Supply current characteristics9.3.2

The current consumption is measured as described in Pin input voltage.
Total current consumption in run mode9.3.2.1
The MCU is placed under the following conditions:
All I/O pins in input mode with a static value at VDDor VSS(no load)
All peripherals are disabled (clock stopped by peripheral clock gating registers) except if
explicitly mentioned.
Subject to general operating conditions for VDDand TA.
Table 20: Total current consumption with code execution in run mode at VDD= 5 V
Max
2.352HSE user ext. clock (16 MHz)
21.7HSI RC osc. (16 MHz)
(1)
f
= f
CPU
16 MHz
MASTER
TypConditionsParameterSymbol
2.3HSE crystal osc. (16 MHz)
=
Unit
I
DD(RUN)
I
DD(RUN)
Supply current
in run mode,
code executed
from RAM
Supply current
in run mode,
code executed
from Flash
Supply current
in run mode,
code executed
from Flash
= f
CPU
MASTER
125 kHz
f
= f
CPU
MASTER
15.625 kHz
f
= f
CPU
MASTER
128 kHz
f
= f
CPU
MASTER
16 MHz
f
= f
CPU
MASTER
2 MHz
f
= f
CPU
MASTER
125 kHz
f
= f
CPU
MASTER
15.625 kHz
/128 =
/128 =
=
=
=
/128 =
/128 =
(2)
0.86HSE user ext. clock (16 MHz)f
0.870.7HSI RC osc. (16 MHz)
0.580.46HSI RC osc. (16 MHz/8)
mA
0.550.41LSI RC osc. (128 kHz)
4.5HSE crystal osc. (16 MHz)
4.754.3HSE user ext. clock (16 MHz)
4.53.7HSI RC osc. (16 MHz)
1.050.84HSI RC osc. (16 MHz/8)
0.90.72HSI RC osc. (16 MHz)
mA
0.580.46HSI RC osc. (16 MHz/8)
f
= f
CPU
128 kHz
MASTER
=
0.570.42LSI RC osc. (128 kHz)
51/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Electrical characteristics
(1)
Data based on characterization results, not tested in production.
(2)
Default clock configuration measured with all peripherals off.
Table 21: Total current consumption with code execution in run mode at VDD= 3.3 V
I
DD(RUN)
Supply current
in run mode,
code executed
from RAM
Supply current
in run mode,
code executed
from Flash
f
CPU
= f
MASTER
=
16 MHz
CPU
= f
MASTER
/
128 = 125 kHz
f
CPU
= f
MASTER
/
128 = 15.625 kHz
f
CPU
= f
MASTER
=
128 kHz
f
CPU
= f
MASTER
=
16 MHz
f
CPU
= f
MASTER
=
2 MHz
f
CPU
= f
MASTER
/
128 = 125 kHz
(2)
TypConditionsParameterSymbol
Max
(1)
Unit
1.8HSE crystal osc. (16 MHz)
2.32HSE user ext. clock (16 MHz)
21.5HSI RC osc. (16 MHz)
0.81HSE user ext. clock (16 MHz)f
0.870.7HSI RC osc. (16 MHz)
0.580.46HSI RC osc. (16 MHz/8)
0.550.41LSI RC osc. (128 kHz)
4HSE crystal osc. (16 MHz)
mA
4.73.9HSE user ext. clock (16 MHz)
4.53.7HSI RC osc. (16 MHz)
1.050.84HSI RC osc. (16 MHz/8)
0.90.72HSI RC osc. (16 MHz)
f
= f
CPU
MASTER
128 = 15.625 kHz
f
= f
CPU
MASTER
/
HSI RC osc. (16 MHz/8)
=
128 kHz
(1)
Data based on characterization results, not tested in production.
(2)
Default clock configuration measured with all peripherals off.
DocID018576 Rev 352/100
0.580.46
0.570.42LSI RC osc. (128 kHz)
Total current consumption in wait mode9.3.2.2
Table 22: Total current consumption in wait mode at VDD= 5 V
Electrical characteristicsSTM8S003K3 STM8S003F3
f
CPU
= f
MASTER
=
16 MHz
f
I
DD(WFI)
Supply
current in
= f
CPU
125 kHz
MASTER
/128 =
wait mode
f
CPU
= f
MASTER
/128 =
15.625 kHz
f
CPU
= f
MASTER
=
128 kHz
(1)
Data based on characterization results, not tested in production.
(2)
Default clock configuration measured with all peripherals off.
Table 23: Total current consumption in wait mode at VDD= 3.3 V
(2)
TypConditionsParameterSymbol
Max
(1)
Unit
1.6HSE crystal osc. (16 MHz)
1.31.1HSE user ext. clock (16 MHz)
1.10.89HSI RC osc. (16 MHz)
0.880.7HSI RC osc. (16 MHz) mA
0.570.45HSI RC osc. (16 MHz/8)
0.540.4LSI RC osc. (128 kHz)
I
DD(WFI)
Supply current
in wait mode
f
= f
CPU
MASTER
16 MHz
f
= f
CPU
MASTER
125 kHz
f
= f
CPU
MASTER
15.625 kHz
f
= f
CPU
MASTER
128 kHz
=
/ 128 =
/ 128 =
=
HSE crystal osc.
(16 MHz)
HSE user ext. clock
(16 MHz)
HSI RC osc.
(16 MHz)
HSI RC osc.
(16 MHz)
HSI RC osc.
(16 MHz/8)
(2)
LSI RC osc.
(128 kHz)
TypConditionsParameterSymbol
1.1
Max
1.31.1
1.10.89
0.880.7
0.570.45
0.540.4
(1)
Unit
mA
53/100DocID018576 Rev 3
(1)
Data based on characterization results, not tested in production.
(2)
Default clock configuration measured with all peripherals off.
Total current consumption in active halt mode9.3.2.3
Table 24: Total current consumption in active halt mode at VDD= 5 V
STM8S003K3 STM8S003F3Electrical characteristics
I
DD(AH)
I
DD(AH)
I
DD(AH)
I
DD(AH)
I
DD(AH)
I
DD(AH)
ParameterSymbol
Supply current in active halt mode
Supply current in active halt mode
Supply current in active halt mode
Supply current in active halt mode
Supply current in active halt mode
Supply current in active halt mode
Conditions
Main voltage regulator
(2)
(MVR)
Off
(3)
Operating modeOn
Operating modeOn
Power-down modeOn
Power-down modeOn
Operating mode
Power-down mode
Clock sourceFlash mode
HSE crystal osc.
(16 MHz)
LSI RC osc.
(128 kHz)
HSE crystal osc.
(16 MHz)
LSI RC osc.
(128 kHz)
LSI RC osc.
(128 kHz)
LSI RC osc.
(128 kHz)
Typ
1030
970
Max at 85 °C
(1)
260200
200150
8566
2010
Unit
μA
(1)
Data based on characterization results, not tested in production
(2)
Configured by the REGAH bit in the CLK_ICKR register.
(3)
Configured by the AHALT bit in the FLASH_CR1 register.
Table 25: Total current consumption in active halt mode at VDD= 3.3 V
Conditions
Main voltage regulator
(2)
(MVR)
(3)
Operating modeOn
DocID018576 Rev 354/100
I
DD(AH)
ParameterSymbol
Supply current in active halt mode
Clock sourceFlash mode
HSE crystal osc. (16 MHz)
Typ
Max at 85 °C
(1)
Unit
μA550
Conditions
Main voltage regulator
(2)
(MVR)
(3)
Operating mode
I
DD(AH)
ParameterSymbol
Supply current in active halt mode
I
DD(AH)
On
Power-down
mode
I
DD(AH)
Supply current in
I
DD(AH)
active halt mode
Off
I
DD(AH)
(1)
Data based on characterization results, not tested in production
(2)
Configured by the REGAH bit in the CLK_ICKR register.
(3)
Configured by the AHALT bit in the FLASH_CR1 register.
Operating mode
Power-down
mode
Clock sourceFlash mode
LSI RC osc.
(128 kHz)
HSE crystal osc. (16 MHz)
LSI RC osc.
(128 kHz)
(128 kHz)
Electrical characteristicsSTM8S003K3 STM8S003F3
Typ
970
Max at 85 °C
260200
200150
8066LSI RC osc.
1810
(1)
Unit
μA
Total current consumption in halt mode9.3.2.4
Table 26: Total current consumption in halt mode at VDD= 5 V
Supply current in halt mode
I
DD(H)
(1)
Data based on characterization results, not tested in production
Table 27: Total current consumption in halt mode at VDD= 3.3 V
I
DD(H)
Supply current in halt mode
Flash in operating mode, HSI clock after wakeup
Flash in power-down mode, HSI clock after wakeup
Flash in operating mode, HSI clock after wakeup
TypConditionsParameterSymbol
Max at 85
(1)
°C
Unit
7563
μA
206.0
Max at 85
TypConditionsParameterSymbol
°C
(1)
Unit
μA7560
55/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Electrical characteristics
Max at 85
TypConditionsParameterSymbol
°C
(1)
Unit
Flash in power-down mode, HSI clock after wakeup
(1)
Data based on characterization results, not tested in production
Low power mode wakeup times9.3.2.5
Table 28: Wakeup times
t
WU(WFI)
t
WU(AH)
Wakeup time from
wait mode to run
(3)
Wakeup time active
halt mode to run
(3)
mode
Wakeup time active
halt mode to run
(3)
mode
Wakeup time active
halt mode to run
(3)
mode
0 to 16 MHz
= f
CPU
MASTER
MVR voltage
regulator
(4)
on
MVR voltage
regulator
(4)
on
MVR voltage
regulator
(4)
off
= 16 MHzmode
Flash in operating
(5)
mode
Flash in
power-down
(5)
Flash in operating
(5)
mode
HSI
(after
wakeup)
HSI
(after
wakeup)mode
HSI
(after
wakeup)
TypConditionsParameterSymbol
0.56f
1
3
48
(6)
(6)
(6)
174.5
Max
See note
(6)
2
(1)
Unit
(2)
μs
Wakeup time active
halt mode to run
(3)
mode
MVR voltage
regulator
(4)
off
Flash in
power-down
Wakeup time from
t
WU(H)
(1)
Data guaranteed by design, not tested in production.
(2)
t
WU(WFI)
halt mode to run
(3)
mode
= 2 x 1/f
master
+ x 1/f
CPU.
DocID018576 Rev 356/100
(5)
(5)
(5)
HSI
(after
wakeup)mode
50
52Flash in operating mode
54Flash in power-down mode
(6)
(3)
Measured from interrupt event to interrupt vector fetch.
(4)
Configured by the REGAH bit in the CLK_ICKR register.
(5)
Configured by the AHALT bit in the FLASH_CR1 register.
(6)
Plus 1 LSI clock depending on synchronization.
Total current consumption and timing in forced reset state9.3.2.6
Table 29: Total current consumption and timing in forced reset state
Electrical characteristicsSTM8S003K3 STM8S003F3
I
DD(R)
(2)
state
t
RESETBL
Reset pin release to
vector fetch
(1)
Data guaranteed by design, not tested in production.
(2)
Characterized with all I/Os tied to VSS.
Current consumption of on-chip peripherals9.3.2.7
Subject to general operating conditions for VDDand TA.
I
DD(TIM1)
HSI internal RC/f
TIM1 supply current
CPU
= f
MASTER
= 16 MHz, VDD= 5 V
Table 30: Peripheral current consumption
(1)
210
TypConditionsParameterSymbol
Max
(1)
Unit
400VDD= 5 VSupply current in reset
μA
300VDD= 3.3 V
μs150
UnitTyp.ParameterSymbol
I
DD(TIM2)
I
DD(TIM4)
I
DD(UART1)
I
DD(SPI)
I
DD(I2C)
I
DD(ADC1)
TIM2 supply current
TIM4 timer supply current
UART1 supply current
SPI supply current
I2C supply current
(1)
(1)
(2)
(2)
(2)
ADC1 supply current when converting
(3)
130
50
120
45
65
1000
μA
57/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Electrical characteristics
(1)
Data based on a differential IDDmeasurement between reset configuration and timer counter running
at 16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.
(2)
Data based on a differential IDDmeasurement between the on-chip peripheral when kept under reset and not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling. Not tested in production.
(3)
Data based on a differential IDDmeasurement between reset configuration and continuous A/D conversions. Not tested in production.
Current consumption curves9.3.2.8
The following figures show typical current consumption measured with code executing in RAM.
Figure 11: Typ I
DD(RUN)
vs. VDDHSE user external clock, f
CPU
= 16 MHz
Figure 12: Typ I
DD(RUN)
DocID018576 Rev 358/100
vs. f
HSE user external clock, VDD= 5 V
CPU
Electrical characteristicsSTM8S003K3 STM8S003F3
Figure 13: Typ I
Figure 14: Typ I
DD(WFI)
DD(RUN)
vs. VDDHSI RC osc, f
CPU
vs. VDDHSE user external clock, f
= 16 MHz
= 16 MHz
CPU
59/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Electrical characteristics
Figure 15: Typ I
Figure 16: Typ I
DD(WFI)
DD(WFI)
vs. f
HSE user external clock, VDD= 5 V
CPU
vs. VDDHSI RC osc, f
CPU
= 16 MHz
f
HSE_ext
HSEH
HSEL
LEAK_HSE

External clock sources and timing characteristics9.3.3

HSE user external clock
Subject to general operating conditions for VDDand TA.
Table 31: HSE user external clock characteristics
User external clock source frequency
(1)
(1)
OSCIN input pin high level voltageV
OSCIN input pin low level voltageV
OSCIN input leakage currentI
DocID018576 Rev 360/100
VSS< VIN< V
DD
UnitMaxMinConditionsParameterSymbol
MHz160
DD
VDD+ 0.3 V0.7 x V
V
V
SS
0.3 x V
DD
μA+1-1
(1)
V
HSEH
V
HSEL
External clock source
OSCIN
f
HSE
STM8
Data based on characterization results, not tested in production.
Figure 17: HSE external clock source
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).
Electrical characteristicsSTM8S003K3 STM8S003F3
f
HSE
F
(1)
C
I
DD(HSE)
g
m
SU(HSE)
External high speed
oscillator frequency
Feedback resistorR
Recommended load
capacitance
HSE oscillator power
consumption
Oscillator
transconductance
(4)
Table 32: HSE oscillator characteristics
(2)
C = 20 pF,
f
= 16 MHz
OSC
C = 10 pF,
f
=16 MHz
OSC
VDDis stabilizedStartup timet
6 (startup)
1.6 (stabilized)
6 (startup)
1.2 (stabilized)
UnitMaxTypMinConditionsParameterSymbol
MHz161
kΩ220
pF20
(3)
mA
(3)
mA/V5
ms1
61/100DocID018576 Rev 3
OSCOUT
OSCIN
f
HSE
to core
C
L1
C
L2
R
F
STM8
Resonator
Consumption
control
g
m
R
m
C
m
L
m
C
O
Resonator
STM8S003K3 STM8S003F3Electrical characteristics
(1)
C is approximately equivalent to 2 x crystal Cload.
(2)
The oscillator selection can be optimized in terms of supply current using a high quality resonator with
small Rmvalue. Refer to crystal manufacturer for more details
(3)
Data based on characterization results, not tested in production.
(4)
t
SU(HSE)
is the start-up time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
Figure 18: HSE oscillator circuit diagram
HSE oscillator critical gmequation
g
mcrit
= (2 × Π × f
)2× Rm(2Co + C)
HSE
2
Rm: Notional resistance (see crystal specification)
Lm: Notional inductance (see crystal specification)
Cm: Notional capacitance (see crystal specification)
Co: Shunt capacitance (see crystal specification)
CL1= CL2= C: Grounded external capacitance
gm>> g
mcrit

Internal clock sources and timing characteristics9.3.4

Subject to general operating conditions for VDDand TA.
High speed internal RC oscillator (HSI)
Table 33: HSI oscillator characteristics
UnitMaxTypMinConditionsParameterSymbol
HSI
Frequencyf
DocID018576 Rev 362/100
MHz16
Electrical characteristicsSTM8S003K3 STM8S003F3
UnitMaxTypMinConditionsParameterSymbol
ACC
HSI
Accuracy of HSI
oscillator
Accuracy of HSI
oscillator (factory
User-trimmed with
CLK_HSITRIMR register for
given VDDand T
conditions
A
(1)
VDD= 5 V,
-40 °C ≤ TA≤ 85 °C
calibrated)
t
su(HSI)
HSI oscillator
wakeup time
including
calibration
I
DD(HSI)
HSI oscillator
power
consumption
(1)
Refer to application note.
(2)
Data based on characterization results, not tested in production.
(3)
Guaranteed by design, not tested in production.
170
5-5
1.0
1.0
250
(3)
(3)
(2)
%
μs
μA
Figure 19: Typical HSI frequency variation vs VDD@ 4 temperatures
63/100DocID018576 Rev 3
Low speed internal RC oscillator (LSI)
Subject to general operating conditions for VDDand TA.
Table 34: LSI oscillator characteristics
STM8S003K3 STM8S003F3Electrical characteristics
UnitMaxTypParameterSymbol
LSI
su(LSI)
DD(LSI)
Frequencyf
LSI oscillator wake-up timet
LSI oscillator power consumptionI
Figure 20: Typical LSI frequency variation vs VDD@ 4 temperatures
kHz128
μs7
μA5

Memory characteristics9.3.5

RAM and hardware registers
Table 35: RAM and hardware registers
UnitMinConditionsParameterSymbol
V
RM
(1)
Minimum supply voltage without losing data stored in RAM (in halt mode or under reset)
Data retention mode
(1)
Halt mode (or reset)
or in hardware registers (only in halt mode). Guaranteed by design, not tested in production.
(2)
Refer to the Operating conditions section for the value of V
DocID018576 Rev 364/100
IT-max
V
IT-max
(2)
V
Flash program memory and data EEPROM
Table 36: Flash program memory and data EEPROM
ConditionsParameterSymbol
Min
(1)
Electrical characteristicsSTM8S003K3 STM8S003F3
UnitMaxTyp
V
DD
t
prog
t
erase
N
RW
t
RET
Operating voltage (all modes, execution/
write/erase)
Standard programming time
(including erase) for
byte/word/block (1 byte/
4 bytes/64 bytes)
Fast programming time for
1 block (64 bytes)
Erase time for 1 block
(64 bytes)
Erase/write cycles
(2)
(program memory)
Erase/write cycles
(2)
(data memory)
Data retention (program
memory) after 100 erase/write cycles at TA= 85 °C
Data retention (data
memory) after 10 k erase/write cycles at TA= 85 °C
f
≤ 16 MHz
CPU
TA= 85 °C
T
= 55°C
RET
100
100 k
20
20
V5.52.95
6.66
ms
3.333
3.333
cycles
years
Data retention (data
memory) after 100 k erase/write cycles at TA=
T
RET
= 85°C
1
85 °C
I
DD
Supply current (Flash
programming or erasing
mA2
for 1 to 128 bytes)
65/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Electrical characteristics
(1)
Data based on characterization results, not tested in production.
(2)
The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes
even when a write/erase operation addresses a single byte.

I/O port pin characteristics9.3.6

General characteristics
Subject to general operating conditions for VDDand TAunless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.
Table 37: I/O static characteristics
UnitMaxTypMinConditionsParameterSymbol
V
IL
V
IH
V
hys
R
pu
tR, t
I
lkg
I
lkg ana
I
lkg(inj)
Input low level voltage
VDD= 5 V
-0.3 V
0.3 x
V
DD
V
VDD+
0.3
(2)
20
125
mV700
805530
ns
(2)
SS
0.7 x V
DD
Input high level voltage
Hysteresis
Pull-up resistor
F
Rise and fall time
(10 % - 90 %)
(1)
VDD= 5 V, VIN= V
Fast I/Os
Load = 50 pF
Standard and high sink I/Os
Load = 50 pF
Digital input leakage current
Analog input leakage current
Leakage current in adjacent I/O
VSS≤ VIN≤V
VSS≤ VIN≤ V
DD
DD
Injection current ±4 mA
(2)
±1
±250
(2)
±1
(2)
μA
nA
μA
(1)
Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not
tested in production.
(2)
Data based on characterisation results, not tested in production.
DocID018576 Rev 366/100
Electrical characteristicsSTM8S003K3 STM8S003F3
Figure 21: Typical VILand VIHvs VDD@ 4 temperatures
Figure 22: Typical pull-up resistance vs VDD@ 4 temperatures
67/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Electrical characteristics
Figure 23: Typical pull-up current vs VDD@ 4 temperatures
Table 38: Output driving current (standard ports)
UnitMaxMinConditionsParameterSymbol
Output low level with 8 pins sunk
IIO= 10 mA,
VDD= 5 V
V
OL
Output low level with 4 pins sunk
IIO= 4 mA,
VDD= 3.3 V
Output high level with 8 pins sourced
IIO= 10 mA,
VDD= 5 V
V
OH
Output high level with 4 pins sourced
IIO= 4 mA,
VDD= 3.3 V
(1)
Data based on characterization results, not tested in production
Table 39: Output driving current (true open drain ports)
V
V
Output low level with 2 pins sunk
OL
Output low level with 2 pins sunk
OL
2.8
2.1
IIO= 10 mA, VDD= 5 V
IIO= 10 mA, VDD=
3.3 V
(1)
1 .0
1.5
2.0
1.0
(1)
(1)
V
UnitMaxConditionsParameterSymbol
V
DocID018576 Rev 368/100
Electrical characteristicsSTM8S003K3 STM8S003F3
UnitMaxConditionsParameterSymbol
V
(1)
Data based on characterization results, not tested in production
Output low level with 2 pins sunk
OL
Table 40: Output driving current (high sink ports)
V
OL
Output low level with 8 pins sunk
Output low level with 4 pins sunk
IIO= 10 mA,
VDD= 5 V
IIO= 10 mA,
VDD= 3.3 V
V
OL
Output low level with 4 pins sunk
IIO= 20 mA,
VDD= 5 V
Output high level with 8 pins sourced
IIO= 10 mA,
VDD= 5 V
V
OH
Output high level with 4 pins sourced
IIO= 10 mA,
VDD= 3.3 V
IIO= 20 mA, VDD= 5 V
4.0
(1)
2.1
2.0
1.0
1.5
(1)
UnitMaxMinConditionsParameterSymbol
V0.8
(1)
(1)
V
Output high level with 4 pins sourced
IIO= 20 mA,
VDD= 5 V
(1)
Data based on characterization results, not tested in production
3.3
(1)
69/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Electrical characteristics
Figure 24: Typ. VOL@ VDD= 5 V (standard ports)
Figure 25: Typ. VOL@ VDD= 3.3 V (standard ports)
DocID018576 Rev 370/100
Electrical characteristicsSTM8S003K3 STM8S003F3
Figure 26: Typ. VOL@ VDD= 5 V (true open drain ports)
Figure 27: Typ. VOL@ VDD= 3.3 V (true open drain ports)
71/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Electrical characteristics
Figure 28: Typ. VOL@ VDD= 5 V (high sink ports)
Figure 29: Typ. VOL@ VDD= 3.3 V (high sink ports)
DocID018576 Rev 372/100
Electrical characteristicsSTM8S003K3 STM8S003F3
Figure 30: Typ. VDD- VOH@ VDD= 5 V (standard ports)
Figure 31: Typ. VDD- VOH@ VDD= 3.3 V (standard ports)
73/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Electrical characteristics
Figure 32: Typ. VDD- VOH@ VDD= 5 V (high sink ports)
Figure 33: Typ. VDD- VOH@ VDD= 3.3 V (high sink ports)
V
IL(NRST)

Reset pin characteristics9.3.7

Subject to general operating conditions for VDDand TAunless otherwise specified.
Table 41: NRST pin characteristics
NRST input low
DocID018576 Rev 374/100
-0.3 V
DD
UnitMaxTypMinConditionsParameterSymbol
V0.3 x V
V
IH(NRST)
V
OL(NRST)
R
PU(NRST)
t
I FP(NRST)
t
IN FP(NRST)
level voltage
(1)
NRST input high
level voltage
(1)
NRST output low
level voltage
(1)
NRST pull-up
resistor
(2)
NRST input filtered
(3)
pulse
NRST input not
filtered pulse
(3)
IOL=2 mA
500
DD
Electrical characteristicsSTM8S003K3 STM8S003F3
UnitMaxTypMinConditionsParameterSymbol
VDD+ 0.30.7 x V
0.5
805530
75
ns
t
OP(NRST)
(1)
Data based on characterization results, not tested in production.
(2)
The RPUpull-up equivalent resistor is based on a resistive transistor
(3)
Data guaranteed by design, not tested in production.
NRST output
(3)
pulse
20
μs
75/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Electrical characteristics
Figure 34: Typical NRST VILand VIHvs VDD@ 4 temperatures
Figure 35: Typical NRST pull-up resistance vs VDD@ 4 temperatures
DocID018576 Rev 376/100
0.1 µF
External
reset
circuit
STM8
Filter
R
PU
V
DD
Internal reset
NRST
(optional)
Electrical characteristicsSTM8S003K3 STM8S003F3
Figure 36: Typical NRST pull-up current vs VDD@ 4 temperatures
The reset network shown in the following figure protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below V
IL(NRST)
max. (see
#unique_55/CD662 ), otherwise the reset is not taken into account internally.
For power consumption sensitive applications, the external reset capacitor value can be reduced to limit the charge/discharge current. If NRST signal is used to reset external circuitry, attention must be taken to the charge/discharge time of the external capacitor to fulfill the external devices reset timing conditions. Minimum recommended capacity is 10 nF.
Figure 37: Recommended reset pin protection

SPI serial peripheral interface9.3.8

Unless otherwise specified, the parameters given in the following table are derived from tests performed under ambient temperature, f t
MASTER
= 1/f
MASTER
.
MASTER
Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
frequency and VDDsupply voltage conditions.
77/100DocID018576 Rev 3
Table 42: SPI characteristics
STM8S003K3 STM8S003F3Electrical characteristics
f
1/
SCK
t
c(SCK)
f
1/
SCK
t
c(SCK)
t
r(SCK)
t
f(SCK)
su(NSS)
h(NSS)
t
w(SCKH)
t
w(SCKL)
t
su(MI)
t
su(SI)
t
h(MI)
t
h(SI)
t
a(SO)
t
dis(SO)
(3)
(3)
(3)
(3)
(3)
(3) (4)
(3) (5)
(3)
(3)
(3)
ParameterSymbol
frequency
1/ t
SCK
c(SCK)
fall time
time
time
time
access time
disable time
Conditions
Master modeSPI clock
SPI clock frequencyf
Capacitive load: C = 30 pFSPI clock rise and
Slave modeNSS setup timet
Master modeSCK high and low
Slave modeData output
Slave modeData output
(1)
0
4 x
t
MASTER
70Slave modeNSS hold timet
t
/
SCK
2 - 15
5Master modeData input setup
5Slave mode
7Master modeData input hold
10Slave mode
25
(2)
25
t
/
SCK
2 +15
3 x
t
MASTER
UnitMaxMin
MHz80
MHz7
ns
t
v(SO)
t
v(MO)
t
h(SO)
t
h(MO)
(3)
(3)
(3)
(3)
Data output valid
time
Data output valid
time
Data output hold
time
Data output hold
time
Slave mode
(after enable edge)
Master mode
(after enable edge)
Slave mode
(after enable edge)
Master mode
(after enable edge)
DocID018576 Rev 378/100
27
11
(2)
(2)
65
30
(2)
ai14134
SCK Input
CPHA=0
MOSI
INPUT
MISO
OUT PUT
CPHA=0
MSB O UT
MSB IN
BIT6 OUT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSSinput
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT PUT
CPHA=1
MSB O UT
MSB IN
BIT6 OUT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
NSS input
Electrical characteristicsSTM8S003K3 STM8S003F3
(1)
Parameters are given by selecting 10 MHz I/O output frequency.
(2)
Data characterization in progress.
(3)
Values based on design simulation and/or characterization results, and not tested in
production.
(4)
Min time is for the minimum time to drive the output and the max time is for the maximum
time to validate the data.
(5)
Min time is for the minimum time to invalidate the output and the max time is for the
maximum time to put the data in Hi-Z.
Figure 38: SPI timing diagram - slave mode and CPHA = 0
Figure 39: SPI timing diagram - slave mode and CPHA = 1
1. Measurement points are made at CMOS levels: 0.3 VDD and 0.7 VDD.
79/100DocID018576 Rev 3
ai14136b
SCK intput
CPHA=0
MOSI
OUTUT
MISO
INPUT
CPHA=0
MSBIN
MSB OUT
BIT6 IN
LSB OUT
LSB IN
CPOL=0
CPOL=1
BIT1 OUT
NSSinput
t
c(SCK)
t
w(SCKH)
t
w(SCKL)
t
r(SCK)
t
f(SCK)
t
h(MI)
High
SCK output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
t
su(MI)
t
v(MO)
t
h(MO)
STM8S003K3 STM8S003F3Electrical characteristics
Figure 40: SPI timing diagram - master mode
(1)
w(SCLL)
w(SCLH)
su(SDA)
h(SDA)
t
r(SDA)
t
r(SCL)
t
f(SDA)
t
f(SCL)
h(STA)
su(STA)
1. Measurement points are made at CMOS levels: 0.3 VDD and 0.7 VDD.

I2C interface characteristics9.3.9

Table 43: I2C characteristics
ParameterSymbol
SDA data hold timet
Standard mode I2C
(2)
Min
(3)
0
DocID018576 Rev 380/100
Max
(2)
Fast mode I2C
(2)
Min
Max
1.34.7SCL clock low timet
0.64.0SCL clock high timet
100250SDA setup timet
(4)
0
900
3001000SDA and SCL rise time
300300SDA and SCL fall time
0.64.0START condition hold timet
0.64.7Repeated START condition setup timet
(2)
(3)
(1)
Unit
μs
ns
μs
t
f(SDA)
t
r(SDA)
t
su(SDA)th(SDA)
t
f(SCL)
t
r(SCL)
t
w(SCLL)
t
w(SCLH)
t
h(STA)
t
su(STO)
t
su(STA)tw(STO:STA)
SDA
SCL
4.7k SDA
SCL
100
100
4.7k
I2C bus
START
START
STOP
REPEATED
START
STM8S
V
DD
V
DD
ai17490
Electrical characteristicsSTM8S003K3 STM8S003F3
(2)
(1)
Unit
su(STO)
t
w(STO:STA)
ParameterSymbol
STOP to START condition time
Standard mode I2C
(2)
Min
Max
Fast mode I2C
Min
(2)
(2)
0.64.0STOP condition setup timet
Max
(bus free)
b
(1)
f
MASTER
(2)
Data based on standard I2C protocol requirement, not tested in production
(3)
The maximum hold time of the start condition has only to be met if the interface does not stretch the
, must be at least 8 MHz to achieve max fast I2C speed (400kHz)
low time
(4)
The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge
the undefined region of the falling edge of SCL
Figure 41: Typical application with I2C bus and timing diagram
μs1.34.7
pF400400Capacitive load for each bus lineC
1. Measurement points are made at CMOS levels: 0.3 x VDD and 0.7 x VDD.

10-bit ADC characteristics9.3.10

Subject to general operating conditions for VDD, f
MASTER
, and TAunless otherwise specified.
81/100DocID018576 Rev 3
Table 44: ADC characteristics
STM8S003K3 STM8S003F3Electrical characteristics
UnitMaxTypMinConditionsParameterSymbol
ADC
V
AIN
C
ADC
(1)
S
STAB
t
CONV
Conversion voltage range
Internal sample and hold capacitor
(including sampling time, 10-bit resolution)
(1)
ADC
ADC
ADC
ADC
= 4 MHzMinimum sampling timet
= 6 MHz
= 4 MHzMinimum total conversion time
= 6 MHz
V
14
SS
41VDD=2.95 to 5.5 VADC clock frequencyf
MHz
61VDD=4.5 to 5.5 V
VV
DD
pF3
0.75f
μs
0.5f
μs7Wake-up time from standbyt
μs3.5f
μs2.33f
1/f
ADC
(1)
During the sample time the input capacitance C
(3 pF max) can be charged/discharged
AIN
by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tS.After the end of the sample time tS, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tSdepend on programming.
|ET|
Table 45: ADC accuracy with R
(2)
< 10 kΩ , VDD= 5 V
AIN
= 2 MHzTotal unadjusted error
ADC
= 4 MHz
ADC
(1)
TypConditionsParameterSymbol
UnitMax
3.51.6f
42.2f
LSB
4.52.4f
2.51.1f
|EO|
(2)
= 6 MHz
ADC
= 2 MHzOffset error
ADC
DocID018576 Rev 382/100
Electrical characteristicsSTM8S003K3 STM8S003F3
(1)
TypConditionsParameterSymbol
UnitMax
|EG|
|ED|
|EL|
(2)
(2)
(2)
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
= 4 MHz
= 6 MHz
= 2 MHzGain error
= 4 MHz
= 6 MHz
= 2 MHzDifferential linearity error
= 4 MHz
= 6 MHz
= 2 MHzIntegral linearity error
= 4 MHz
31.5f
31.8f
31.5f
32.1f
42.2f
1.50.7f
1.50.7f
1.50.7f
1.50.6f
20.8f
= 6 MHz
ADC
(1)
Data based on characterization results, not tested in production.
(2)
ADC accuracy vs. negative injection current: Injecting negative current on any of the
20.8f
analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I
INJ(PIN)
and ΣI
INJ(PIN)
in the I/O
port pin characteristics section does not affect the ADC accuracy.
|ET|
|EO|
Table 46: ADC accuracy with R
(2)
(2)
ADC
ADC
ADC
< 10 kΩ R
AIN
= 2 MHzTotal unadjusted error
= 4 MHz
= 2 MHzOffset error
, VDD= 3.3 V
AIN
TypConditionsParameterSymbol
(1)
UnitMax
3.51.6f
41.9f
LSB
2.51f
83/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Electrical characteristics
(1)
TypConditionsParameterSymbol
UnitMax
= 4 MHz
ADC
|EG|
|ED|
|EL|
(1)
Data based on characterization results, not tested in production.
(2)
ADC accuracy vs. negative injection current: Injecting negative current on any of the
(2)
(2)
(2)
ADC
ADC
ADC
ADC
ADC
ADC
= 2 MHzGain error
= 4 MHz
= 2 MHzDifferential linearity error
= 4 MHz
= 2 MHzIntegral linearity error
= 4 MHz
2.51.5f
31.3f
32f
10.7f
1.50.7f
1.50.6f
20.8f
analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I
INJ(PIN)
and ΣI
INJ(PIN)
in I/O port
pin characteristics does not affect the ADC accuracy.
Figure 42: ADC accuracy characteristics
1. Example of an actual transfer curve.
2. The ideal transfer curve
DocID018576 Rev 384/100
STM8
10-bit A/D
conversion
R
AIN
C
AIN
V
AIN
AINx
V
DD
V
T
0.6 V
V
T
0.6 V
I
L
± 1 µA
C
ADC
Electrical characteristicsSTM8S003K3 STM8S003F3
3. End point correlation line
ET= Total unadjusted error: maximum deviation between the actual and the ideal transfer curves.
EO= Offset error: deviation between the first actual transition and the first ideal one.
EG= Gain error: deviation between the last ideal transition and the last actual one.
ED= Differential linearity error: maximum deviation between actual steps and the ideal one.
EL= Integral linearity error: maximum deviation between any actual transition and the end point correlation line.
Figure 43: Typical application with ADC

EMC characteristics9.3.11

Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)9.3.11.1
While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).
FESD: Functional electrostatic discharge (positive and negative) is applied on all pins of
the device until a functional disturbance occurs. This test conforms with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDDand V
SS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709 (EMC design guide for STMicrocontrollers).
Designing hardened software to avoid noise problems9.3.11.2
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.
85/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Electrical characteristics
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring. See application note AN1015 (Software techniques for improving microcontroller EMC performance).
Table 47: EMS data
ConditionsParameterSymbol
Level/ class
V
FESD
Voltage limits to be applied on any I/O pin to induce a functional
VDD= 3.3 V, TA= 25 °C, f
MASTER
= 16 MHz
(HSI clock), conforming to IEC 61000-4-2
2/B
(1)
disturbance
V
EFTB
Fast transient voltage burst limits to be applied through 100 pF on V
DD
and VSSpins to induce a
VDD= 3.3 V, TA= 25 °C ,f
MASTER
= 16 MHz
(HSI clock),conforming to IEC 61000-4-4
4/A
(1)
functional disturbance
(1)
Data obtained with HSI clock configuration, after applying HW recommendations described
in AN2860 (EMC guidelines for STM8S microcontrollers).
Electromagnetic interference (EMI)9.3.11.3
Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE IEC 61967-2 which specifies the board and the loading of each pin.
Table 48: EMI data
Conditions
Max f
ParameterSymbol
General conditions
Monitored frequency band
HSE/fCPU
16 MHz/
8 MHz
Peak level
S
EMI
VDD= 5 V
TA= 25 °C
LQFP32 package
DocID018576 Rev 386/100
0.1 MHz to
30 MHz
30 MHz to
(1)
Unit
16 MHz/
16 MHz
55
dBμV
54
Conditions
Electrical characteristicsSTM8S003K3 STM8S003F3
Max f
ParameterSymbol
General conditions
Monitored frequency band
HSE/fCPU
16 MHz/
8 MHz
Conforming to
130 MHz
(1)
Unit
16 MHz/
16 MHz
SAE IEC 61967-2
130 MHz to
55
1 GHz
SAE EMI level
(1)
Data based on characterisation results, not tested in production.
SAE EMI level
2.52.5
Absolute maximum ratings (electrical sensitivity)9.3.11.4
Based on three different tests (ESD, DLU and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.
Electrostatic discharge (ESD)9.3.11.5
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). One model can be simulated: Human body model. This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.
Table 49: ESD absolute maximum ratings
(1)
UnitMaximum
V
V
ESD(HBM)
V
ESD(CDM)
(Human body model)
ClassConditionsRatingsSymbol
value
TA= 25°C, conforming toElectrostatic discharge
JESD22-A114voltage
4000A
TALQFP32 package =Electrostatic discharge
25°C, conforming tovoltage
1000IV
SD22-C101(Charge device model)
87/100DocID018576 Rev 3
STM8S003K3 STM8S003F3Electrical characteristics
(1)
Data based on characterization results, not tested in production
Static latch-up9.3.11.6
Two complementary static tests are required on 10 parts to assess the latch-up performance:
A supply overvoltage (applied to each power supply pin)
A current injection (applied to each input, output and configurable I/O pin) are performed
on each sample.
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.
Table 50: Electrical sensitivities
ConditionsParameterSymbol
Static latch-up classLU
(1)
Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).
Class
ATA= 25 °C
ATA= 85 °C
(1)
DocID018576 Rev 388/100
5V_ME
L
A1 K
L1
c
A
A2
ccc
C
D D1 D3
E3
E1 E
16
17
24
25
b
32
1
Pin 1 identification
8
9

Package informationSTM8S003K3 STM8S003F3

Package information10
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK®packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

32-pin LQFP package mechanical data10.1

Figure 44: 32-pin low profile quad flat package (7 x 7)
®
®
Table 51: 32-pin low profile quad flat package mechanical data
mmDim.
inches
(1)
MaxTypMinMaxTypMin
0.06301.600A
0.00590.00200.1500.050A1
0.05710.05510.05311.4501.4001.350A2
0.01770.01460.01180.4500.3700.300b
0.00790.00350.2000.090c
0.36220.35430.34659.2009.0008.800D
0.28350.27560.26777.2007.0006.800D1
89/100DocID018576 Rev 3
YA_ME
1
20
CP
c
L
EE1
D
A2
A
k
eb
10
11
A1
L1
aaa
STM8S003K3 STM8S003F3Package information
mmDim.
inches
(1)
0.22055.600D3
0.22055.600E3
0.03150.800e
0.03941.000L1
(1)
Values in inches are converted from mm and rounded to 4 decimal digits
MaxTypMinMaxTypMin
0.36220.35430.34659.2009.0008.800E
0.28350.27560.26777.2007.0006.800E1
0.02950.02360.01770.7500.6000.450L
7.0°3.5°0.0°7.0°3.5°0.0°k
0.00390.100ccc

20-pin TSSOP package mechanical data10.2

Figure 45: 20-pin, 4.40 mm body, 0.65 mm pitch
DocID018576 Rev 390/100
Package informationSTM8S003K3 STM8S003F3
Table 52: 20-pin, 4.40 mm body, 0.65 mm pitch mechanical data
mmDim.
inches
(1)
MaxTypMinMaxTypMin
0.04721.200A
0.00590.00200.1500.050A1
0.04130.03940.03151.0501.0000.800A2
0.01180.00750.3000.190b
0.00790.00350.2000.090c
0.25980.25590.25206.6006.5006.400D
0.25980.25200.24416.6006.4006.200E
0.17720.17320.16934.5004.4004.300E1
0.02560.650e
0.02950.02360.01770.7500.6000.450L
0.03941.000L1
8.0°0.0°8.0°0.0°k
(1)
Values in inches are converted from mm and rounded to 4 decimal digits
0.00390.100aaa
91/100DocID018576 Rev 3
103_A0A5_ME
11
15
1620
1
5
D
e
b
e
E
A1
A
ddd
L2
10
L1
A3
L3
L4
D
E
TOP VIEW
SIDE VIEW
BOTTOMVIEW
Pin 1
STM8S003K3 STM8S003F3Package information

20-lead UFQFPN package mechanical data10.3

Figure 46: 20-lead ultra thin fine pitch quad flat no-lead package outline (3x3)
1. Drawing is not to scale.
Table 53: 20-lead ultra thin fine pitch quad flat no-lead package (3x3) mechanical data
mmDim.
inches
(1)
MaxTypMinMaxTypMin
0.11813.000D
0.11813.000E
0.02360.02170.01970.6000.5500.500A
0.00200.00080.00000.0500.0200.000A1
0.00600.152A3
0.01970.500e
0.02360.02170.01970.6000.5500.500L1
0.01570.01380.01180.4000.3500.300L2
0.00590.150L3
0.00790.200L4
DocID018576 Rev 392/100
0.01180.00980.00710.3000.2500.180b
Package informationSTM8S003K3 STM8S003F3
mmDim.
inches
(1)
0.00200.050ddd
(1)
Values in inches are converted from mm and rounded to 4 decimal digits.
MaxTypMinMaxTypMin
93/100DocID018576 Rev 3

STM8S003K3 STM8S003F3Thermal characteristics

Thermal characteristics11
The maximum chip junction temperature (T
Operating conditions.
The maximum chip-junction temperature, T the following equation:
T
= T
Jmax
Where:
T
Amax
ΘJAis the package junction-to-ambient thermal resistance in °C/W
P
Dmax
P
INTmax
power.
P
I/Omax
Where: P VOH/IOHof the I/Os at low and high level in the application.
Symbol
Θ
JA
+ (P
Amax
is the maximum ambient temperature in °C
is the sum of P
is the product of IDDandVDD, expressed in Watts. This is the maximum chip internal
represents the maximum power dissipation on output pins
I/Omax
TSSOP20 - 4.4 mm
x ΘJA)
Dmax
and P
INTmax
=Σ (VOL*IOL) + Σ((VDD-VOH)*IOH), taking into account the actual VOL/I
Table 54: Thermal characteristics
(1)
I/Omax
) must never exceed the values given in
J max
, in degrees Celsius, may be calculated using
Jmax
(PDmax = P
INTmax
+ P
I/Omax
)
OL and
UnitValueParameter
°C/W84Thermal resistance junction-ambient
JA
Θ
JA
(1)
Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural
convection environment.
Thermal resistance junction-ambientΘ
UFQFPN20 - 3 x 3 mm
LQFP32 - 7 x 7 mm
90
60Thermal resistance junction-ambient

Reference document11.1

JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org.

Selecting the product temperature range11.2

When ordering the microcontroller, the temperature range is specified in the order code.
DocID018576 Rev 394/100
Thermal characteristicsSTM8S003K3 STM8S003F3
The following example shows how to calculate the temperature range needed for a given application.
Assuming the following application conditions:
Maximum ambient temperature T
I
= 8 mA, VDD= 5 V
DDmax
Maximum 20 I/Os used at the same time in output at low level with
IOL= 8 mA, VOL= 0.4 V
= 75 °C (measured according to JESD51-2)
Amax
P
INTmax =
Amax P
Dmax =
Thus: P
T
Jmax
T
Jmax
This is within the range of the suffix 6 version parts (-40 < TJ< 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 6.
8 mA x 5 V = 400 mW
400
Dmax
for LQFP32 can be calculated as follows, using the thermal resistance ΘJA:
= 75 °C + (60 °C/W x 464 mW) = 75 °C + 27.8 °C = 102.8 °C
64 mW
mW +
= 464 mW
95/100DocID018576 Rev 3
Pin count K = 32 pins F = 20 pins
Example:
Sub-family type 00x = Value line 003 sub-family
Family type S = Standard
Temperature range 6 = -40 °C to 85 °C
Program memory size 3 = 8 Kbytes
Packing No character = Tray or tube TR = Tape and reel
Package pitch Blank = 0.5 or 0.65 mm(
1)
C = 0.8 mm
(2)
STM8 S 003 K 3 T 6 TR
Product class STM8 microcontroller
Package type 1
P = TSSOP
T = LQFP
U = UFQFPN

STM8S003K3 STM8S003F3Ordering information

Ordering information12
Figure 47: STM8S003x value line ordering information scheme
1. TSSOP and UFQFPN package.
2. LQFP package.
For a list of available options (e.g. package, packing) and orderable part numbers or for further information on any aspect of this device, please go to www.st.com or contact the ST Sales Office nearest to you.
DocID018576 Rev 396/100

STM8 development toolsSTM8S003K3 STM8S003F3

STM8 development tools13
Development tools for the STM8 microcontrollers include the full-featured STice emulation system supported by a complete software tool package including C compiler, assembler and integrated development environment with high-level language debugger. In addition, the STM8 is to be supported by a complete range of tools including starter kits, evaluation boards and a low-cost in-circuit debugger/programmer.

Emulation and in-circuit debugging tools13.1

The STice emulation system offers a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8 application development is supported by a low-cost in-circuit debugger/programmer.
The STice is the fourth generation of full featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including profiling and coverage to help detect and eliminate bottlenecks in application execution and dead code when fine tuning an application.
In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller.
For improved cost effectiveness, STice is based on a modular design that allows you to order exactly what you need to meet your development requirements and to adapt your emulation system to support existing and future ST microcontrollers.
STice key features
Occurrence and time profiling and code coverage (new features)
Advanced breakpoints with up to 4 levels of conditions
Data breakpoints
Program and data trace recording up to 128 KB records
Read/write on the fly of memory during emulation
In-circuit debugging/programming via SWIM protocol
8-bit probe analyzer
1 input and 2 output triggers
Power supply follower managing application voltages between 1.62 to 5.5 V
Modularity that allows you to specify the components you need to meet your development
requirements and adapt to future requirements
Supported by free software tools that include integrated development environment (IDE),
programming software interface and assembler for STM8.

Software tools13.2

STM8 development tools are supported by a complete, free software package from STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic and Raisonance C compilers for STM8, which are available in a free version that outputs up to 16 Kbytes of code.
97/100DocID018576 Rev 3
STM8S003K3 STM8S003F3STM8 development tools

STM8 toolset13.2.1

STM8 toolset with STVD integrated development environment and STVP programming software is available for free download at www.st.com/mcu. This package includes:
ST Visual Develop – Full-featured integrated development environment from ST, featuring
Seamless integration of C and ASM toolsets
Full-featured debugger
Project management
Syntax highlighting editor
Integrated programming interface
Support of advanced emulation features for STice such as code profiling and coverage
ST Visual Programmer (STVP) – Easy-to-use, unlimited graphical interface allowing read, write and verify of your STM8 microcontroller’s Flash program memory, data EEPROM and option bytes. STVP also offers project mode for saving programming configurations and automating programming sequences.

C and assembly toolchains13.2.2

Control of C and assembly toolchains is seamlessly integrated into the STVD integrated development environment, making it possible to configure and control the building of your application directly from an easy-to-use graphical interface.
Available toolchains include:
Cosmic C compiler for STM8 – Available in a free version that outputs up to 16 Kbytes
of code. For more information, see www.cosmic-software.com.
Raisonance C compiler for STM8 – Available in a free version that outputs up to
16 Kbytes of code. For more information, see www.raisonance.com.
STM8 assembler linker – Free assembly toolchain included in the STVD toolset, which
allows you to assemble and link your application source code.

Programming tools13.3

During the development cycle, STice provides in-circuit programming of the STM8 Flash microcontroller on your application board via the SWIM protocol. Additional tools are to include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for programming your STM8.
For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.
DocID018576 Rev 398/100

Revision historySTM8S003K3 STM8S003F3

Revision history14
Table 55: Document revision history
ChangesRevisionDate
Initial revision.112-Jul-2011
209-Jan-2012
Added NRWand t
for data EEPROM in Table 36:
RET
Flash program memory and data EEPROM.
Updated RPUin Table 41: NRST pin characteristics and
Table 37: I/O static characteristics.
Updated notes related to V
in Table 18: General
CAP
operating conditions.
312-Jun-2012
Updated temperature condition for factory calibrated ACC
in Table 33: HSI oscillator characteristics.
HSI
Changed SCK input to SCK output in Figure 40: SPI
timing diagram - master mode(1)
Modified Figure 46: 20-lead ultra thin fine pitch quad flat
no-lead package outline (3x3) to add package top view.
99/100DocID018576 Rev 3
STM8S003K3 STM8S003F3
Please Read Carefully
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at anytime, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately voidany warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
©
2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel
- Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom ­United States of America
www.st.com
DocID018576 Rev 3100/100
Loading...