ST STM8L052C6 User Manual

STM8L052C6
LQFP48
Value Line, 8-bit ultralow power MCU, 32-KB Flash,
256-byte data EEPROM, RTC, LCD, timers, USART, I2C, SPI, ADC
Datasheet production data
Features
– Operating power supply: 1.8 V to 3.6 V – Temperature range: -40 °C to 85 °C
Low power features
– 5 low power modes: Wait, Low power run
(5.1 µA), Low power wait (3 µA), Active-halt
with full RTC (1.3 µA), Halt (350 nA) – Consumption: 195 µA/MHz + 440 µA – Ultra-low leakage per I/0: 50 nA – Fast wakeup from Halt: 4.7 µs
Advanced STM8 core
– Harvard architecture and 3-stage pipeline – Max freq. 16 MHz, 16 CISC MIPS peak – Up to 40 external interrupt sources
Reset and supply management
– Low power, ultra-safe BOR reset with 5
selectable thresholds – Ultra low power POR/PDR – Programmable voltage detector (PVD)
Clock management
– 32 kHz and 1 to 16 MHz crystal oscillator – Internal 16 MHz factory-trimmed RC – Internal 38 kHz low consumption RC – Clock security system
Low power RTC
– BCD calendar with alarm interrupt – Auto-wakeup from Halt w/ periodic interrupt
LCD: up to 4x28 segments w/ step-up
converter
Memories
– 32 KB Flash program memory and
256 bytes data EEPROM with ECC, RWW – Flexible write and read protection modes – 2 Kbytes of RAM
DMA
– 4 channels supporting ADC, SPI, I2C,
USART, timers
– 1 channel for memory-to-memory
12-bit ADC up to 1 Msps/25 channels
– Internal reference voltage
Timers
– Two 16-bit timers with 2 channels (used as
IC, OC, PWM), quadrature encoder
– One 16-bit advanced control timer with 3
channels, supporting motor control – One 8-bit timer with 7-bit prescaler – 2 watchdogs: 1 Window, 1 Independent – Beeper timer with 1, 2 or 4 kHz frequencies
Communication interfaces
– Synchronous serial interface (SPI)
2
–Fast I
C 400 kHz SMBus and PMBus
– USART (ISO 7816 interface and IrDA)
Up to 41 I/Os, all mappable on interrupt vectors
Development support
– Fast on-chip programming and non-
intrusive debugging with SWIM – Bootloader using USART
June 2012 Doc ID 023331 Rev 1 1/102
This is information on a product in full production.
www.st.com
1
Contents STM8L052C6
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Ultra low power continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Advanced STM8 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Low power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 LCD (Liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.9 Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10 System configuration controller and routing interface . . . . . . . . . . . . . . . 19
3.11 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11.1 TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.2 16-bit general purpose timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.3 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12.1 Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12.2 Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.13 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.1 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.2 I²C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2/102 Doc ID 023331 Rev 1
STM8L052C6 Contents
3.14.3 USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.15 Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 System configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 56
8.3.3 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.3.4 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.3.6 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.3.7 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.3.8 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.3.9 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.3.10 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.3.11 12-bit ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.4 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Doc ID 023331 Rev 1 3/102
Contents STM8L052C6
9 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.1 ECOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.2.1 48-pin low profile quad flat 7x7mm package (LQFP48) . . . . . . . . . . . . . 98
10 Device ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4/102 Doc ID 023331 Rev 1
STM8L052C6 List of tables
List of tables
Table 1. Medium density value line STM8L05xxx low power device features and
peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 3. Legend/abbreviation for Table 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 4. Medium density value line STM8L05xxx pin description . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 5. Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 6. I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 7. General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 8. CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 9. Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 10. Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 11. Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 12. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 13. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 14. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 15. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 16. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 17. Total current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 18. Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 19. Total current consumption and timing in Low power run mode at VDD = 1.8 V to
3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 20. Total current consumption in Low power wait mode at VDD = 1.8 V to 3.6 V . . . . . . . . . . 63
Table 21. Total current consumption and timing in Active-halt mode at VDD = 1.8 V to 3.6 V. . . . . . 64
Table 22. Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. . 65
Table 23. Total current consumption and timing in Halt mode at VDD = 1.8 to 3.6 V . . . . . . . . . . . . 65
Table 24. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 25. Current consumption under external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 26. HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 27. LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 28. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 29. LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 30. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 31. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 32. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 33. Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 34. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 35. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 36. Output driving current (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 37. Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 38. Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 77
Table 39. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 40. SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 41. I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 42. LCD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 43. Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 44. ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 45. ADC1 accuracy with VDDA = 3.3 V to 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 46. ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Doc ID 023331 Rev 1 5/102
List of tables STM8L052C6
Table 47. ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 48. R
max for f
AIN
= 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
ADC
Table 49. EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 50. EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 51. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 52. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 53. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 54. LQFP48 48-pin low profile quad flat package, mechanical data. . . . . . . . . . . . . . . . . . . . . 98
Table 55. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6/102 Doc ID 023331 Rev 1
STM8L052C6 List of figures
List of figures
Figure 1. Medium density value line STM8L05xxx device block diagram . . . . . . . . . . . . . . . . . . . . 12
Figure 2. Medium density value line STM8L05xxx clock tree diagram . . . . . . . . . . . . . . . . . . . . . . 17
Figure 3. STM8L052C6 48-pin LQFP48 package pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 5. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 6. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 7. POR/BOR thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 8. Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 9. Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 10. Typ. IDD(LPR) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 11. Typ. IDD(LPW) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 12. HSE oscillator circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 13. LSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 14. Typical HSI frequency vs V
Figure 15. Typical LSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 16. Typical VIL and VIH vs VDD (high sink I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 17. Typical VIL and VIH vs VDD (true open drain I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 18. Typical pull-up resistance R Figure 19. Typical pull-up current I
Figure 20. Typ. VOL @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 21. Typ. VOL @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 22. Typ. VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 23. Typ. VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 24. Typ. VDD - VOH @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 25. Typ. VDD - VOH @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 26. Typical NRST pull-up resistance R Figure 27. Typical NRST pull-up current I
Figure 28. Recommended NRST pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 29. SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 30. SPI1 timing diagram - slave mode and CPHA=1 Figure 31. SPI1 timing diagram - master mode
Figure 32. Typical application with I2C bus and timing diagram 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 33. ADC1 accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 34. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 35. Maximum dynamic current consumption on V
conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 36. Power supply and reference decoupling (V
Figure 37. Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . . 93
Figure 38. LQFP48 48-pin low profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 39. LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 40. Medium density value line STM8L05xxx ordering information scheme . . . . . . . . . . . . . . 100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
DD
vs VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
PU
vs VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
pu
vs VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
PU
vs VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
pu
(1)
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
REF+
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
supply pin during ADC
REF+
not connected to V
). . . . . . . . . . . . . . 93
DDA
Doc ID 023331 Rev 1 7/102
Introduction STM8L052C6

1 Introduction

This document describes the features, pinout, mechanical data and ordering information of
the medium density value line STM8L052C6 microcontroller with 32-Kbyte Flash memory
density. For further details on the whole STMicroelectronics medium density family please
refer to Section 2.2: Ultra low power continuum.
For detailed information on device operation and registers, refer to the reference manual
(RM0031).
For information on to the Flash program memory and data EEPROM, refer to the
programming manual (PM0054).
For information on the debug module and SWIM (single wire interface module), refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).
For information on the STM8 core, refer to the STM8 CPU programming manual (PM0044).
Medium density value line devices provide the following benefits:
Integrated system
32 Kbytes of medium density embedded Flash program memory – 256 bytes of data EEPROM – 2 Kbytes of RAM – Internal high speed and low-power low speed RC – Embedded reset
Ultra low power consumption
195 µA/MHZ + 440 µA (consumption) – 0.9 µA with LSI in Active-halt mode – Clock gated system and optimized power management – Capability to execute from RAM for Low power wait mode and low power run mode
Advanced features
Up to 16 MIPS at 16 MHz CPU clock frequency – Direct memory access (DMA) for memory-to-memory or peripheral-to-memory
access
Short development cycles
Application scalability across a common family product architecture with
compatible pinout, memory map and modular peripherals
Wide choice of development tools
Refer to Table 1: Medium density value line STM8L05xxx low power device features and
peripheral counts and Section 3: Functional overview for an overview of the complete range
of peripherals proposed in this family.
Figure 1 shows the block diagram of the medium density value line STM8L05xxx family.
8/102 Doc ID 023331 Rev 1
STM8L052C6 Description

2 Description

The medium density value line STM8L05xxx devices are members of the STM8L ultra low
power 8-bit family.
The value line STM8L05xxx ultra low power family features the enhanced STM8 CPU core
providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the
advantages of a CISC architecture with improved code density, a 24-bit linear addressing
space and an optimized architecture for low power operations.
The family includes an integrated debug module with a hardware interface (SWIM) which
allows non-intrusive In-application debugging and ultra-fast Flash programming.
Medium density value line STM8L05xxx microcontrollers feature embedded data EEPROM
and low-power, low-voltage, single-supply program Flash memory.
All devices offer 12-bit ADC, real-time clock, 16-bit timers, one 8-bit timer as well as
standard communication interface such as SPI, I2C, USART and 4x28-segment LCD. The
4x 28-segment LCD is available on the medium density value line STM8L05xxx.
The STM8L05xxx family operates from 1.8 V to 3.6 V and is available in the
temperature range.
The modular design of the peripheral set allows the same peripherals to be found in different
ST microcontroller families including 32-bit families. This makes any transition to a different
family very easy, and simplified even more by the use of a common set of development
tools.
All value line STM8L ultra low power products are based on the same architecture with the
same memory mapping and a coherent pinout.
-40 to +85 °C
Doc ID 023331 Rev 1 9/102
Description STM8L052C6

2.1 Device overview

Table 1. Medium density value line STM8L05xxx low power device features and
peripheral counts
Features STM8L052C6
Flash (Kbytes) 32
Data EEPROM (bytes) 256
RAM (Kbytes) 2
LCD 4x28
Basic
1
(8-bit)
Timers
General purpose
Advanced control
2
(16-bit)
1
(16-bit)
SPI 1 Communication interfaces
I2C 1
USART 1
GPIOs 41
12-bit synchronized ADC (number of channels)
(1)
1
(25)
RTC, window watchdog, independent watchdog,
Others
16-MHz and 38-kHz internal RC,
1- to 16-MHz and 32-kHz external oscillator
CPU frequency 16 MHz
Operating voltage 1.8 V to 3.6 V
Operating temperature -40 to +85 °C
Package LQFP48
1. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as general purpose output only (PA1).
10/102 Doc ID 023331 Rev 1
STM8L052C6 Description

2.2 Ultra low power continuum

The ultra low power value line STM8L05xxx and STM8L15xxx are fully pin-to-pin, software and feature compatible. Besides the full compatibility within the STM8L family, the devices are part of STMicroelectronics microcontrollers ultra low power strategy which also includes STM8L101xx and STM32L15xxx. The STM8L and STM32L families allow a continuum of performance, peripherals, system architecture, and features.
They are all based on STMicroelectronics 0.13 µm ultra-low leakage process.
Note: 1 The STM8L05xxx is pin-to-pin compatible with STM8L101xx devices.
2 The STM32L family is pin-to-pin compatible with the general purpose STM32F family.
Please refer to STM32L15x documentation for more information on these devices.
Performance
All families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM Cortex™-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios.
This allows the ultra low power performance to range from 5 up to 33.3 DMIPs.
Shared peripherals
STM8L05x, STM8L15x and STM32L15xx share identical peripherals which ensure a very easy migration from one family to another:
Analog peripheral: ADC1
Digital peripherals: RTC and some communication interfaces
Common system strategy
To offer flexibility and optimize performance, the STM8L and STM32L devices use a common architecture:
Same power supply range from 1.8 to 3.6 V
Architecture optimized to reach ultra-low consumption both in low power modes and
Run mode
Fast startup strategy from low power modes
Flexible system clock
Ultra-safe reset: same reset strategy for both STM8L and STM32L including power-on
reset, power-down reset, brownout reset and programmable voltage detector
Features
ST ultra low power continuum also lies in feature compatibility:
More than 10 packages with pin count from 20 to 100 pins and size down to 3 x 3 mm
Memory density ranging from 4 to 128 Kbytes
Doc ID 023331 Rev 1 11/102
Functional overview STM8L052C6
16 MHz internal RC
Clock
Clocks
Address, control and data buses
Debug module
SPI1
32 Kbytes
Interrupt controller
2 Kbytes RAM
to core and peripherals
IWDG
(38 kHz clock)
(SWIM)
Port A
Port B
Port C
I²C1
USART1
Power
VOLT. REG.
Port F
1-16 MHz oscillator
32 kHz oscillator
38 kHz internal RC
LCD driver
4x28
WWDG
STM8 Core
controller
and
CSS
256 bytes
Port D
Port E
Beeper
RTC
memoryprogram
data EEPROM
@V
DD
V
DD18
V
DD1
=1.8 V
V
SS1
SWIM
SCL, SDA,
MOSI, MISO,
SCK, NSS
RX, TX, CK
ADC1_INx
V
DDA
V
SSA
SMB
@V
DDA/VSSA
12-bit ADC1
V
REF+
V
REF-
3.6 V
NRST
PA[7:0]
PB[7:0]
PC[7:0]
PD[7:0]
PE[7:0]
PF0
BEEP
ALARM, CALIB
SEGx, COMx
POR/PDR
OSC_IN,
OSC_OUT
OSC32_IN,
OSC32_OUT
to
BOR
PVD
PVD_IN
RESET
DMA1
8-bit Timer 4
16-bit Timer 3
16-bit Timer 2
16-bit Timer 1
(4 channels)
2 channels
2 channels
3 channels
V
LCD
= 2.5 V
3.6 V
to
LCD booster
Internal reference
voltage
VREFINT out
Infrared interface
IR_TIM

3 Functional overview

Figure 1. Medium density value line STM8L05xxx device block diagram

1. Legend:
12/102 Doc ID 023331 Rev 1
ADC: Analog-to-digital converter BOR: Brownout reset DMA: Direct memory access I²C: Inter-integrated circuit multimaster interface LCD: Liquid crystal display POR/PDR: Power on reset / power down reset RTC: Real-time clock SPI: Serial peripheral interface SWIM: Single wire interface module USART: Universal synchronous asynchronous receiver transmitter WWDG: Window watchdog IWDG: independent watchdog
STM8L052C6 Functional overview

3.1 Low power modes

The medium density value line STM8L05xxx devices support five low power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:
Wait mode: The CPU clock is stopped, but selected peripherals keep running. An
internal or external interrupt, event or a Reset can be used to exit the microcontroller from Wait mode (WFE or WFI mode).
Low power run mode: The CPU and the selected peripherals are running. Execution
is done from RAM with a low speed oscillator (LSI or LSE). Flash memory and data EEPROM are stopped and the voltage regulator is configured in ultra low power mode. The microcontroller enters Low power run mode by software and can exit from this mode by software or by a reset. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode.
Low power wait mode: This mode is entered when executing a Wait for event in Low
power run mode. It is similar to Low power run mode except that the CPU clock is stopped. The wakeup from this mode is triggered by a Reset or by an internal or external event (peripheral event generated by the timers, serial interfaces, DMA controller (DMA1) and I/O ports). When the wakeup is triggered by an event, the system goes back to Low power run mode. All interrupts must be masked. They cannot be used to exit the microcontroller from this mode.
Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup
can be triggered by RTC interrupts, external interrupts or reset.
Halt mode: CPU and peripheral clocks are stopped, the device remains powered on.
The RAM content is preserved. The wakeup is triggered by an external interrupt or reset. A few peripherals have also a wakeup from Halt capability. Switching off the internal reference voltage reduces power consumption. Through software configuration it is also possible to wake up the device without waiting for the internal reference voltage wakeup time to have a fast wakeup time of 5 µs.
Doc ID 023331 Rev 1 13/102
Functional overview STM8L052C6

3.2 Central processing unit STM8

3.2.1 Advanced STM8 Core

The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline.
It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions.
Architecture and registers
Harvard architecture
3-stage pipeline
32-bit wide program memory bus - single cycle fetching most instructions
X and Y 16-bit index registers - enabling indexed addressing modes with or without
offset and read-modify-write type data manipulations
8-bit accumulator
24-bit program counter - 16-Mbyte linear memory space
16-bit stack pointer - access to a 64-Kbyte level stack
8-bit condition code register - 7 condition flags for the result of the last instruction
Addressing
20 addressing modes
Indexed indirect addressing mode for lookup tables located anywhere in the address
space
Stack pointer relative addressing mode for local variables and parameter passing
Instruction set
80 instructions with 2-byte average instruction size
Standard data movement and logic/arithmetic functions
8-bit by 8-bit multiplication
16-bit by 8-bit and 16-bit by 16-bit division
Bit manipulation
Data transfer between stack and accumulator (push/pop) with direct stack access
Data transfer using the X and Y registers or direct memory-to-memory transfers

3.2.2 Interrupt controller

The medium density value line STM8L05xxx devices feature a nested vectored interrupt controller:
Nested interrupts with 3 software priority levels
32 interrupt vectors with hardware priority
Up to 40 external interrupt sources on 11 vectors
Trap and reset interrupts
14/102 Doc ID 023331 Rev 1
STM8L052C6 Functional overview

3.3 Reset and supply management

3.3.1 Power supply scheme

The device requires a 1.8 V to 3.6 V operating supply voltage (VDD). The external power supply pins must be connected as follows:
V
V
V
V

3.3.2 Power supply supervisor

The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR), coupled with a brownout reset (BOR) circuitry . At power-on, BOR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently.
SS1
; V
= 1.8 to 3.6 V: external power supply for I/Os and for the internal regulator.
DD1
Provided externally through V
SSA ; VDDA
V
SSA
SS2
connected to V
REF+
externally through V
= 1.8 to 3.6 V: external power supplies for analog peripherals. V
must be connected to V
; V
= 1.8 to 3.6 V: external power supplies for I/Os. V
; V
DD2
REF-
and V
DD1
SS1
(for ADC1): external reference voltage for ADC1. Must be provided
and V
REF+
pins, the corresponding ground pin is V
DD1
DD1
and V
, respectively.
SS1
DD2
, respectively.
pin.
REF-
and V
SS1
must be
SS2
.
DDA
and
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Halt mode, it is possible to automatically switch off the internal reference voltage (and consequently the BOR) in Halt mode. The device remains under reset when V
DD
for any external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the V
DD/VDDA
power supply and compares it to the V levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V V
DD/VDDA
is higher than the V a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The medium density value line STM8L05xxx embeds an internal voltage regulator for generating the 1.8 V power supply for the core and peripherals.
This regulator has two different modes:
Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event
(WFE) modes
Low power voltage regulator mode (LPVR) for Halt, Active-halt, Low power run and Low
power wait modes
When entering Halt or Active-halt modes, the system automatically switches from the MVR to the LPVR in order to reduce current consumption.
is below a specified threshold, V
threshold. This PVD offers 7 different
PVD
DD/VDDA
threshold. The interrupt service routine can then generate
PVD
drops below the V
POR/PDR
PVD
or V
, without the need
BOR
threshold and/or when
Doc ID 023331 Rev 1 15/102
Functional overview STM8L052C6

3.4 Clock management

The clock controller distributes the system clock (SYSCLK) coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness.
Features
Clock prescaler: To get the best compromise between speed and current
consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
Safe clock switching: Clock sources can be changed safely on the fly in run mode
through a configuration register.
Clock management: To reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
System clock sources: 4 different clock sources can be used to drive the system
clock:
1-16 MHz High speed external crystal (HSE)
16 MHz High speed internal RC oscillator (HSI)
32.768 kHz Low speed external crystal (LSE)
38 kHz Low speed internal RC (LSI)
RTC and LCD clock sources: The above four sources can be chosen to clock the
RTC and the LCD, whatever the system clock.
Startup clock: After reset, the microcontroller restarts by default with an internal
2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
Clock security system (CSS): This feature can be enabled by software. If a HSE clock
failure occurs, the system clock is automatically switched to HSI.
Configurable main clock output (CCO): This outputs an external clock for use by the
application.
16/102 Doc ID 023331 Rev 1
STM8L052C6 Functional overview
HSE OSC
1-16 MHz
HSI RC
16 MHz
LSI RC 38 kH z
LSE OSC
32 768 k
H
z
HSI
LSI
RTC
prescaler
/1;2;4;8;16;32;64
PCLK
to peripherals
RTCCLK/2
to LCD
to IWDG
SYSCLK
HSE
(1)
(2)
LSI LSE
OSC_OUT
OSC32_OUT
OSC_IN
OSC32_IN
clock output
CCO
prescaler
/1;2;4;8;16;32;64
HSI LSI HSE LSE
CCO
to core and
memory
SYSCLK Presc aler
/1;2;4;8;16;32;64;128
IWDGCLK
RTCSEL[3:0]
LSE
(2)
CLKBEEPSEL[1:0]
to BEEP
BEEPCLK
CSS
configurable
.
/ 2
Peripheral Clock enable (15 bits)
to RTC
RTCCLK
clock enable (1 bit)
LCDCLK
to LCD
SYSCLK
Halt
clock enable (1 bit)
LCD peripheral
RTCCLK
LCD peripheral
(1)
(2)

Figure 2. Medium density value line STM8L05xxx clock tree diagram

1. The HSE clock source can be either an external crystal/ceramic resonator or an external source (HSE
bypass). Refer to Section HSE clock in the STM8L15x and STM8L16x reference manual (RM0031).
2. The LSE clock source can be either an external crystal/ceramic resonator or a external source (LSE
bypass). Refer to Section LSE clock in the STM8L15x and STM8L16x reference manual (RM0031).

3.5 Low power real-time clock

The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter.
Six byte locations contain the second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day months are made automatically.
It provides a programmable alarm and programmable periodic interrupts with wakeup from Halt capability.
Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 µs) is
from min. 122 µs to max. 3.9 s. With a different resolution, the wakeup time can reach 36 hours.
Periodic alarms based on the calendar can also be generated from every second to
every year.
Doc ID 023331 Rev 1 17/102
Functional overview STM8L052C6

3.6 LCD (Liquid crystal display)

The LCD is only available on STM8L052xx devices.
The liquid crystal display drives up to 4 common terminals and up to 28 segment
terminals to drive up to 112 pixels. Internal step-up converter to guarantee contrast control whatever V
Static 1/2, 1/3, 1/4 duty supported.
Static 1/2, 1/3, bias supported.
Phase inversion to reduce power consumption and EMI.
Up to 4 pixels which can be programmed to blink.
The LCD controller can operate in Halt mode.
DD
.
Note: Unnecessary segments and common pins can be used as general I/O pins.

3.7 Memories

The medium density value line STM8L05xxx devices have the following main features:
2 Kbytes of RAM
The non-volatile memory is divided into three arrays:
32 Kbytes of medium density embedded Flash program memory
256 bytes of data EEPROM
–Option bytes
The EEPROM embeds the error correction code (ECC) feature. It supports the read-while­write (RWW): it is possible to execute the code from the program matrix while programming/erasing the data matrix.
The option byte protects part of the Flash program memory from write and readout piracy.

3.8 DMA

A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and peripherals-from/to-memory transfer capability. The 4 channels are shared between the following IPs with DMA capability: ADC1, I2C1, SPI1, USART1and the four timers.
18/102 Doc ID 023331 Rev 1
STM8L052C6 Functional overview

3.9 Analog-to-digital converter

12-bit analog-to-digital converter (ADC1) with 25 channels (including 1 fast channel)
and internal reference voltage
Conversion time down to 1 µs with f
Programmable resolution
Programmable sampling time
Single and continuous mode of conversion
Scan capability: automatic conversion performed on a selected group of analog inputs
Analog watchdog
Triggered by timer
SYSCLK
= 16 MHz
Note: ADC1 can be served by DMA1.

3.10 System configuration controller and routing interface

The system configuration controller provides the capability to remap some alternate functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.
The highly flexible routing interface allows application software to control the routing of different I/Os to the TIM1 timer input captures. It also controls the routing of internal analog signals to ADC1 and the internal reference voltage V
REFINT
.

3.11 Timers

The medium density value line STM8L05xxx devices contain one advanced control timer (TIM1), two 16-bit general purpose timers (TIM2 and TIM3) and one 8-bit basic timer (TIM4).
All the timers can be served by DMA1.
Ta bl e 2 compares the features of the advanced control, general-purpose and basic timers.

Table 2. Timer feature comparison

Timer
TIM1
TIM2
TIM3
TIM4 8-bit up
Counter
resolution
16-bit up/down
Counter
type
Prescaler factor
Any integer
from 1 to 65536
Any power of 2
from 1 to 128
Any power of 2
from 1 to 32768
DMA1
request
generation
Ye s
Capture/compare
channels
3 + 1 3
2
0
Complementary
outputs
None
Doc ID 023331 Rev 1 19/102
Functional overview STM8L052C6

3.11.1 TIM1 - 16-bit advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver.
16-bit up, down and up/down autoreload counter with 16-bit prescaler
3 independent capture/compare channels (CAPCOM) configurable as input capture,
output compare, PWM generation (edge and center aligned mode) and single pulse mode output
1 additional capture/compare channel which is not connected to an external I/O
Synchronization module to control the timer with external signals
Break input to force timer outputs into a defined state
3 complementary outputs with adjustable dead time
Encoder mode
Interrupt capability on various events (capture, compare, overflow, break, trigger)

3.11.2 16-bit general purpose timers

16-bit autoreload (AR) up/down-counter
7-bit prescaler adjustable to fixed power of 2 ratios (1…128)
2 individually configurable capture/compare channels
PWM mode
Interrupt capability on various events (capture, compare, overflow, break, trigger)
Synchronization with other timers or external signals (external clock, reset, trigger and
enable)

3.11.3 8-bit basic timer

The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable prescaler. It can be used for timebase generation with interrupt generation on timer overflow.

3.12 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications.

3.12.1 Window watchdog timer

The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

3.12.2 Independent watchdog timer

The independent watchdog peripheral (IWDG) can be used to resolve processor malfunctions due to hardware or software failures.
It is clocked by the internal LSI RC clock source, and thus stays active even in case of a CPU clock failure.
20/102 Doc ID 023331 Rev 1
STM8L052C6 Functional overview

3.13 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

3.14 Communication interfaces

3.14.1 SPI

The serial peripheral interface (SPI1) provides half/ full duplex synchronous serial communication with external devices.
Maximum speed: 8 Mbit/s (f
Full duplex synchronous transfers
Simplex synchronous transfers on 2 lines with a possible bidirectional data line
Master or slave operation - selectable by hardware or software
Hardware CRC calculation
Slave/master selection input pin
SYSCLK
Note: SPI1 can be served by the DMA1 Controller.
/2) both for master and slave

3.14.2 I²C

The I2C bus interface (I2C1) provides multi-master capability, and controls all I²C bus­specific sequencing, protocol, arbitration and timing.
Master, slave and multi-master capability
Standard mode up to 100 kHz and fast speed modes up to 400 kHz
7-bit and 10-bit addressing modes
SMBus 2.0 and PMBus support
Hardware CRC calculation
Note: I
2
C1 can be served by the DMA1 Controller.

3.14.3 USART

The USART interface (USART1) allows full duplex, asynchronous communications with external devices requiring an industry standard NRZ asynchronous serial data format. It offers a very wide range of baud rates.
1 Mbit/s full duplex SCI
SPI1 emulation
High precision baud rate generator
Smartcard emulation
IrDA SIR encoder decoder
Single wire half duplex mode
Note: USART1 can be served by the DMA1 Controller.
Doc ID 023331 Rev 1 21/102
Functional overview STM8L052C6

3.15 Infrared (IR) interface

The medium density value line STM8L05xxx devices contain an infrared interface which can be used with an IR LED for remote control functions. Two timer output compare channels are used to generate the infrared remote control signals.

3.16 Development support

Development tools
Development tools for the STM8 microcontrollers include:
The STice emulation system offering tracing and code profiling
The STVD high-level language debugger including C compiler, assembler and
integrated development environment
The STVP Flash programming software
The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools.
Single wire data interface (SWIM) and debug module
The debug module with its single wire data interface (SWIM) permits non-intrusive real-time in-circuit debugging and fast memory programming.
The Single wire interface is used for direct access to the debugging module and memory programming. The interface can be activated in all device operation modes.
The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, CPU operation can also be monitored in real­time by means of shadow registers.
Bootloader
A bootloader is available to reprogram the Flash memory using the USART1 interface. The reference document for the bootloader is UM0560: STM8 bootloader user manual.
The bootloader is used to download application software into the device memories, including RAM, program and data memory, using standard serial interfaces. It is a complementary solution to programming via the SWIM debugging interface.
22/102 Doc ID 023331 Rev 1
STM8L052C6 Pin description
44 43 42 41 4 0 39 38 3 7
36
35 34 33 32 31 30 29 28 27 26 25
24
23
12
13 1 4 15 16 17 18 19 20 21 22
1 2 3 4 5 6 7 8 9 10 11
48 47 46 45
PA5
V
SS1/VSSA/VREF-
NRST/PA1
PA2 PA3 PA4
PA6
VLCD
PE0
PE1
PD1
PD2
PD3
PB0
PE3
PD0
PE5
PE4
PA7
V
DD1
V
DDA
V
REF+
PE2
PB1
PB2
PC0
PC1
V
DD2VSS2
PC2
PC3
PC4
PC5
PC6
PC7
PE6
PE7
PB3
PB4
PB5
PB6
PB7
PF0
PD4
PD5
PD6
PD7
PA 0

4 Pin description

Figure 3. STM8L052C6 48-pin LQFP48 package pinout (with LCD)

Doc ID 023331 Rev 1 23/102
Pin description STM8L052C6

Table 3. Legend/abbreviation for Table 4

Typ e I= input, O = output, S = power supply
FT Five-volt tolerant
Level
Port and control configuration
Reset state

Table 4. Medium density value line STM8L05xxx pin description

TT 3.6 V tolerant
Output HS = high sink/source (20 mA)
Input float = floating, wpu = weak pull-up
Output T = true open drain, OD = open drain, PP = push pull
Bold X (pin state after reset release). Unless otherwise specified, the pin state is the same during the reset phase (i.e. “under reset”) and after internal reset release (i.e. at reset state).
Pin
number
LQFP48
2 NRST/PA1
PA2/OSC_IN/
3
[USART1_TX] [SPI1_MISO]
PA3/OSC_OUT/[USART1_
4
RX]
(8)
/[SPI1_MOSI]
PA4/TIM2_BKIN/
5
LCD_COM0/ADC1_IN2
PA5/TIM3_BKIN/
6
LCD_COM1/ADC1_IN1
PA 6/ [ADC1_TRIG]/
7
LCD_COM2/ADC1_IN0
8 PA7/LCD_SEG0
(4)
PB0
24
/TIM2_CH1/
LCD_SEG10/ADC1_IN18
PB1/TIM3_CH1/
25
LCD_SEG11/ ADC1_IN17
PB2/ TIM2_CH2/
26
LCD_SEG12/ ADC1_IN16
Pin name
(1)
(8)
/
(8)
(3)
(8)
Input Output
Type
I/O level
wpu
floating
OD
PP
Default alternate function
(after reset)
Main function
Ext. interrupt
High sink/source
I/O X HS X Reset PA 1
HSE oscillator input /
I/O X X X HS X X Port A2
[USART1 transmit] / [SPI1 master in- slave out]
HSE oscillator output /
I/O X X X HS X X Port A3
[USART1 receive]/ [SPI1 master out/slave in]/
I/O TT
I/O TT
(2)
XXXHSXXPort A4
(2)
XXXHSXXPort A5
Timer 2 - break input / LCD COM 0 / ADC1 input 2
Timer 3 - break input / LCD_COM 1 / ADC1 input 1
[ADC1 - trigger] / LCD_COM2 /
I/O TT
(2)
XXXHSXXPort A6
ADC1 input 0
I/O FT X X X HS X X Port A7 LCD segment 0
I/O TT
I/O TT
I/O TT
(2)X(4)X(4)
(2)
XXXHSXXPort B1
(2)
XXXHSXXPort B2
XHSX XPort B0
Timer 2 - channel 1 / LCD segment 10 / ADC1_IN18
Timer 3 - channel 1 / LCD segment 11 / ADC1_IN17
Timer 2 - channel 2 / LCD segment 12 / ADC1_IN16
24/102 Doc ID 023331 Rev 1
STM8L052C6 Pin description
Table 4. Medium density value line STM8L05xxx pin description (continued)
Pin
number
LQFP48
27
28
29
30
31
37 PC0
38 PC1
41
Input Output
Pin name
Typ e
I/O level
floating
PB3/TIM2_ETR/ LCD_SEG13/
I/O TT
(2)
XXXHSXXPort B3
ADC1_IN15
(4)
PB4
/[SPI1_NSS]
LCD_SEG14/
(8)
/
I/O TT
(2)X(4)X(4)
ADC1_IN14
PB5/[SPI1_SCK] LCD_SEG15/
(8)
/
I/O TT
(2)
XXXHSXXPort B5
ADC1_IN13
(8)
PB6/[SPI1_MOSI] LCD_SEG16/
/
I/O TT
(2)
XXXHSXXPort B6
ADC1_IN12
PB7/[SPI1_MISO] LCD_SEG17/
(8)
/
I/O TT
(2)
XXXHSXXPort B7
ADC1_IN11
(3)
/I2C1_SDA I/O FT X X T
(3)
/I2C1_SCL I/O FT X X T
PC2/USART1_RX/ LCD_SEG22/ADC1_IN6/
I/O TT
(2)
XXXHSXXPort C2
VREFINT
PP
wpu
OD
Ext. interrupt
High sink/source
XHSX XPort B4
(5)
(5)
Default alternate function
(after reset)
Main function
Timer 2 - external trigger / LCD segment 13 /ADC1_IN15
[SPI1 master/slave select] / LCD segment 14 / ADC1_IN14
[SPI1 clock] / LCD segment 15 / ADC1_IN13
[SPI1 master out/slave in]/ LCD segment 16 / ADC1_IN12
[SPI1 master in- slave out]
/LCD segment 17 / ADC1_IN11
Port C0 I2C1 data
Port C1 I2C1 clock
USART1 receive / LCD segment 22 / ADC1_IN6 /Internal voltage reference output
PC3/USART1_TX/
42
LCD_SEG23/ ADC1_IN5
PC4/USART1_CK/ I2C1_SMB/CCO/
43
LCD_SEG24/ ADC1_IN4
PC5/OSC32_IN
44
/[SPI1_NSS]
[USART1_TX]
PC6/OSC32_OUT/
45
[SPI1_SCK] [USART1_RX]
PC7/LCD_SEG25/
46
ADC1_IN3
(8)
(8)
(8)
/
(8)
USART1 transmit / LCD segment 23 /
I/O TT
(2)
XXXHSXXPort C3
ADC1_IN5
USART1 synchronous clock / I2C1_SMB / Configurable clock output /
I/O TT
(2)
XXXHSXXPort C4
LCD segment 24/ ADC1_IN4
LSE oscillator input / [SPI1
/
I/O X X X HS X X Port C5
master/slave select] / [USART1 transmit]
LSE oscillator output /
I/O X X X HS X X Port C6
[SPI1 clock] / [USART1 receive]
I/O TT
(2)
XXXHSXXPort C7
LCD segment 25 /ADC1_IN3
Doc ID 023331 Rev 1 25/102
Pin description STM8L052C6
Table 4. Medium density value line STM8L05xxx pin description (continued)
Pin
number
LQFP48
20
21
22
23
33
Pin name
PD0/TIM3_CH2/
[ADC1_TRIG]
(8)
/
LCD_SEG7/ADC1_IN22/
PD1/TIM3_ETR/ LCD_COM3/ ADC1_IN21
PD2/TIM1_CH1 /LCD_SEG8/ ADC1_IN20
PD3/ TIM1_ETR/ LCD_SEG9/ADC1_IN19
PD4/TIM1_CH2 /LCD_SEG18/ ADC1_IN10
Typ e
I/O TT
I/O TT
I/O TT
I/O TT
I/O TT
Input Output
I/O level
wpu
floating
OD
Ext. interrupt
High sink/source
(2)
XXXHSXXPort D0
(2)
XXXHSXXPort D1
(2)
XXXHSXXPort D2
(2)
XXXHSXXPort D3
(2)
XXXHSXXPort D4
PP
Main function
Default alternate function
(after reset)
Timer 3 - channel 2 / [ADC1_Trigger] / LCD segment 7 / ADC1_IN22
Timer 3 - external trigger / LCD_COM3 / ADC1_IN21
Timer 1 - channel 1 / LCD segment 8 / ADC1_IN20
Timer 1 - externaltrigger / LCD segment 9 / ADC1_IN19
Timer 1 - channel 2 / LCD segment 18 / ADC1_IN10
PD5/TIM1_CH3
34
/LCD_SEG19/
I/O TT
ADC1_IN9
PD6/TIM1_BKIN /LCD_SEG20/
35
ADC1_IN8/RTC_CALIB/
I/O TT
/VREFINT
PD7/TIM1_CH1N /LCD_SEG21/
36
ADC1_IN7/RTC_ALARM/V
I/O TT
REFINT
14 PE0
15
16
(3)
/LCD_SEG1 I/O FT X X X HS X X Port E0 LCD segment 1
PE1/TIM1_CH2N/ LCD_SEG2
PE2/TIM1_CH3N/ LCD_SEG3
I/O TT
I/O TT
17 PE3/LCD_SEG4 I/O TT
18 PE4/LCD_SEG5 I/O TT
PE5/LCD_SEG6/
19
ADC1_IN23
PE6/LCD_SEG26/
47
PVD_IN
I/O TT
I/O TT
(2)
XXXHSXXPort D5
Timer 1 - channel 3 / LCD segment 19 / ADC1_IN9
Timer 1 - break input / LCD
(2)
XXXHSXXPort D6
segment 20 / ADC1_IN8 / RTC calibration / Internal voltage reference output
Timer 1 - inverted channel
(2)
XXXHSXXPort D7
1/ LCD segment 21 / ADC1_IN7 / RTC alarm / Internal voltage reference output
(2)
XXXHSXXPort E1
(2)
XXXHSXXPort E2
(2)
XXXHSXXPort E3 LCD segment 4
(2)
XXXHSXXPort E4 LCD segment 5
(2)
XXXHSXXPort E5
(2)
XXXHSXXPort E6 LCD segment 26/PVD_IN
Timer 1 - inverted channel 2 / LCD segment 2
Timer 1 - inverted channel 3 / LCD segment 3
LCD segment 6 / ADC1_IN23
26/102 Doc ID 023331 Rev 1
STM8L052C6 Pin description
Table 4. Medium density value line STM8L05xxx pin description (continued)
Pin
number
LQFP48
Pin name
Typ e
Input Output
I/O level
wpu
floating
OD
PP
Main function
Default alternate function
(after reset)
Ext. interrupt
High sink/source
PE7/LCD_SEG27
48
32 PF0/ADC1_IN24 I/O X X X HS X X Por t F0
I/O TT
(2)
XXXHSXXPort E7 LCD segment 27
ADC1_IN24
13 VLCD S LCD booster external capacitor
13 Reserved Reserved. Must be tied to V
10 V
11 V
12 V
39 V
40 V
DD
DDA
REF+
9V
SS1/VSSA/VREF-
DD2
SS2
(6)
PA 0
1
/[USART1_CK]
SWIM/BEEP/IR_TIM
(8)
(7)
S Digital power supply
S Analog supply voltage
S ADC1 positive voltage reference
S
I/O ground / Analog ground voltage / ADC1 negative voltage reference
S IOs supply voltage
S IOs ground voltage
[USART1 synchronous
/
I/O X X
(6)
HS
X
XXPort A0
(7)
(8)
clock]
output /Beep output
/ SWIM input and
/ Infrared Timer output
DD
1. At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be configured only as output open-drain or push-pull, not as a general purpose input. Refer to Section Configuring NRST/PA1 pin as general purpose output in the STM8L15x and STM8L16x reference manual (RM0031).
2. In the 3.6 V tolerant I/Os, protection diode to V
3. In the 5 V tolerant I/Os, protection diode to V
4. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release.
5. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to V not implemented).
6. The PA0 pin is in input pull-up during the reset phase and after reset release.
7. High Sink LED driver capability available on PA0.
8. [ ] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not aduplication of the function).
is not implemented.
DD
is not implemented.
DD
DD
are
Note: The slope control of all GPIO pins, except true open drain pins, can be programmed. By
default, the slope control is limited to 2 MHz.
Doc ID 023331 Rev 1 27/102
Pin description STM8L052C6

4.1 System configuration options

As shown in Table 4: Medium density value line STM8L05xxx pin description, some alternate functions can be remapped on different I/O ports by programming one of the two remapping registers described in the “ Routing interface (RI) and system configuration controller” section in the STM8L15x and STM8L16x reference manual (RM0031).
28/102 Doc ID 023331 Rev 1
STM8L052C6 Memory and register map
GPIO and peripheral registers
0x00 0000
Reserved
Medium density
(32 Kbytes)
Reset and interrupt vectors
0x00 1000
0x00 10FF
RAM
0x00 07FF
(2 Kbytes)
(1)
(513 bytes)
(1)
0x00 1100
Data EEPROM
0x00 4800
0x00 48FF
0x00 4900
0x00 7FFF
0x00 8000
0x00 FFFF
0x00 0800
0x00 0FFF
0x00 47FF
0x00 7EFF
0x00 8080
0x00 807F
0x00 7F00
Reserved
including
Stack
(256 bytes)
Option bytes
0x00 4FFF 0x00 5000
0x00 57FF 0x00 5800
Reserved
0x00 5FFF
Boot ROM
0x00 6000
0x00 67FF
(2 Kbytes)
0x00 6800
Reserved
CPU/SWIM/Debug/ITC
Registers
0x00 5000
GPIO Ports
0x00 5050
Flash
0x00 50C0
ITC-EXTI
0x00 50D3
RST
0x00 50E0
CLK
0x00 50F3
WWDG
0x00 5210
IWDG
0x00 5230
BEEP
0x00 5250
RTC
0x00 5280
SPI1
0x00 52B0
I2C1
0x00 52E0
USART1
TIM2
TIM3
TIM1
TIM4
IRTIM
ADC1
0x00 5070
DMA1
SYSCFG
LCD
RI
0x00 509E
0x00 50A0
0x00 50B0
0x00 5140
0x00 5200
0x00 52FF
0x00 5340
0x00 5380
0x00 5400
0x00 5430
0x00 5440
Flash program memory
WFE
0x00 50A6
0x00 50B2
PWR
Reserved
Reserved
Reserved

5 Memory and register map

5.1 Memory mapping

The memory map is shown in Figure 4.

Figure 4. Memory map

1. Table 5 lists the boundary addresses for each memory size. The top of the stack is at the RAM end address.
2. Refer to Table 7 for an overview of hardware register mapping, to Table 6 for details on I/O port hardware registers, and to Table 8 for information on CPU/SWIM/debug module controller registers.
Doc ID 023331 Rev 1 29/102
Memory and register map STM8L052C6

Table 5. Flash and RAM boundary addresses

Memory area Size Start address End address
RAM 2 Kbytes 0x00 0000 0x00 07FF
Flash program memory 32 Kbytes 0x00 8000 0x00 FFFF

5.2 Register map

Table 6. I/O port hardware register map

0x00 5000
0x00 5001 PA_IDR Port A input pin value register 0xXX
0x00 5002 PA_DDR Port A data direction register 0x00
0x00 5003 PA_CR1 Port A control register 1 0x01
0x00 5004 PA_CR2 Port A control register 2 0x00
0x00 5005
0x00 5006 PB_IDR Port B input pin value register 0xXX
0x00 5007 PB_DDR Port B data direction register 0x00
0x00 5008 PB_CR1 Port B control register 1 0x00
Address Block Register label Register name
PA_ODR Port A data output latch register 0x00
Por t A
PB_ODR Port B data output latch register 0x00
Por t B
Reset
status
0x00 5009 PB_CR2 Port B control register 2 0x00
0x00 500A
PC_ODR Port C data output latch register 0x00
0x00 500B PC_IDR Port C input pin value register 0xXX
0x00 500C PC_DDR Port C data direction register 0x00
Por t C
0x00 500D PC_CR1 Port C control register 1 0x00
0x00 500E PC_CR2 Port C control register 2 0x00
0x00 500F
PD_ODR Port D data output latch register 0x00
0x00 5010 PD_IDR Port D input pin value register 0xXX
0x00 5011 PD_DDR Port D data direction register 0x00
Por t D
0x00 5012 PD_CR1 Port D control register 1 0x00
0x00 5013 PD_CR2 Port D control register 2 0x00
0x00 5014
PE_ODR Port E data output latch register 0x00
0x00 5015 PE_IDR Port E input pin value register 0xXX
0x00 5016 PE_DDR Port E data direction register 0x00
Por t E
0x00 5017 PE_CR1 Port E control register 1 0x00
0x00 5018 PE_CR2 Port E control register 2 0x00
30/102 Doc ID 023331 Rev 1
STM8L052C6 Memory and register map
Table 6. I/O port hardware register map (continued)
Address Block Register label Register name
0x00 5019
PF_ODR Port F data output latch register 0x00
0x00 501A PF_IDR Port F input pin value register 0xXX
0x00 501B PF_DDR Port F data direction register 0x00
Por t F
0x00 501C PF_CR1 Port F control register 1 0x00
0x00 501D PF_CR2 Port F control register 2 0x00

Table 7. General hardware register map

Address Block Register label Register name
0x00 501E to
0x00 5049
0x00 5050
FLASH_CR1 Flash control register 1 0x00
Reserved area (44 bytes)
0x00 5051 FLASH_CR2 Flash control register 2 0x00
0x00 5052 FLASH _PUKR
Flash
Flash program memory unprotection key
register
0x00 5053 FLASH _DUKR Data EEPROM unprotection key register 0x00
0x00 5054 FLASH _IAPSR
0x00 5055 to
0x00 506F
Flash in-application programming status
register
Reserved area (27 bytes)
Reset
status
Reset
status
0x00
0x00
Doc ID 023331 Rev 1 31/102
Memory and register map STM8L052C6
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5070
0x00 5071 DMA1_GIR1 DMA1 global interrupt register 1 0x00
0x00 5072 to
0x00 5074
0x00 5075 DMA1_C0CR DMA1 channel 0 configuration register 0x00
0x00 5076 DMA1_C0SPR DMA1 channel 0 status & priority register 0x00
0x00 5077 DMA1_C0NDTR
0x00 5078 DMA1_C0PARH
0x00 5079 DMA1_C0PARL
0x00 507A Reserved area (1 byte)
0x00 507B DMA1_C0M0ARH
0x00 507C DMA1_C0M0ARL
0x00 507D 0x00 507E
DMA1
DMA1_GCSR
DMA1 global configuration & status
register
Reserved area (3 bytes)
DMA1 number of data to transfer register
(channel 0)
DMA1 peripheral address high register
(channel 0)
DMA1 peripheral address low register
(channel 0)
DMA1 memory 0 address high register
(channel 0)
DMA1 memory 0 address low register
(channel 0)
Reserved area (2 bytes)
Reset
status
0xFC
0x00
0x52
0x00
0x00
0x00
0x00 507F DMA1_C1CR DMA1 channel 1 configuration register 0x00
0x00 5080 DMA1_C1SPR DMA1 channel 1 status & priority register 0x00
0x00 5081 DMA1_C1NDTR
0x00 5082 DMA1_C1PARH
0x00 5083 DMA1_C1PARL
DMA1 number of data to transfer register
(channel 1)
DMA1 peripheral address high register
(channel 1)
DMA1 peripheral address low register
(channel 1)
0x00
0x52
0x00
32/102 Doc ID 023331 Rev 1
STM8L052C6 Memory and register map
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5084
0x00 5085 DMA1_C1M0ARH
0x00 5086 DMA1_C1M0ARL
0x00 5087 0x00 5088
0x00 5089 DMA1_C2CR DMA1 channel 2 configuration register 0x00
0x00 508A DMA1_C2SPR DMA1 channel 2 status & priority register 0x00
0x00 508B DMA1_C2NDTR
0x00 508C DMA1_C2PARH
0x00 508D DMA1_C2PARL
0x00 508E Reserved area (1 byte)
0x00 508F DMA1_C2M0ARH
DMA1
0x00 5090 DMA1_C2M0ARL
Reserved area (1 byte)
DMA1 memory 0 address high register
(channel 1)
DMA1 memory 0 address low register
(channel 1)
Reserved area (2 bytes)
DMA1 number of data to transfer register
(channel 2)
DMA1 peripheral address high register
(channel 2)
DMA1 peripheral address low register
(channel 2)
DMA1 memory 0 address high register
(channel 2)
DMA1 memory 0 address low register
(channel 2)
Reset
status
0x00
0x00
0x00
0x52
0x00
0x00
0x00
0x00 5091 0x00 5092
0x00 5093 DMA1_C3CR DMA1 channel 3 configuration register 0x00
0x00 5094 DMA1_C3SPR DMA1 channel 3 status & priority register 0x00
0x00 5095 DMA1_C3NDTR
0x00 5096
0x00 5097
0x00 5098 Reserved area (1 byte)
0x00 5099 DMA1_C3M0ARH
0x00 509A DMA1_C3M0ARL
0x00 509B to
0x00 509D
0x00 509E SYSCFG_RMPCR1 Remapping register 1 0x00
0x00 509F SYSCFG_RMPCR2 Remapping register 2 0x00
DMA1_C3PARH_
C3M1ARH
DMA1_C3PARL_
C3M1ARL
Reserved area (2 bytes)
DMA1 number of data to transfer register
(channel 3)
DMA1 peripheral address high register
(channel 3)
DMA1 peripheral address low register
(channel 3)
DMA1 memory 0 address high register
(channel 3)
DMA1 memory 0 address low register
(channel 3)
Reserved area (3 bytes)
0x00
0x40
0x00
0x00
0x00
Doc ID 023331 Rev 1 33/102
Memory and register map STM8L052C6
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 50A0
0x00 50A1 EXTI_CR2 External interrupt control register 2 0x00
0x00 50A2 EXTI_CR3 External interrupt control register 3 0x00
ITC - EXTI
0x00 50A3 EXTI_SR1 External interrupt status register 1 0x00
0x00 50A4 EXTI_SR2 External interrupt status register 2 0x00
0x00 50A5 EXTI_CONF1 External interrupt port select register 1 0x00
0x00 50A6
0x00 50A7 WFE_CR2 WFE control register 2 0x00
WFE
0x00 50A8 WFE_CR3 WFE control register 3 0x00
0x00 50AC to
0x00 50AF
0x00 50B0
RST
0x00 50B1 RST_SR Reset status register 0x01
0x00 50B2
PWR
0x00 50B3 PWR_CSR2 Power control and status register 2 0x00
0x00 50B4 to
0x00 50BF
EXTI_CR1 External interrupt control register 1 0x00
WFE_CR1 WFE control register 1 0x00
Reserved area (4 bytes)
RST_CR Reset control register 0x00
PWR_CSR1 Power control and status register 1 0x00
Reserved area (12 bytes)
Reset
status
0x00 50C0
0x00 50C1 CLK_CRTCR Clock RTC register 0x00
0x00 50C2 CLK_ICKR Internal clock control register 0x11
0x00 50C3 CLK_PCKENR1 Peripheral clock gating register 1 0x00
0x00 50C4 CLK_PCKENR2 Peripheral clock gating register 2 0x80
0x00 50C5 CLK_CCOR Configurable clock control register 0x00
0x00 50C6 CLK_ECKR External clock control register 0x00
0x00 50C7 CLK_SCSR System clock status register 0x01
0x00 50C8 CLK_SWR System clock switch register 0x01
0x00 50C9 CLK_SWCR Clock switch control register 0bxxxx0000
0x00 50CA CLK_CSSR Clock security system register 0x00
0x00 50CB CLK_CBEEPR Clock BEEP register 0x00
0x00 50CC CLK_HSICALR HSI calibration register 0xxx
0x00 50CD CLK_HSITRIMR HSI clock calibration trimming register 0x00
0x00 50CE CLK_HSIUNLCKR HSI unlock register 0x00
0x00 50CF CLK_REGCSR Main regulator control status register 0bxx11100x
0x00 50D0 to
0x00 50D2
CLK
CLK_DIVR Clock master divider register 0x03
Reserved area (3 bytes)
34/102 Doc ID 023331 Rev 1
STM8L052C6 Memory and register map
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 50D3
0x00 50D4 WWDG_WR WWDR window register 0x7F
0x00 50D5 to
00 50DF
0x00 50E0
0x00 50E1 IWDG_PR IWDG prescaler register 0x00
0x00 50E2 IWDG_RLR IWDG reload register 0xFF
0x00 50E3 to
0x00 50EF
0x00 50F0
0x00 50F1 0x00 50F2
0x00 50F3 BEEP_CSR2 BEEP control/status register 2 0x1F
0x00 50F4 to
0x00 513F
WWDG
IWDG
BEEP
WWDG_CR WWDG control register 0x7F
Reserved area (11 bytes)
IWDG_KR IWDG key register 0xXX
Reserved area (13 bytes)
BEEP_CSR1 BEEP control/status register 1 0x00
Reserved area (2 bytes)
Reserved area (76 bytes)
Reset
status
Doc ID 023331 Rev 1 35/102
Memory and register map STM8L052C6
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5140
RTC_TR1 Time register 1 0x00
Reset
status
0x00 5141 RTC_TR2 Time register 2 0x00
0x00 5142 RTC_TR3 Time register 3 0x00
0x00 5143 Reserved area (1 byte)
0x00 5144 RTC_DR1 Date register 1 0x01
0x00 5145 RTC_DR2 Date register 2 0x21
0x00 5146 RTC_DR3 Date register 3 0x00
0x00 5147 Reserved area (1 byte)
0x00 5148 RTC_CR1 Control register 1 0x00
0x00 5149 RTC_CR2 Control register 2 0x00
0x00 514A RTC_CR3 Control register 3 0x00
0x00 514B Reserved area (1 byte)
0x00 514C RTC_ISR1 Initialization and status register 1 0x00
0x00 514D RTC_ISR2 Initialization and Status register 2 0x00
0x00 514E 0x00 514F
0x00 5150 RTC_SPRERH
0x00 5151 RTC_SPRERL
RTC
0x00 5152 RTC_APRER
(1)
(1)
(1)
Reserved area (2 bytes)
Synchronous prescaler register high 0x00
Synchronous prescaler register low 0xFF
Asynchronous prescaler register 0x7F
0x00 5153 Reserved area (1 byte)
0x00 5154 RTC_WUTRH
0x00 5155 RTC_WUTRL
0x00 5156 to
0x00 5158
(1)
(1)
Wakeup timer register high 0xFF
Wakeup timer register low 0xFF
Reserved area (3 bytes)
0x00 5159 RTC_WPR Write protection register 0x00
0x00 515A 0x00 515B
Reserved area (2 bytes)
0x00 515C RTC_ALRMAR1 Alarm A register 1 0x00
0x00 515D RTC_ALRMAR2 Alarm A register 2 0x00
(1)
(1)
(1)
(1)
(1)
0x00 515E RTC_ALRMAR3 Alarm A register 3 0x00
0x00 515F RTC_ALRMAR4 Alarm A register 4 0x00
0x00 5160 to
0x00 51FF
Reserved area (160 bytes)
36/102 Doc ID 023331 Rev 1
STM8L052C6 Memory and register map
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5200
0x00 5201 SPI1_CR2 SPI1 control register 2 0x00
0x00 5202 SPI1_ICR SPI1 interrupt control register 0x00
0x00 5203 SPI1_SR SPI1 status register 0x02
SPI1
0x00 5204 SPI1_DR SPI1 data register 0x00
0x00 5205 SPI1_CRCPR SPI1 CRC polynomial register 0x07
0x00 5206 SPI1_RXCRCR SPI1 Rx CRC register 0x00
0x00 5207 SPI1_TXCRCR SPI1 Tx CRC register 0x00
0x00 5208 to
0x00 520F
0x00 5210
0x00 5211 I2C1_CR2 I2C1 control register 2 0x00
0x00 5212 I2C1_FREQR I2C1 frequency register 0x00
0x00 5213 I2C1_OARL I2C1 own address register low 0x00
0x00 5214 I2C1_OARH I2C1 own address register high 0x00
0x00 5215 Reserved (1 byte)
0x00 5216 I2C1_DR I2C1 data register 0x00
SPI1_CR1 SPI1 control register 1 0x00
Reserved area (8 bytes)
I2C1_CR1 I2C1 control register 1 0x00
Reset
status
0x00 5217 I2C1_SR1 I2C1 status register 1 0x00
0x00 5218 I2C1_SR2 I2C1 status register 2 0x00
0x00 5219 I2C1_SR3 I2C1 status register 3 0x0x
0x00 521A I2C1_ITR I2C1 interrupt control register 0x00
0x00 521B I2C1_CCRL I2C1 clock control register low 0x00
0x00 521C I2C1_CCRH I2C1 clock control register high 0x00
0x00 521D I2C1_TRISER I2C1 TRISE register 0x02
0x00 521E I2C1_PECR I2C1 packet error checking register 0x00
0x00 521F to
0x00 522F
I2C1
Reserved area (17 bytes)
Doc ID 023331 Rev 1 37/102
Memory and register map STM8L052C6
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5230
0x00 5231 USART1_DR USART1 data register undefined
0x00 5232 USART1_BRR1 USART1 baud rate register 1 0x00
0x00 5233 USART1_BRR2 USART1 baud rate register 2 0x00
0x00 5234 USART1_CR1 USART1 control register 1 0x00
0x00 5235 USART1_CR2 USART1 control register 2 0x00
0x00 5236 USART1_CR3 USART1 control register 3 0x00
0x00 5237 USART1_CR4 USART1 control register 4 0x00
0x00 5238 USART1_CR5 USART1 control register 5 0x00
0x00 5239 USART1_GTR USART1 guard time register 0x00
0x00 523A USART1_PSCR USART1 prescaler register 0x00
0x00 523B to
0x00 524F
USART1
USART1_SR USART1 status register 0xC0
Reserved area (21 bytes)
Reset
status
38/102 Doc ID 023331 Rev 1
STM8L052C6 Memory and register map
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5250
0x00 5251 TIM2_CR2 TIM2 control register 2 0x00
0x00 5252 TIM2_SMCR TIM2 Slave mode control register 0x00
0x00 5253 TIM2_ETR TIM2 external trigger register 0x00
0x00 5254 TIM2_DER TIM2 DMA1 request enable register 0x00
0x00 5255 TIM2_IER TIM2 interrupt enable register 0x00
0x00 5256 TIM2_SR1 TIM2 status register 1 0x00
0x00 5257 TIM2_SR2 TIM2 status register 2 0x00
0x00 5258 TIM2_EGR TIM2 event generation register 0x00
0x00 5259 TIM2_CCMR1 TIM2 capture/compare mode register 1 0x00
0x00 525A TIM2_CCMR2 TIM2 capture/compare mode register 2 0x00
0x00 525B TIM2_CCER1 TIM2 capture/compare enable register 1 0x00
0x00 525C TIM2_CNTRH TIM2 counter high 0x00
0x00 525D TIM2_CNTRL TIM2 counter low 0x00
0x00 525E TIM2_PSCR TIM2 prescaler register 0x00
0x00 525F TIM2_ARRH TIM2 auto-reload register high 0xFF
0x00 5260 TIM2_ARRL TIM2 auto-reload register low 0xFF
TIM2
TIM2_CR1 TIM2 control register 1 0x00
Reset
status
0x00 5261 TIM2_CCR1H TIM2 capture/compare register 1 high 0x00
0x00 5262 TIM2_CCR1L TIM2 capture/compare register 1 low 0x00
0x00 5263 TIM2_CCR2H TIM2 capture/compare register 2 high 0x00
0x00 5264 TIM2_CCR2L TIM2 capture/compare register 2 low 0x00
0x00 5265 TIM2_BKR TIM2 break register 0x00
0x00 5266 TIM2_OISR TIM2 output idle state register 0x00
0x00 5267 to
0x00 527F
Reserved area (25 bytes)
Doc ID 023331 Rev 1 39/102
Memory and register map STM8L052C6
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5280
0x00 5281 TIM3_CR2 TIM3 control register 2 0x00
0x00 5282 TIM3_SMCR TIM3 Slave mode control register 0x00
0x00 5283 TIM3_ETR TIM3 external trigger register 0x00
0x00 5284 TIM3_DER TIM3 DMA1 request enable register 0x00
0x00 5285 TIM3_IER TIM3 interrupt enable register 0x00
0x00 5286 TIM3_SR1 TIM3 status register 1 0x00
0x00 5287 TIM3_SR2 TIM3 status register 2 0x00
0x00 5288 TIM3_EGR TIM3 event generation register 0x00
0x00 5289 TIM3_CCMR1 TIM3 Capture/Compare mode register 1 0x00
0x00 528A TIM3_CCMR2 TIM3 Capture/Compare mode register 2 0x00
0x00 528B TIM3_CCER1 TIM3 Capture/Compare enable register 1 0x00
0x00 528C TIM3_CNTRH TIM3 counter high 0x00
0x00 528D TIM3_CNTRL TIM3 counter low 0x00
0x00 528E TIM3_PSCR TIM3 prescaler register 0x00
0x00 528F TIM3_ARRH TIM3 Auto-reload register high 0xFF
0x00 5290 TIM3_ARRL TIM3 Auto-reload register low 0xFF
TIM3
TIM3_CR1 TIM3 control register 1 0x00
Reset
status
0x00 5291 TIM3_CCR1H TIM3 Capture/Compare register 1 high 0x00
0x00 5292 TIM3_CCR1L TIM3 Capture/Compare register 1 low 0x00
0x00 5293 TIM3_CCR2H TIM3 Capture/Compare register 2 high 0x00
0x00 5294 TIM3_CCR2L TIM3 Capture/Compare register 2 low 0x00
0x00 5295 TIM3_BKR TIM3 break register 0x00
0x00 5296 TIM3_OISR TIM3 output idle state register 0x00
0x00 5297 to
0x00 52AF
Reserved area (25 bytes)
40/102 Doc ID 023331 Rev 1
STM8L052C6 Memory and register map
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 52B0
0x00 52B1 TIM1_CR2 TIM1 control register 2 0x00
0x00 52B2 TIM1_SMCR TIM1 Slave mode control register 0x00
0x00 52B3 TIM1_ETR TIM1 external trigger register 0x00
0x00 52B4 TIM1_DER TIM1 DMA1 request enable register 0x00
0x00 52B5 TIM1_IER TIM1 Interrupt enable register 0x00
0x00 52B6 TIM1_SR1 TIM1 status register 1 0x00
0x00 52B7 TIM1_SR2 TIM1 status register 2 0x00
0x00 52B8 TIM1_EGR TIM1 event generation register 0x00
0x00 52B9 TIM1_CCMR1 TIM1 Capture/Compare mode register 1 0x00
0x00 52BA TIM1_CCMR2 TIM1 Capture/Compare mode register 2 0x00
0x00 52BB TIM1_CCMR3 TIM1 Capture/Compare mode register 3 0x00
0x00 52BC TIM1_CCMR4 TIM1 Capture/Compare mode register 4 0x00
0x00 52BD TIM1_CCER1 TIM1 Capture/Compare enable register 1 0x00
0x00 52BE TIM1_CCER2 TIM1 Capture/Compare enable register 2 0x00
0x00 52BF TIM1_CNTRH TIM1 counter high 0x00
0x00 52C0 TIM1_CNTRL TIM1 counter low 0x00
TIM1
0x00 52C1 TIM1_PSCRH TIM1 prescaler register high 0x00
0x00 52C2 TIM1_PSCRL TIM1 prescaler register low 0x00
0x00 52C3 TIM1_ARRH TIM1 Auto-reload register high 0xFF
TIM1_CR1 TIM1 control register 1 0x00
Reset
status
0x00 52C4 TIM1_ARRL TIM1 Auto-reload register low 0xFF
0x00 52C5 TIM1_RCR TIM1 Repetition counter register 0x00
0x00 52C6 TIM1_CCR1H TIM1 Capture/Compare register 1 high 0x00
0x00 52C7 TIM1_CCR1L TIM1 Capture/Compare register 1 low 0x00
0x00 52C8 TIM1_CCR2H TIM1 Capture/Compare register 2 high 0x00
0x00 52C9 TIM1_CCR2L TIM1 Capture/Compare register 2 low 0x00
0x00 52CA TIM1_CCR3H TIM1 Capture/Compare register 3 high 0x00
0x00 52CB TIM1_CCR3L TIM1 Capture/Compare register 3 low 0x00
0x00 52CC TIM1_CCR4H TIM1 Capture/Compare register 4 high 0x00
0x00 52CD TIM1_CCR4L TIM1 Capture/Compare register 4 low 0x00
0x00 52CE TIM1_BKR TIM1 break register 0x00
0x00 52CF TIM1_DTR TIM1 dead-time register 0x00
0x00 52D0 TIM1_OISR TIM1 output idle state register 0x00
0x00 52D1 TIM1_DCR1 DMA1 control register 1 0x00
Doc ID 023331 Rev 1 41/102
Memory and register map STM8L052C6
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 52D2
TIM1
0x00 52D3 TIM1_DMA1R TIM1 DMA1 address for burst mode 0x00
0x00 52D4 to
0x00 52DF
0x00 52E0
0x00 52E1 TIM4_CR2 TIM4 control register 2 0x00
0x00 52E2 TIM4_SMCR TIM4 Slave mode control register 0x00
0x00 52E3 TIM4_DER TIM4 DMA1 request enable register 0x00
0x00 52E4 TIM4_IER TIM4 Interrupt enable register 0x00
TIM4
0x00 52E5 TIM4_SR1 TIM4 status register 1 0x00
0x00 52E6 TIM4_EGR TIM4 Event generation register 0x00
0x00 52E7 TIM4_CNTR TIM4 counter 0x00
0x00 52E8 TIM4_PSCR TIM4 prescaler register 0x00
0x00 52E9 TIM4_ARR TIM4 Auto-reload register 0x00
0x00 52EA to
0x00 52FE
0x00 52FF IRTIM IR_CR Infrared control register 0x00
TIM1_DCR2 TIM1 DMA1 control register 2 0x00
Reserved area (12 bytes)
TIM4_CR1 TIM4 control register 1 0x00
Reserved area (21 bytes)
Reset
status
0x00 5300 to
0x00 533F
Reserved area (64 bytes)
42/102 Doc ID 023331 Rev 1
STM8L052C6 Memory and register map
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5340
0x00 5341 ADC1_CR2 ADC1 configuration register 2 0x00
0x00 5342 ADC1_CR3 ADC1 configuration register 3 0x1F
0x00 5343 ADC1_SR ADC1 status register 0x00
0x00 5344 ADC1_DRH ADC1 data register high 0x00
0x00 5345 ADC1_DRL ADC1 data register low 0x00
0x00 5346 ADC1_HTRH ADC1 high threshold register high 0x0F
0x00 5347 ADC1_HTRL ADC1 high threshold register low 0xFF
0x00 5348 ADC1_LTRH ADC1 low threshold register high 0x00
ADC1
0x00 5349 ADC1_LTRL ADC1 low threshold register low 0x00
0x00 534A ADC1_SQR1 ADC1 channel sequence 1 register 0x00
0x00 534B ADC1_SQR2 ADC1 channel sequence 2 register 0x00
0x00 534C ADC1_SQR3 ADC1 channel sequence 3 register 0x00
0x00 534D ADC1_SQR4 ADC1 channel sequence 4 register 0x00
0x00 534E ADC1_TRIGR1 ADC1 trigger disable 1 0x00
0x00 534F ADC1_TRIGR2 ADC1 trigger disable 2 0x00
0x00 5350 ADC1_TRIGR3 ADC1 trigger disable 3 0x00
ADC1_CR1 ADC1 configuration register 1 0x00
Reset
status
0x00 5351 ADC1_TRIGR4 ADC1 trigger disable 4 0x00
0x00 5352 to
0x00 53FF
0x00 5400
0x00 5401 LCD_CR2 LCD control register 2 0x00
0x00 5402 LCD_CR3 LCD control register 3 0x00
0x00 5403 LCD_FRQ LCD frequency selection register 0x00
LCD
0x00 5404 LCD_PM0 LCD Port mask register 0 0x00
0x00 5405 LCD_PM1 LCD Port mask register 1 0x00
0x00 5406 LCD_PM2 LCD Port mask register 2 0x00
0x00 5407 Reserved area
LCD_CR1 LCD control register 1 0x00
Reserved area (174 bytes)
Doc ID 023331 Rev 1 43/102
Memory and register map STM8L052C6
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5408 to
0x00 540B
0x00 540C LCD_RAM0 LCD display memory 0 0x00
0x00 540D LCD_RAM1 LCD display memory 1 0x00
0x00 540E LCD_RAM2 LCD display memory 2 0x00
0x00 540F LCD_RAM3 LCD display memory 3 0x00
0x00 5410 LCD_RAM4 LCD display memory 4 0x00
0x00 5411 LCD_RAM5 LCD display memory 5 0x00
0x00 5412 LCD_RAM6 LCD display memory 6 0x00
0x00 5413 LCD_RAM7 LCD display memory 7 0x00
0x00 5414 LCD_RAM8 LCD display memory 8 0x00
0x00 5415 LCD_RAM9 LCD display memory 9 0x00
0x00 5416 LCD_RAM10 LCD display memory 10 0x00
0x00 5417 LCD_RAM11 LCD display memory 11 0x00
0x00 5418 LCD_RAM12 LCD display memory 12 0x00
0x00 5419 LCD_RAM13 LCD display memory 13 0x00
0x00 541A to
0x00 542F
LCD
Reserved area (4 bytes)
Reserved area (22 bytes)
Reset
status
44/102 Doc ID 023331 Rev 1
STM8L052C6 Memory and register map
Table 7. General hardware register map (continued)
Address Block Register label Register name
0x00 5430
Reserved area (1 byte) 0x00
0x00 5431 RI_ICR1 Timer input capture routing register 1 0x00
0x00 5432 RI_ICR2 Timer input capture routing register 2 0x00
0x00 5433 RI_IOIR1 I/O input register 1 undefined
0x00 5434 RI_IOIR2 I/O input register 2 undefined
0x00 5435 RI_IOIR3 I/O input register 3 undefined
0x00 5436 RI_IOCMR1 I/O control mode register 1 0x00
0x00 5437 RI_IOCMR2 I/O control mode register 2 0x00
RI
0x00 5438 RI_IOCMR3 I/O control mode register 3 0x00
0x00 5439 RI_IOSR1 I/O switch register 1 0x00
0x00 543A RI_IOSR2 I/O switch register 2 0x00
0x00 543B RI_IOSR3 I/O switch register 3 0x00
0x00 543C RI_IOGCR I/O group control register 0x3F
0x00 543D RI_ASCR1 Analog switch register 1 0x00
0x00 543E RI_ASCR2 Analog switch register 2 0x00
0x00 543F RI_RCR Resistor control register 1 0x00
0x00 5440 to
0x00 5444
1. These registers are not impacted by a system reset. They are reset at power-on.
Reserved area (5 bytes)
Reset
status

Table 8. CPU/SWIM/debug module/interrupt controller registers

Address Block Register Label Register Name
0x00 7F00
A Accumulator 0x00
0x00 7F01 PCE Program counter extended 0x00
0x00 7F02 PCH Program counter high 0x00
0x00 7F03 PCL Program counter low 0x00
0x00 7F04 XH X index register high 0x00
(1)
0x00 7F05 XL X index register low 0x00
CPU
0x00 7F06 YH Y index register high 0x00
0x00 7F07 YL Y index register low 0x00
0x00 7F08 SPH Stack pointer high 0x03
0x00 7F09 SPL Stack pointer low 0xFF
0x00 7F0A CCR Condition code register 0x28
Doc ID 023331 Rev 1 45/102
Reset
Status
Memory and register map STM8L052C6
Table 8. CPU/SWIM/debug module/interrupt controller registers (continued)
Address Block Register Label Register Name
0x00 7F0B to
0x00 7F5F
0x00 7F60 CFG_GCR Global configuration register 0x00
0x00 7F70
0x00 7F71 ITC_SPR2 Interrupt Software priority register 2 0xFF
0x00 7F72 ITC_SPR3 Interrupt Software priority register 3 0xFF
0x00 7F73 ITC_SPR4 Interrupt Software priority register 4 0xFF
0x00 7F74 ITC_SPR5 Interrupt Software priority register 5 0xFF
0x00 7F75 ITC_SPR6 Interrupt Software priority register 6 0xFF
0x00 7F76 ITC_SPR7 Interrupt Software priority register 7 0xFF
0x00 7F77 ITC_SPR8 Interrupt Software priority register 8 0xFF
0x00 7F78 to
0x00 7F79
0x00 7F80 SWIM SWIM_CSR SWIM control status register 0x00
0x00 7F81 to
0x00 7F8F
0x00 7F90
CPU
ITC_SPR1 Interrupt Software priority register 1 0xFF
ITC-SPR
DM_BK1RE DM breakpoint 1 register extended byte 0xFF
Reserved area (85 bytes)
Reserved area (2 bytes)
Reserved area (15 bytes)
Reset
Status
0x00 7F91 DM_BK1RH DM breakpoint 1 register high byte 0xFF
0x00 7F92 DM_BK1RL DM breakpoint 1 register low byte 0xFF
0x00 7F93 DM_BK2RE DM breakpoint 2 register extended byte 0xFF
0x00 7F94 DM_BK2RH DM breakpoint 2 register high byte 0xFF
0x00 7F95 DM_BK2RL DM breakpoint 2 register low byte 0xFF
0x00 7F96 DM_CR1 DM Debug module control register 1 0x00
0x00 7F97 DM_CR2 DM Debug module control register 2 0x00
0x00 7F98 DM_CSR1 DM Debug module control/status register 1 0x10
0x00 7F99 DM_CSR2 DM Debug module control/status register 2 0x00
0x00 7F9A DM_ENFCTR DM enable function register 0xFF
0x00 7F9B to
0x00 7F9F
1. Accessible by debug module only
DM
Reserved area (5 bytes)
46/102 Doc ID 023331 Rev 1
STM8L052C6 Interrupt vector mapping

6 Interrupt vector mapping

Table 9. Interrupt mapping

IRQ
No.
Source
block
Description
Wakeup
from Halt
mode
Wakeup
from
Active-
halt mode
Wakeup
from Wait
(WFI
mode)
Wakeup
from Wait
(WFE
(1)
mode)
Vector
address
RESET Reset Yes Yes Yes Yes 0x00 8000
TRAP Software interrupt - - - - 0x00 8004
0 Reserved 0x00 8008
FLASH end of programing/
1 FLASH
write attempted to
- - Yes Yes 0x00 800C
protected page interrupt
DMA1 channels 0/1 half
2 DMA1 0/1
transaction/transaction
- - Yes Yes 0x00 8010
complete interrupt
DMA1 channels 2/3 half
3 DMA1 2/3
transaction/transaction
- - Yes Yes 0x00 8014
complete interrupt
4RTC
EXTI E/F/
5
PVD
(2)
RTC alarm A/ wakeup
External interrupt port E/F PVD interrupt
Yes Yes Yes Yes 0x00 8018
Yes Yes Yes Yes 0x00 801C
6 EXTIB/G External interrupt port B/G Yes Yes Yes Yes 0x00 8020
7 EXTID/H External interrupt port D/H Yes Yes Yes Yes 0x00 8024
8 EXTI0 External interrupt 0 Yes Yes Yes Yes 0x00 8028
9 EXTI1 External interrupt 1 Yes Yes Yes Yes 0x00 802C
10 EXTI2 External interrupt 2 Yes Yes Yes Yes 0x00 8030
11 EXTI3 External interrupt 3 Yes Yes Yes Yes 0x00 8034
12 EXTI4 External interrupt 4 Yes Yes Yes Yes 0x00 8038
13 EXTI5 External interrupt 5 Yes Yes Yes Yes 0x00 803C
14 EXTI6 External interrupt 6 Yes Yes Yes Yes 0x00 8040
15 EXTI7 External interrupt 7 Yes Yes Yes Yes 0x00 8044
16 LCD LCD interrupt - - Yes Yes 0x00 8048
CLK system clock switch/
17 CLK/TIM1
CSS interrupt/
- - Yes Yes 0x00 804C
TIM 1 break
ACD1 end of conversion/
18 ADC1
analog watchdog/
Yes Yes Yes Yes 0x00 8050
overrun interrupt
Doc ID 023331 Rev 1 47/102
Interrupt vector mapping STM8L052C6
Table 9. Interrupt mapping (continued)
IRQ
No.
Source
block
Description
Wakeup
from Halt
mode
Wakeup
from
Active-
halt mode
Wakeup
from Wait
(WFI
mode)
Wakeup
from Wait
(WFE
(1)
mode)
Vector
address
TIM2 update/overflow/
19 TIM2
trigger/break
- - Yes Yes 0x00 8054
interrupt
20 TIM2
21 TIM3
22 TIM3
23 TIM1
TIM2capture/ compare interrupt
TIM3 update/overflow/ trigger/break interrupt
TIM3 capture/compare interrupt
Update /overflow/trigger/ COM
- - Yes Yes 0x00 8058
- - Yes Yes 0x00 805C
- - Yes Yes 0x00 8060
- - - Yes 0x00 8064
24 TIM1 Capture/compare - - - Yes 0x00 8068
25 TIM4
TIM4 update/overflow/ trigger interrupt
- - Yes Yes 0x00 806C
SPI1 TX buffer empty/
26 SPI1
RX buffer not empty/
Yes Yes Yes Yes 0x00 8070
error/wakeup interrupt
USART1transmit data
27 USART1
register empty/ transmission complete
- - Yes Yes 0x00 8074
interrupt
USART1 received data
28 USART1
ready/overrun error/ idle line detected/parity
- - Yes Yes 0x00 8078
error/global error interrupt
2
29 I
1. The Low power wait mode is entered when executing a WFE instruction in Low power run mode. In WFE mode, the interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode. When the interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.
2. The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port E and Port F interrupt (see External interrupt port select register (EXTI_CONF) in the RM0031).
3. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.
C1 I2C1 interrupt
(3)
Yes Yes Yes Yes 0x00 807C
48/102 Doc ID 023331 Rev 1
STM8L052C6 Option bytes

7 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated memory block.
All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM address. See Tab le 1 0 for details on option byte addresses.
The option bytes can also be modified ‘on the fly’ by the application in IAP mode, except for the ROP and UBC values which can only be taken into account when they are modified in ICP mode (with the SWIM).
Refer to the STM8Lxx Flash programming manual (PM0054) and STM8 SWIM and Debug Manual (UM0470) for information on SWIM programming procedures.

Table 10. Option byte addresses

Option
Addr. Option name
Read-out
0x00 4800
0x00 4802
0x00 4807 Reserved 0x00
0x00 4808
0x00 4809
0x00 480A
0x00 480B Bootloader
0x00 480C 0x00
protection
(ROP)
UBC (User
Boot code size)
Independent
watchdog
option
Number of
stabilization
clock cycles for
HSE and LSE
oscillators
Brownout reset
(BOR)
option bytes
(OPTBL)
byte
No.
OPT0 ROP[7:0] 0xAA
OPT1 UBC[7:0] 0x00
OPT3
[3:0]
OPT4 Reserved LSECNT[1:0] HSECNT[1:0] 0x00
OPT5
[3:0]
OPTBL
[15:0]
76543210
Reserved
Reserved BOR_TH
Option bits Factory
default setting
WWDG
_HALT
OPTBL[15:0]
WWDG
_HW
IWDG
_HALT
IWDG
_HW
BOR_
ON
0x00
0x01
0x00
Doc ID 023331 Rev 1 49/102
Option bytes STM8L052C6

Table 11. Option byte description

Option
byte
No.
ROP[7:0] Memory readout protection (ROP)
OPT0
0xAA: Disable readout protection (write access via SWIM protocol) Refer to Readout protection section in the STM8L05x/15x and STM8L16x reference manual
(RM0031).
UBC[7:0] Size of the user boot code area
0x00: no UBC 0x01: the UBC contains only the interrupt vectors.
OPT1
0x02: Page 0 and 1 reserved for the UBC and read/write protected. Page 0 contains only the interrupt vectors. 0x03 - Page 0 to 2 reserved for UBC, memory write-protected 0xFF - Page 0 to 254 reserved for UBC, memory write-protected Refer to User boot code section in the STM8L05x/15x and STM8L16x reference manual (RM0031).
OPT2 Reserved
IWDG_HW: Independent watchdog
0: Independent watchdog activated by software 1: Independent watchdog activated by hardware
IWDG_HALT: Independent window watchdog off on Halt/Active-halt
0: Independent watchdog continues running in Halt/Active-halt mode 1: Independent watchdog stopped in Halt/Active-halt mode
OPT3
WWDG_HW: Window watchdog
0: Window watchdog activated by software 1: Window watchdog activated by hardware
Option description
OPT4
WWDG_HALT: Window window watchdog reset on Halt/Active-halt
0: Window watchdog stopped in Halt mode 1: Window watchdog generates a reset when MCU enters Halt mode
HSECNT: Number of HSE oscillator stabilization clock cycles
0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles
LSECNT: Number of LSE oscillator stabilization clock cycles
0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles
Refer to Table 29: LSE oscillator characteristics on page 69.
50/102 Doc ID 023331 Rev 1
STM8L052C6 Option bytes
Table 11. Option byte description (continued)
Option
byte
No.
OPT5
OPTBL
Option description
BOR_ON:
0: Brownout reset off 1: Brownout reset on
BOR_TH[3:1]: Brownout reset thresholds. Refer to Ta b le 20 for details on the thresholds according to the value of BOR_TH bits.
OPTBL[15:0]: This option is checked by the boot ROM code after reset. Depending on content of addresses 00 480B, 00 480C and 0x8000 (reset vector) the CPU jumps to the bootloader or to the reset vector. Refer to the UM0560 bootloader user manual for more details.
Doc ID 023331 Rev 1 51/102
Electrical parameters STM8L052C6
50 pF
STM8L PIN

8 Electrical parameters

8.1 Parameter conditions

Unless otherwise specified, all voltages are referred to VSS.

8.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics is indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ).

8.1.2 Typical values

= 25 °C and TA = TA max (given by
A
Unless otherwise specified, typical data is based on TA = 25 °C, V design guidelines and is not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated

8.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

8.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 5.
Figure 5. Pin loading conditions
(mean±2Σ).
= 3 V. It is given only as
DD
52/102 Doc ID 023331 Rev 1
STM8L052C6 Electrical parameters
V
IN
STM8L PIN

8.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 6.
Figure 6. Pin input voltage

8.2 Absolute maximum ratings

Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 12. Voltage characteristics

Symbol Ratings Min Max Unit
- V
V
DD
SS
External supply voltage (including V and V
DD2
(1)
)
Input voltage on true open-drain pins (PC0 and PC1)
(2)
V
IN
Input voltage on five-volt tolerant (FT) pins (PA7 and PE0)
Input voltage on 3.6 V tolerant (TT) pins V
Input voltage on any other pin V
DDA
- 0.3 4.0 V
V
- 0.3 VDD + 4.0
SS
- 0.3 V
V
SS
- 0.3 4.0
SS
- 0.3 4.0
SS
DD
+ 4.0
see Absolute maximum
V
ESD
Electrostatic discharge voltage
ratings (electrical sensitivity)
on page 95
1. All power (V external power supply.
2. VIN maximum must always be respected. Refer to Table 13. for maximum allowed injected current values.
DD1
, V
DD2
, V
) and ground (V
DDA
SS1
, V
SS2
, V
) pins must always be connected to the
SSA
V
Doc ID 023331 Rev 1 53/102
Electrical parameters STM8L052C6

Table 13. Current characteristics

Symbol Ratings Max. Unit
I
VDD
I
VSS
Total current into V
Total current out of V
power line (source) 80
DD
ground line (sink) 80
SS
Output current sunk by IR_TIM pin (with high sink LED driver capability)
I
IO
Output current sunk by any other I/O and control pin 25
Output current sourced by any I/Os and control pin - 25
Injected current on true open-drain pins (PC0 and PC1)
(1)
Injected current on five-volt tolerant (FT) pins (PA7 and PE0)
I
INJ(PIN)
Injected current on 3.6 V tolerant (TT) pins
Injected current on any other pin
ΣI
INJ(PIN)
1. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. I never be exceeded. Refer to Table 12. for maximum allowed input voltage values.
2. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. I never be exceeded. Refer to Table 12. for maximum allowed input voltage values.
3. When several inputs are submitted to a current injection, the maximum ΣI positive and negative injected currents (instantaneous values).

Table 14. Thermal characteristics

Total injected current (sum of all I/O and control pins)
(2)
(1)
(3)
is the absolute sum of the
INJ(PIN)
(1)
- 5 / +0
- 5 / +0
- 5 / +0
- 5 / +5
± 25
80
INJ(PIN)
INJ(PIN)
mA
must
must
Symbol Ratings Value Unit
T
STG
T
Storage temperature range -65 to +150
Maximum junction temperature 150
J
° C
54/102 Doc ID 023331 Rev 1
STM8L052C6 Electrical parameters

8.3 Operating conditions

Subject to general operating conditions for VDD and TA.

8.3.1 General operating conditions

Table 15. General operating conditions
Symbol Parameter Conditions Min. Max. Unit
System clock
f
SYSCLK
1. f
2. To calculate P
3. T
(1)
frequency
V
DD
V
DDA
(2)
P
D
T
A
T
J
SYSCLK
characteristics” table.
Jmax
Standard operating voltage
Analog operating voltage
Power dissipation at
= 85 °C
T
A
Temperature range 1.8 V ≤ V
Junction temperature range
= f
CPU
), use the formula P
Dmax(TA
is given by the test limit. Above this value, the product behavior is not guaranteed.
Dmax
1.8 V ≤ V
Must be at the same
potential as V
-40 °C T
=(T
-TA)/ΘJA with T
Jmax
< 3.6 V 0 16 MHz
DD
DD
LQFP48 288 mW
< 3.6 V -40 85 °C
DD
< 85 °C -40 105
A
Jmax
1.8 3.6 V
1.8 3.6 V
in this table and Θ
in “Thermal
JA
(3)
°C
Doc ID 023331 Rev 1 55/102
Electrical parameters STM8L052C6

8.3.2 Embedded reset and power control block characteristics

Table 16. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min
t
VDD
t
TEMP
V
PDR
V
BOR0
V
BOR1
V
BOR2
V
BOR3
V
BOR4
VDD rise time rate
VDD fall time rate
Reset release delay
BOR detector enabled
BOR detector enabled
rising
V
DD
0
20
Power-down reset threshold Falling edge 1.30
Brown-out reset threshold 0 (BOR_TH[2:0]=000)
Brown-out reset threshold 1 (BOR_TH[2:0]=001)
Brown-out reset threshold 2 (BOR_TH[2:0]=010)
Brown-out reset threshold 3 (BOR_TH[2:0]=011)
Brown-out reset threshold 4 (BOR_TH[2:0]=100)
Falling edge 1.67 1.70 1.74
Rising edge 1.69 1.75 1.80
Falling edge 1.87 1.93 1.97
Rising edge 1.96 2.04 2.07
Falling edge 2.22 2.3 2.35
Rising edge 2.31 2.41 2.44
Falling edge 2.45 2.55 2.60
Rising edge 2.54 2.66 2.7
Falling edge 2.68 2.80 2.85
Rising edge 2.78 2.90 2.95
(1)
(1)
(2)
Typ
3ms
1.50 1.65 V
Max Unit
(1)
µs/V
(1)
V
V
PVD0
PVD threshold 0
Rising edge 1.88 1.94 1.99
Falling edge 1.98 2.04 2.09
Falling edge 1.80 1.84 1.88
V
PVD1
PVD threshold 1
Rising edge 2.08 2.14 2.18
Falling edge 2.2 2.24 2.28
V
PVD2
PVD threshold 2
Rising edge 2.28 2.34 2.38
Falling edge 2.39 2.44 2.48
V
PVD3
PVD threshold 3
Rising edge 2.47 2.54 2.58
Falling edge 2.57 2.64 2.69
V
PVD4
PVD threshold 4
Rising edge 2.68 2.74 2.79
Falling edge 2.77 2.83 2.88
V
PVD5
PVD threshold 5
Rising edge 2.87 2.94 2.99
Falling edge 2.97 3.05 3.09
V
PVD6
1. Data guaranteed by design, not tested in production.
2. Data based on characterization results, not tested in production.
PVD threshold 6
Rising edge 3.08 3.15 3.20
V
56/102 Doc ID 023331 Rev 1
STM8L052C6 Electrical parameters
1.8 V
Vdd
Internal NRST
VBOR0
BOR threshold
BOR Threshold_0
PDR Threshold
with
BOR
without
BOR
Time
with
BOR
Safe Reset
Reset
at power up
BOR activated by user for
power down detection
Vdd
Vdd
Operating power supply
3.6 V
without BOR = Batte ry lif e exten sion
VPDR
Safe Reset release
BOR always active
Figure 7. POR/BOR thresholds

8.3.3 Supply current characteristics

Total current consumption
The MCU is placed under the following conditions:
All I/O pins in input mode with a static value at V
All peripherals are disabled except if explicitly mentioned.
In the following table, data is based on characterization results, unless otherwise specified.
Subject to general operating conditions for V
DD
and TA.
or VSS (no load)
DD
Doc ID 023331 Rev 1 57/102
Electrical parameters STM8L052C6
Table 17. Total current consumption in Run mode
Symbol
I
DD(RUN)
Para
meter
Supply current in run
(2)
mode
All peripherals OFF, code executed from RAM,
from 1.8
V
DD
V to
3.6 V
Conditions
HSI RC osc.
(16 MHz)
HSE external clock
(f
CPU=fHSE
LSI RC osc. (typ. 38 kHz)
(3)
(1)
f
= 125 kHz
CPU
f
= 1 MHz
CPU
= 4 MHz
f
CPU
f
= 8 MHz
CPU
f
= 16 MHz
CPU
f
= 125 kHz
CPU
f
= 1 MHz
CPU
f
= 4 MHz
CPU
(4)
)
= 8 MHz
f
CPU
f
= 16 MHz
CPU
f
= f
CPU
LSI
LSE external
= f
clock
f
CPU
LSE
(32.768 kHz)
f
= 125 kHz
CPU
f
= 1 MHz
CPU
I
DD(RUN)
Supply current in Run mode
All peripherals OFF, code executed from Flash,
from
V
DD
1.8 V to 3.6 V
HSI RC
(6)
osc.
HSE external clock
(f
CPU=fHSE
)
LSI RC osc.
(4)
= 4 MHz
f
CPU
= 8 MHz
f
CPU
f
= 16 MHz
CPU
f
= 125 kHz
CPU
f
= 1 MHz
CPU
f
= 4 MHz
CPU
f
= 8 MHz
CPU
= 16 MHz
f
CPU
= f
f
CPU
LSI
LSE ext. clock (32.768
(7)
kHz)
1. All peripherals OFF, VDD from 1.8 V to 3.6 V, HSI internal RC osc. , f
2. CPU executing typical data processing
3. The run from RAM consumption can be approximated with the linear formula: IDD(run_from_RAM) = Freq * 90 µA/MHz + 380 µA
f
CPU
= f
LSE
CPU=fSYSCLK
Max
Typ
55 °C
85 °C
0.39 0.47 0.49
0.48 0.56 0.58
0.75 0.84 0.86
1.10 1.20 1.25
1.85 1.93 2.12
0.05 0.06 0.09
0.18 0.19 0.20
0.55 0.62 0.64
0.99 1.20 1.21
1.90 2.22 2.23
0.040 0.045 0.046
0.035 0.040 0.048
0.43 0.55 0.56
0.60 0.77 0.80
1.11 1.34 1.37
1.90 2.20 2.23
3.8 4.60 4.75
0.30 0.36 0.39
0.40 0.50 0.52
1.15 1.31 1.40
2.17 2.33 2.44
4.0 4.46 4.52
0.110 0.123 0.130
0.100 0.101 0.104
Unit
(5)
mA
(5)
(5)
mA
58/102 Doc ID 023331 Rev 1
STM8L052C6 Electrical parameters
1.50
1.75
2.00
2.25
2.50
2.75
3.00
1.8 2.1 2.6 3.1 3.6 V
DD
[V]
IDD(RUN)HSI [mA]
-40°C 25°C 85°C
ai18213V2
4. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption (I
) must be added. Refer to Table 28.
DD HSE
5. Tested in production.
6. The run from Flash consumption can be approximated with the linear formula:
(run_from_Flash) = Freq * 195 µA/MHz + 440 µA
I
DD
7. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE consumption
) must be added. Refer to Table 29.
(I
DD LSE
Figure 8. Typ. I
1. Typical current consumption measured with code executed from RAM
DD(RUN)
vs. VDD,f
= 16MHz
CPU
Doc ID 023331 Rev 1 59/102
Electrical parameters STM8L052C6
In the following table, data is based on characterization results, unless otherwise specified.
Table 18. Total current consumption in Wait mode
Max
(4)
=HSE)
(1)
= 125 kHz
f
CPU
f
= 1 MHz
CPU
= 4 MHz
f
CPU
f
= 8 MHz
CPU
f
= 16 MHz
CPU
f
= 125 kHz
CPU
f
= 1 MHz
CPU
f
= 4 MHz
CPU
(4)
)
f
CPU
f
CPU
f
CPU
f
CPU
f
CPU
f
CPU
f
CPU
f
CPU
f
CPU
f
CPU
f
CPU
f
CPU
f
CPU
f
CPU
f
CPU
f
CPU
= 8 MHz
= 16 MHz
= f
LSI
= f
LSE
= 125 kHz
= 1 MHz
= 4 MHz
= 8 MHz
= 16 MHz
= 125 kHz
= 1 MHz
= 4 MHz
= 8 MHz
= 16 MHz
= f
LSI
= f
LSE
Typ
55°C
°C
85
(2)
0.33 0.39 0.41
0.35 0.41 0.44
0.42 0.51 0.52
0.52 0.57 0.58
0.68 0.76 0.79
0.032 0.056 0.068
0.078 0.121 0.144
0.218 0.26 0.30
0.40 0.52 0.57
0.760 1.01 1.05
0.035 0.044 0.046
0.032 0.036 0.038
0.38 0.48 0.49
0.41 0.49 0.51
0.50 0.57 0.58
0.60 0.66 0.68
0.79 0.84 0.86
0.06 0.08 0.09
0.10 0.17 0.18
0.24 0.36 0.39
0.50 0.58 0.61
1.00 1.08 1.14
0.055 0.058 0.065
0.051 0.056 0.060
Unit
mA
mA
Symbol Parameter
Supply
I
DD(Wait)
current in Wait mode
Supply
I
DD(Wait)
current in Wait
mode
CPU not clocked, all peripherals OFF, code executed from RAM with Flash in
(3)
mode
I
DDQ
from
V
DD
1.8 V to 3.6 V
CPU not clocked, all peripherals OFF, code executed from Flash,
from
V
DD
1.8 V to 3.6 V
Conditions
HSI
HSE external clock
(f
CPU=fHSE
,
LSI
(5)
LSE external clock (32.768 kHz)
HSI
HSE external clock (f
CPU
LSI
(5)
LSE external clock (32.768 kHz)
1. All peripherals OFF, VDD from 1.8 V to 3.6 V, HSI internal RC osc. , f
2. For temperature range 6.
3. Flash is configured in I
mode in Wait mode by setting the EPM or WAITM bit in the Flash_CR1 register.
DDQ
60/102 Doc ID 023331 Rev 1
CPU
= f
SYSCLK
STM8L052C6 Electrical parameters
500
550
600
650
700
750
800
850
900
950
1000
1.8 2.1 2.6 3.1 3.6 V
DD
[V]
IDD(WAIT)HSI
[μA]
-40°C 25°C 85°C
ai18214V2
4. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption (I
) must be added. Refer to Table 28.
DD HSE
5. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE consumption
) must be added. Refer to Table 29.
(I
DD HSE
Figure 9. Typ. I
1. Typical current consumption measured with code executed from Flash memory.
DD(Wait)
vs. VDD,f
CPU
=16MHz
1)
Doc ID 023331 Rev 1 61/102
Electrical parameters STM8L052C6
In the following table, data is based on characterization results, unless otherwise specified.
Table 19. Total current consumption and timing in Low power run mode at V
= 1.8 V to
DD
3.6 V
Symbol Parameter
Conditions
all peripherals OFF
LSI RC osc. (at 38 kHz)
with TIM2 active
I
DD(LPR)
Supply current in Low power run mode
all peripherals OFF
(3)
LSE
external clock (32.768 kHz)
with TIM2 active
1. No floating I/Os
2. Timer 2 clock enabled and counter running
3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE consumption ) must be added. Refer to Table 29
(I
DD LSE
(1)
(2)
(2)
Typ Ma x Unit
= -40 °C
T
A
to 25 °C
T
= 55 °C 5.7 6
A
= 85 °C 6.8 7.5
T
A
T
= -40 °C
A
to 25 °C
T
= 55 °C 6.0 6.3
A
= 85 °C 7.2 7.8
T
A
TA = -40 °C to 25 °C
T
= 55 °C 5.67 6.1
A
= 85 °C 5.85 6.3
T
A
TA = -40 °C to 25 °C
T
= 55 °C 6.10 6.4
A
= 85 °C 6.30 7
T
A
5.1 5.4
5.4 5.7
5.25 5.6
5.59 6
μA
Figure 10. Typ. I
[μA]
DD(LPR)LSI
I
DD(LPR)
vs. V
18
16
14
12
10
8
6
4
2
0
1. 8 2.1 2.6 3.1 3.6
(LSI clock source)
DD
V
DD
62/102 Doc ID 023331 Rev 1
[V]
–40° C
25° C
85° C
ai18216V2
STM8L052C6 Electrical parameters
0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
1.8 2.1 2.6
3.1 3.6
V
DD
[V]
I
DD(LPW )LSI
[µA]
-40°C
25°C
85°C
ai18217V2
In the following table, data is based on characterization results, unless otherwise specified.
Table 20. Total current consumption in Low power wait mode at V
Symbol Parameter
Conditions
(1)
= 1.8V to 3.6V
DD
Typ Max Uni t
I
DD(LPW)
Supply current in Low power wait mode
LSI RC osc. (at 38 kHz)
LSE external
(3)
clock (32.768 kHz)
all peripherals OFF
with TIM2 active
(2)
all peripherals OFF
with TIM2 active
(2)
TA = -40 °C to 25 °C
T
= 55 °C 3.3 3.6
A
= 85 °C 4.4 5
T
A
= -40 °C to 25 °C
T
A
T
= 55 °C 3.7 4
A
= 85 °C 4.8 5.4
T
A
T
= -40 °C to 25 °C
A
T
= 55 °C 2.42 2.82
A
= 85 °C 3.10 3.71
T
A
TA = -40 °C to 25 °C
= 55 °C 2.50 2.81
T
A
= 85 °C 3.16 3.82
T
A
33.3
3.4 3.7
2.35 2.7
2.46 2.75
1. No floating I/Os.
2. Timer 2 clock enabled and counter is running.
3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE consumption ) must be added. Refer to Table 29.
(I
DD LSE
Figure 11. Typ. I
DD(LPW)
vs. V
(LSI clock source)
DD
μA
Doc ID 023331 Rev 1 63/102
Electrical parameters STM8L052C6
In the following table, data is based on characterization results, unless otherwise specified.
Table 21. Total current consumption and timing in Active-halt mode at V
Symbol Parameter
Conditions
(1)
= 1.8 V to 3.6 V
DD
Typ Max Unit
I
DD(AH)
I
DD(AH)
Supply current in Active-halt mode
Supply current in Active-halt mode
Supply current during
I
DD(WUFAH)
wakeup time from Active-halt mode (using HSI)
Wakeup time from
(8)(9)
t
WU_HSI(AH)
Active-halt mode to Run mode (using HSI)
Wakeup time from
(9)
(8)
Active-halt mode to Run mode (using LSI)
t
WU_LSI(AH)
1. No floating I/O, unless otherwise specified.
2. RTC enabled. Clock source = LSI
3. RTC enabled, LCD enabled with external V
LSI RC
(at 38 kHz)
LSE external clock (32.768 kHz)
(6)
LCD OFF
(2)
LCD ON (static duty/ external
(3)
)
V
LCD
LCD ON (1/4 duty/ external
(4)
)
V
LCD
LCD ON (1/4 duty/ internal
(5)
V
)
LCD
LCD OFF
(7)
LCD ON (static duty/ external
(3)
V
)
LCD
LCD ON (1/4 duty/ external
(4)
)
V
LCD
LCD ON (1/4 duty/ internal
(5)
V
)
LCD
TA = -40 °C to 25 °C
T
= 55 °C 1.2 3
A
= 85 °C 1.5 3.4
T
A
TA = -40 °C to 25 °C
T
= 55 °C 1.5 3.3
A
= 85 °C 1.9 4.3
T
A
TA = -40 °C to 25 °C
T
= 55 °C 1.95 4.4
A
= 85 °C 2.4 5.4
T
A
TA = -40 °C to 25 °C
= 55 °C 4.15 9.3
T
A
= 85 °C 4.5 10.2
T
A
TA = -40 °C to 25 °C
T
= 55 °C 0.62 1.4
A
= 85 °C 0.88 2.1
T
A
TA = -40 °C to 25 °C
= 55 °C 0.95 2.2
T
A
= 85 °C 1.3 3.2
T
A
TA = -40 °C to 25 °C
T
= 55 °C 1.6 3.8
A
= 85 °C 1.8 4.2
T
A
TA = -40 °C to 25 °C
= 55 °C 3.7 8.3
T
A
= 85 °C 3.9 9.2
T
A
0.9 2.1
1.4 3.1
1.9 4.3
3.9 8.75
0.5 1.2
0.85 1.9
1.5 2.5
3.4 7.6
2.4 mA
4.7 7 μs
150 μs
= 3 V, static duty, division ratio = 256, all pixels active, no LCD connected.
LCD
μA
μA
64/102 Doc ID 023331 Rev 1
STM8L052C6 Electrical parameters
4. RTC enabled, LCD enabled with external V
5. LCD enabled with internal LCD booster V
connected.
6. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE consumption
7. RTC enabled. Clock source = LSE.
8. Wakeup time until start of interrupt vector fetch.
9. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.
Table 22. Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal
) must be added. Refer to Table 29.
(I
DD LSE
The first word of interrupt routine is fetched 4 CPU cycles after t
Symbol Parameter Condition
, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.
LCD
= 3 V , 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD
LCD
.
WU
(1)
Typ Unit
LSE 1.15
V
= 1.8 V
I
DD(AH)
(2)
Supply current in Active-halt mode
V
DD
DD
= 3 V
(3)
LSE/32
LSE 1.30
(3)
LSE/32
1.05
µA
1.20
LSE 1.45
V
= 3.6 V
DD
1. No floating I/O, unless otherwise specified.
2. Based on measurements on bench with 32.768 kHz external crystal oscillator.
3. RTC clock is LSE divided by 32.
LSE/32
(3)
1.35
In the following table, data is based on characterization results, unless otherwise specified.
Table 23. Total current consumption and timing in Halt mode at V
t
WU_HSI(Halt)
t
WU_LSI(Halt)
1. TA = -40 to 85 °C, no floating I/O, unless otherwise specified.
2. Tested in production.
3. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.
4. Wakeup time until start of interrupt vector fetch.
The first word of interrupt routine is fetched 4 CPU cycles after t
Symbol Parameter Condition
TA = -40 °C to 25 °C 350
TA = 85 °C 1160
I
DD(Halt)
Supply current in Halt mode (Ultra-low-power ULP bit =1 in
PWR_CSR2 register)
the
Supply current during wakeup
I
DD(WUHalt)
time from Halt mode (using HSI)
(3)(4)
Wakeup time from Halt to Run mode (using HSI)
(3)(4)
Wakeup time from Halt mode to Run mode (using LSI)
.
WU
(1)
= 1.8 to 3.6 V
DD
Typ Max Unit
1400
2800
2.4 mA
4.7 7 µs
150 µs
(2)
nATA = 55 °C 580 2000
(2)
Doc ID 023331 Rev 1 65/102
Electrical parameters STM8L052C6
Current consumption of on-chip peripherals
Table 24. Peripheral current consumption
Symbol Parameter
I
DD(TIM1)
I
DD(TIM2)
I
DD(TIM3)
I
DD(TIM4)
I
DD(USART1)
I
DD(SPI1)
I
DD(I2C1)
I
DD(DMA1)
I
DD(WWDG)
I
DD(ALL)
I
DD(ADC1)
I
DD(PVD/BOR)
I
DD(BOR)
TIM1 supply current
TIM2 supply current
TIM3 supply current
TIM4 timer supply current
USART1 supply current
SPI1 supply current
I2C1 supply current
DMA1 supply current
WWDG supply current
Peripherals ON
ADC1 supply current
Power voltage detector and brownout Reset unit supply current
(5)
Brownout Reset unit supply current
(1)
(1)
(1)
(1)
(2)
(2)
(2)
(2)
(2)
(3)
(4)
(5)
including LSI supply
I
DD(IDWDG)
Independent watchdog supply current
current
excluding LSI supply current
1. Data based on a differential IDD measurement between all peripherals OFF and a timer counter running at 16 MHz. The
CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production.
2. Data based on a differential I
the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling. Not tested in production.
3. Peripherals listed above the I
4. Data based on a differential I
5. Including supply current of internal reference voltage.
measurement between the on-chip peripheral in reset configuration and not clocked and
DD
parameter ON: TIM1, TIM2, TIM3, TIM4, USART1, SPI1, I2C1, DMA1, WWDG.
DD(ALL)
measurement between ADC in reset configuration and continuous ADC conversion.
DD
Typ.
= 3.0 V
V
DD
13
8
8
3
6
3
5
3
2
44 µA/MHz
1500
2.6
2.4
0.45
0.05
Unit
µA/MHz
µA
Table 25. Current consumption under external reset
Symbol Parameter Conditions Typ Unit
V
= 1.8 V 48
I
DD(RST)
1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset.
Supply current under
external reset
(1)
All pins are externally tied to V
DD
DD
= 3 V 76
DD
= 3.6 V 91
V
DD
66/102 Doc ID 023331 Rev 1
µAV
STM8L052C6 Electrical parameters

8.3.4 Clock and timing characteristics

HSE external clock (HSEBYP = 1 in CLK_ECKCR)
Subject to general operating conditions for VDD and TA.
Table 26. HSE external clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
HSE_ext
V
HSEH
V
HSEL
C
in(HSE)
I
LEAK_HSE
1. Data guaranteed by Design, not tested in production.
External clock source
frequency
(1)
OSC_IN input pin high level voltage
OSC_IN input pin low level voltage
OSC_IN input
capacitance
(1)
OSC_IN input leakage current
116MHz
0.7 x V
V
SS
DD
V
0.3 x V
2.6 pF
V
< V
IN
< V
DD
SS
LSE external clock (LSEBYP=1 in CLK_ECKCR)
Subject to general operating conditions for VDD and TA.
LSEL
in(LSE)
(2)
(2)
External clock source frequency
(1)
OSC32_IN input pin high level voltage 0.7 x V
OSC32_IN input pin low level voltage V
OSC32_IN input capacitance
(1)
SS
32.768 kHz
DD
0.3 x V
0.6 pF
V
DD
OSC32_IN input leakage current ±1 µA
Table 27. LSE external clock characteristics
Symbol Parameter Min Typ Max Unit
f
LSE_ext
V
LSEH
V
C
I
LEAK_LSE
1. Data guaranteed by Design, not tested in production.
2. Data based on characterization results, not tested in production.
DD
V
DD
±1 µA
V
DD
Doc ID 023331 Rev 1 67/102
Electrical parameters STM8L052C6
OSC_OUT
OSC_IN
f
HSE
to core
C
L1
C
L2
R
F
STM8
Resonator
Consumption
control
g
m
R
m
C
m
L
m
C
O
Resonator
g
mcrit
2 Π× f
HSE
×()
2
Rm× 2Co C+()
2
=
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).
Table 28. HSE oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
HSE
R
C
I
DD(HSE)
g
t
SU(HSE)
1. C=
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small R
Refer to crystal manufacturer for more details
High speed external oscillator frequency
Feedback resistor 200 kΩ
F
(1)
Recommended load capacitance
(2)
C = 20 pF,
f
= 16 MHz
HSE oscillator power consumption
OSC
C = 10 pF,
=16 MHz
f
OSC
Oscillator transconductance 3.5
m
(4)
Startup time VDD is stabilized 1 ms
C
=
C
is approximately equivalent to 2 x crystal C
L1
L2
LOAD
.
116MHz
20 pF
2.5 (startup)
0.7 (stabilized)
2.5 (startup)
0.46 (stabilized)
(3)
3. Data guaranteed by Design. Not tested in production.
4. t
is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This
SU(HSE)
value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
Figure 12. HSE oscillator circuit diagram
value.
m
(3)
mA
(3)
mA/V
HSE oscillator critical g
Rm: Motional resistance (see crystal specification), Lm: Motional inductance (see crystal specification),
: Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification),
C
m
=C: Grounded external capacitance
C
L1=CL2
>> g
g
m
mcrit
68/102 Doc ID 023331 Rev 1
formula
m
STM8L052C6 Electrical parameters
OSC_OUT
OSC_IN
f
LSE
C
L1
C
L2
R
F
STM8
Resonator
Consumption
control
g
m
R
m
C
m
L
m
C
O
Resonator
LSE crystal/ceramic resonator oscillator
The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).
Table 29. LSE oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
LSE
R
C
I
DD(LSE)
g
t
SU(LSE)
1. C=
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small R
Refer to crystal manufacturer for more details.
Low speed external oscillator frequency
Feedback resistor ΔV = 200 mV 1.2 MΩ
F
(1)
Recommended load capacitance
(2)
32.768 kHz
8pF
1.4
V
= 1.8 V 450
LSE oscillator power consumption
Oscillator transconductance 3
m
(4)
Startup time VDD is stabilized 1 s
C
=
C
is approximately equivalent to 2 x crystal C
L1
L2
DD
= 3 V 600
DD
= 3.6 V 750
V
DD
.
LOAD
(3)
(3)
3. Data guaranteed by Design. Not tested in production.
4. t
is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation.
SU(LSE)
This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
Figure 13. LSE oscillator circuit diagram
value.
m
µA
nAV
µA/V
Doc ID 023331 Rev 1 69/102
Electrical parameters STM8L052C6
13.0
13.5
14.0
14.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
1.65 1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85 3 3.15 3.3 3.45 3.6
V
DD
[V]
HSI
frequency
[MHz]
-40°C 25°C 85°C
ai18218V2
Internal clock sources
Subject to general operating conditions for VDD, and TA.
High speed internal RC oscillator (HSI)
In the following table, data is based on characterization results, not tested in production, unless otherwise specified.
Table 30. HSI oscillator characteristics
Symbol Parameter
Conditions
(1)
Min Typ Max Unit
f
HSI
ACC
TRIM
t
su(HSI)
I
DD(HSI)
1. VDD = 3.0 V, TA = -40 to 85 °C unless otherwise specified.
2. Tested in production.
3. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16
(0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 “STM8L15x internal RC oscillator calibration” application note for more details.
4. Guaranteed by design, not tested in production.
Frequency VDD = 3.0 V 16 MHz
Accuracy of HSI oscillator (factory
HSI
calibrated)
HSI user trimming step
(3)
VDD = 3.0 V, TA = 25 °C -1
1.8 V ≤ V
-40 °C ≤ TA ≤ 85 °C
Trimming code multiple of 16 0.4 0.7 %
Trimming code = multiple of 16 ± 1.5 %
HSI oscillator setup time (wakeup time)
HSI oscillator power consumption
Figure 14. Typical HSI frequency vs V
3.6 V,
DD
DD
(2)
-5 5 %
3.7 6
100 140
(2)
1
(4)
(4)
%
µs
µA
70/102 Doc ID 023331 Rev 1
STM8L052C6 Electrical parameters
25
27
29
31
33
35
37
39
41
43
45
1.8 2.1 2.6 3.1 3.6
V
DD
[V]
LSI
frequency
[kHz]
-40°C 25°C 85°C
ai18219V2
Low speed internal RC oscillator (LSI)
In the following table, data is based on characterization results, not tested in production.
Table 31. LSI oscillator characteristics
Symbol
Parameter
(1)
Conditions
(1)
Min Typ Max Unit
f
t
su(LSI)
I
DD(LSI)
1. VDD = 1.8 V to 3.6 V, TA = -40 to 85 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
3. This is a deviation for an individual part, once the initial frequency has been measured.
Figure 15. Typical LSI frequency vs. V
Frequency 26 38 56 kHz
LSI
LSI oscillator wakeup time 200
LSI oscillator frequency
(3)
drift
0 °C ≤ TA ≤ 85 °C -12 11 %
DD
(2)
µs
Doc ID 023331 Rev 1 71/102
Electrical parameters STM8L052C6

8.3.5 Memory characteristics

TA = -40 to 85 °C unless otherwise specified.
Table 32. RAM and hardware registers
Symbol Parameter Conditions Min Typ Max Unit
V
RM
1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware registers (only in Halt mode). Guaranteed by characterization, not tested in production.
Data retention mode
Flash memory
Table 33. Flash program and data EEPROM memory
(1)
Halt mode (or Reset) 1.8 V
Symbol Parameter Conditions Min Typ
V
Operating voltage
DD
(all modes, read/write/erase)
f
SYSCLK
= 16 MHz 1.8 3.6 V
Programming time for 1 or 64 bytes (block) erase/write cycles (on programmed byte)
t
prog
Programming time for 1 to 64 bytes (block) write cycles (on erased byte)
T
=+25 °C, VDD = 3.0 V
I
Programming/ erasing consumption
prog
Data retention (program memory) after 100 erase/write cycles at TA= –40 to +85 °C
(2)
t
RET
Data retention (data memory) after 100000 erase/write cycles at T
= –40 to +85 °C
A
Erase/write cycles (program memory)
(3)
N
RW
Erase/write cycles
1. Data based on characterization results, not tested in production.
2. Conforming to JEDEC JESD22a117
3. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte.
4. Data based on characterization performed on the whole data memory.
(data memory)
A
=+25 °C, VDD = 1.8 V
T
A
T
= +85 °C 30
RET
= +85 °C 30
T
RET
TA = –40 to +85 °C
100
100
(1)
(1)
(1)
(1)
(4)
Max
(1)
6ms
3ms
0.7 mA
years
cycles
kcycles
Unit

8.3.6 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below VSS or above V in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.
72/102 Doc ID 023331 Rev 1
(for standard pins) should be avoided during normal product operation. However,
DD
STM8L052C6 Electrical parameters
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, LCD levels, etc.).
The test results are given in the following table.
Table 34. I/O current injection susceptibility
Functional susceptibility
Symbol Description
Negative injection
Positive
injection
Unit
Injected current on true open-drain pins (PC0 and PC1)
I
INJ
Injected current on all five-volt tolerant (FT) pins -5 +0
Injected current on all 3.6 V tolerant (TT) pins -5 +0
Injected current on any other pin -5 +5

8.3.7 I/O port pin characteristics

General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.
-5 +0
mA
Doc ID 023331 Rev 1 73/102
Electrical parameters STM8L052C6
Table 35. I/O static characteristics
Symbol Parameter
Input voltage on true open-drain pins (PC0 and PC1)
Input voltage on five-volt tolerant (FT) pins (PA7 and
V
Input low level voltage
IL
(2)
PE0)
Input voltage on 3.6 V tolerant (TT) pins
Input voltage on any other pin
Input voltage on true open-drain pins (PC0 and PC1) with VDD < 2 V
Input voltage on true open-drain pins (PC0 and PC1) with V
Input voltage on five-volt tolerant (FT) pins (PA7 and PE0)
V
Input high level voltage
IH
(2)
with V
Input voltage on five-volt tolerant (FT) pins (PA7 and PE0) with VDD 2 V
Conditions
2 V
DD
< 2 V
DD
(1)
Min
Typ
VSS-0.3 0.3 x V
-0.3 0.3 x V
V
SS
VSS-0.3 0.3 x V
V
-0.3 0.3 x V
SS
0.70 x V
0.70 x V
DD
DD
Max Unit
DD
DD
V
DD
DD
5.2
5.5
5.2 V
5.5
Input voltage on 3.6 V tolerant (TT) pins
Input voltage on any other pin
V
Schmitt trigger voltage
hys
hysteresis
(3)
I/Os 200
True open drain I/Os 200
V
VIN≤ V
SS
DD
High sink I/Os
V
VIN≤ V
I
Input leakage current
lkg
(4)
SS
True open drain I/Os
V
VIN≤ V
SS
DD
DD
PA0 with high sink LED driver
0.70 x V
DD
--50
- - 200
- - 200
capability
R
C
1. VDD = 3.0 V, TA = -40 to 85 °C unless otherwise specified.
2. Data based on characterization results, not tested in production.
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. Not tested in production.
Weak pull-up equivalent
PU
resistor
I/O pin capacitance 5 pF
IO
(2)(6)
V
IN=VSS
30 45 60 kΩ
3.6
VDD+0.3
mV
(5)
(5)
nA
(5)
74/102 Doc ID 023331 Rev 1
STM8L052C6 Electrical parameters
0
0.5
1
1.5
2
2.5
3
1.8 2.1 2.6 3.1 3.6 V
DD
[V]
V
IL
and
V
IH
[V]
-40°C 25°C 85°C
ai18220V2
0
0.5
1
1.5
2
2.5
3
1.8 2.1 2.6 3.1 3.6
V
DD
[V]
V
IL
and V
IH
[V]
-40°C 25°C 85°C
ai18221V2
6. RPU pull-up equivalent resistor based on a resistive transistor(corresponding I
Figure 19).
Figure 16. Typical VIL and V
Figure 17. Typical V
and V
IL
vs VDD (high sink I/Os)
IH
vs VDD (true open drain I/Os)
IH
current characteristics described in
PU
Doc ID 023331 Rev 1 75/102
Electrical parameters STM8L052C6
30
35
40
45
50
55
60
1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
V
DD
[V]
Pull-Up resistance [k
Ω
]
-40°C 25°C 85°C
ai18222V2
0
20
40
60
80
100
120
1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85 3 3.15 3.3 3.45 3.6 V
DD
[V]
Pull-Up current [μA]
-40°C 25°C 85°C
ai18223V2
Figure 18. Typical pull-up resistance RPU vs VDD with VIN=V
Figure 19. Typical pull-up current Ipu vs VDD with VIN=V
SS
SS
76/102 Doc ID 023331 Rev 1
STM8L052C6 Electrical parameters
Output driving current
Subject to general operating conditions for V
Table 36. Output driving current (high sink ports)
I/O
Symbol Parameter Conditions Min Max Unit
Type
(1)
V
High sink
V
OH
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13 and the sum of I
(I/O ports and control pins) must not exceed I
IO
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 13 and the sum of I
IO
Output low level voltage for an I/O pin
OL
(2)
Output high level voltage for an I/O pin
(I/O ports and control pins) must not exceed I
and TA unless otherwise specified.
DD
= +2 mA,
I
IO
= 3.0 V
V
DD
= +2 mA,
I
IO
= 1.8 V
V
DD
= +10 mA,
I
IO
= 3.0 V
V
DD
= -2 mA,
I
VSS
.
VDD
.
IO
= 3.0 V
V
DD
= -1 mA,
I
IO
= 1.8 V
V
DD
I
= -10 mA,
IO
V
= 3.0 V
DD
VDD-0.45
V
-0.45
DD
V
-0.7 V
DD
0.45 V
0.45 V
0.7 V
V
V
Table 37. Output driving current (true open drain ports)
I/O
Symbol Parameter Conditions Min Max Unit
Type
= +3 mA,
I
IO
V
= 3.0 V
(1)
V
Output low level voltage for an I/O pin
OL
Open drain
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13 and the sum of I
(I/O ports and control pins) must not exceed I
IO
VSS
.
DD
I
= +1 mA,
IO
V
DD
= 1.8 V
0.45
0.45
Table 38. Output driving current (PA0 with high sink LED driver capability)
I/O
Symbol Parameter Conditions Min Max Unit
Type
= +20 mA,
I
(1)
V
IR
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 13 and the sum of IIO (I/O ports and control pins) must not exceed I
Output low level voltage for an I/O pin
OL
VSS
.
V
IO
DD
= 2.0 V
0.45 V
V
Doc ID 023331 Rev 1 77/102
Electrical parameters STM8L052C6
0
0.25
0.5
0.75
1
02468101214161820
I
OL
[mA]
V
OL
[V]
-40°C
25°C
85°C
ai18226V2
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0123456 78
I
OL
[mA]
V
OL
[V]
-40°C
25°C
85°C
ai18227V2
ai18228V2
0
0.1
0.2
0.3
0.4
0.5
01234567
I
OL
[mA]
V
OL
[V]
-40°C
25°C
85°C
0
0.1
0.2
0.3
0.4
0.5
01234567
I
OL
[mA]
V
OL
[V]
-40°C
25°C
85°C
BJ7
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
0 2 4 6 8 101214161820
I
OH
[mA]
V
DD
- V
OH
[V]
-40°C
25°C
85°C
ai12830V2
0
0.1
0.2
0.3
0.4
0.5
012345 67
I
OH
[mA]
V
DD
- V
OH
[V]
-40°C
25°C
85°C
BJ7
Figure 20. Typ. VOL @ VDD = 3.0 V (high sink
ports)
Figure 22. Typ. VOL @ VDD = 3.0 V (true open
drain ports)
Figure 21. Typ. VOL @ VDD = 1.8 V (high sink
ports)
Figure 23. Typ. VOL @ VDD = 1.8 V (true open
drain ports)
Figure 24. Typ. V
DD - VOH
sink ports)
78/102 Doc ID 023331 Rev 1
@ VDD = 3.0 V (high
Figure 25. Typ. V
sink ports)
DD - VOH
@ VDD = 1.8 V (high
STM8L052C6 Electrical parameters
30
35
40
45
50
55
60
1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 V
DD
[V]
Pull-up
resistance
[k
Ω
]
-40°C 25°C 85°C
ai18224V2
NRST pin
Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 39. NRST
Symbol Parameter Conditions Min
pin characteristics
Typ
Max Unit
V
IL(NRST)
V
IH(NRST)
NRST input low level voltage
NRST input high level voltage
(1)
(1)
IOL = 2 mA for 2.7 V ≤ V V
(3)
(3)
(1)
I
= 1.5 mA
OL
for V
DD
V
OL(NRST)
V
HYST
R
PU(NRST)
V
F(NRST)
V
NF(NRST)
1. Data based on characterization results, not tested in production.
2. 200 mV min.
3. Data guaranteed by design, not tested in production.
NRST output low level voltage
NRST input hysteresis
(3)
NRST pull-up equivalent resistor
(1)
NRST input filtered pulse
NRST input not filtered pulse
Figure 26. Typical NRST pull-up resistance RPU vs VDD
DD
< 2.7 V
3.6
V
1.4
SS
0.8
V
DD
0.4
10%V
DD
(2)
30 45 60 kΩ
50
300
V
mV
ns
Doc ID 023331 Rev 1 79/102
Electrical parameters STM8L052C6
ai18225V2
0
20
40
60
80
100
120
1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85 3 3.15 3.3 3.45 3.6
V
DD
[V]
Pull-U
p current [ μA]
-40°C
25°C
85
°C
EXTERNAL
RESET
CIRCUIT
STM8
Filter
R
PU
V
DD
INTERNAL RESET
NRST
0.1 µF
(Optional)
Figure 27. Typical NRST pull-up current Ipu vs VDD
The reset network shown in Figure 28 protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the V
IL(NRST)
max. level specified
in Ta bl e 3 9 . Otherwise the reset is not taken into account internally.
For power consumption sensitive applications, the external reset capacitor value can be reduced to limit the charge/discharge current. If the NRST signal is used to reset the external circuitry, attention must be paid to the charge/discharge time of the external capacitor to fulfill the external devices reset timing conditions. The minimum recommended capacity is 10 nF.
Figure 28. Recommended NRST pin configuration
80/102 Doc ID 023331 Rev 1
STM8L052C6 Electrical parameters

8.3.8 Communication interfaces

SPI1 - Serial peripheral interface
Unless otherwise specified, the parameters given in Ta bl e 4 0 are derived from tests performed under ambient temperature, f conditions summarized in Section 8.3.1. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 40. SPI1 characteristics
Symbol Parameter Conditions
SYSCLK
frequency and VDD supply voltage
(1)
Min Max Unit
f
SCK
1/t
c(SCK)
t
r(SCK)
t
f(SCK)
t
su(NSS)
t
h(NSS)
t
w(SCKH)
t
w(SCKL)
t
su(MI)
t
su(SI)
t
h(MI)
t
h(SI)
t
a(SO)
t
dis(SO)
t
v(SO)
t
v(MO)
t
h(SO)
t
h(MO)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)(3)
(2)(4)
(2)
(2)
(2)
(2)
SPI1 clock frequency
Master mode 0 8
Slave mode 0 8
SPI1 clock rise and fall time
NSS setup time Slave mode 4 x 1/f
Capacitive load: C = 30 pF - 30 ns
SYSCLK
NSS hold time Slave mode 80 -
(2)
SCK high and low time
Master mode,
MASTER
= 8 MHz, f
f
SCK
= 4 MHz
105 145
Master mode 30 -
Data input setup time
Slave mode 3 -
Master mode 15 -
Data input hold time
Slave mode 0 -
Data output access time Slave mode - 3x 1/f
Data output disable time Slave mode 30 -
Data output valid time Slave mode (after enable edge) - 60
Data output valid time
Master mode (after enable edge)
-20
Slave mode (after enable edge) 15 -
Data output hold time
Master mode (after enable edge)
1-
MHz
-
SYSCLK
1. Parameters are given by selecting 10 MHz I/O output frequency.
2. Values based on design simulation and/or characterization results, and not tested in production.
3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.
4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.
Doc ID 023331 Rev 1 81/102
Electrical parameters STM8L052C6
ai14134
SCK Input
CPHA=0
MOSI
INPUT
MISO
OUT PUT
CPHA=0
MS B O U T
MSB IN
BI T6 O UT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSS input
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT PUT
CPHA=1
MS B O U T
MSB IN
BI T6 O UT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
NSS input
Figure 29. SPI1 timing diagram - slave mode and CPHA=0
Figure 30. SPI1 timing diagram - slave mode and CPHA=1
1. Measurement points are done at CMOS levels: 0.3V
and 0.7V
DD
DD
.
(1)
82/102 Doc ID 023331 Rev 1
STM8L052C6 Electrical parameters
ai14136
SCK output
CPHA=0
MOSI
OUTUT
MISO
INP U T
CPHA=0
MSBIN
M SB OUT
BIT6 IN
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
t
c(SCK)
t
w(SCKH)
t
w(SCKL)
t
r(SCK)
t
f(SCK)
t
h(MI)
High
SCK output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
t
su(MI)
t
v(MO)
t
h(MO)
Figure 31. SPI1 timing diagram - master mode
(1)
1. Measurement points are done at CMOS levels: 0.3V
and 0.7V
DD
DD
.
Doc ID 023331 Rev 1 83/102
Electrical parameters STM8L052C6
I2C - Inter IC control interface
Subject to general operating conditions for V
The STM8L I
2
C interface (I2C1) meets the requirements of the Standard I2C communication
DD
, f
SYSCLK
, and TA unless otherwise specified.
protocol described in the following table with the restriction mentioned below:
Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).
Table 41. I2C characteristics
Symbol Parameter
t
w(SCLL)
t
w(SCLH)
t
su(SDA)
t
h(SDA)
t
r(SDA)
t
r(SCL)
t
f(SDA)
t
f(SCL)
t
h(STA)
t
su(STA)
t
su(STO)
t
w(STO:STA)
C
1. f
SYSCLK
Data based on standard I
2.
SCL clock low time 4.7 1.3
SCL clock high time 4.0 0.6
SDA setup time 250 100
SDA data hold time 0 0 900
SDA and SCL rise time 1000 300
SDA and SCL fall time 300 300
START condition hold time 4.0 0.6
Repeated START condition setup time
STOP condition setup time 4.0 0.6 μs
STOP to START condition time (bus free)
Capacitive load for each bus line 400 400 pF
b
must be at least equal to 8 MHz to achieve max fast I2C speed (400 kHz).
2
C protocol requirement, not tested in production.
Standard mode
I2C
(2)
Min
Max
(2)
Fast mode I
(2)
Min
4.7 0.6
4.7 1.3 μs
2C(1)
Max
(2)
Unit
μs
ns
μs
Note: For speeds around 200 kHz, the achieved speed can have a± 5% tolerance
For other speed ranges, the achieved speed can have a± 2% tolerance The above variations depend on the accuracy of the external components used.
84/102 Doc ID 023331 Rev 1
STM8L052C6 Electrical parameters
REPEATED START
START
STOP
START
t
f(SDA)
t
r(SDA)
t
su(SDA)th(SDA)
t
f(SCL)
t
r(SCL)
t
w(SCLL)
t
w(SCLH)
t
h(STA)
t
su(STO)
t
su(STA)tw(STO:STA)
SDA
SCL
4.7kΩ SDA
STM8L
SCL
V
DD
100Ω
100Ω
V
DD
4.7kΩ
I2CBUS
2
Figure 32.
Typical application with I
C bus and timing diagram
1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x V
1)
DD
Doc ID 023331 Rev 1 85/102
Electrical parameters STM8L052C6

8.3.9 LCD controller

In the following table, data is guaranteed by design. Not tested in production.
Table 42. LCD characteristics
Symbol Parameter Min Typ Max. Unit
V
LCD
V
LCD0
V
LCD1
V
LCD2
V
LCD3
V
LCD4
V
LCD5
V
LCD6
V
LCD7
C
EXT
I
DD
(2)
R
HN
(3)
R
LN
V
33
V
23
V
12
V
13
V
0
1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels active, no LCD connected.
2. RHN is the total high value resistive network.
3. RLN is the total low value resistive network.
High value resistive network (low drive) 6.6 MΩ
Low value resistive network (high drive) 360 kΩ
Segment/Common higher level voltage V
Segment/Common lowest level voltage 0 V
LCD external voltage 3.6 V
LCD internal reference voltage 0 2.6 V
LCD internal reference voltage 1 2.7 V
LCD internal reference voltage 2 2.8 V
LCD internal reference voltage 3 2.9 V
LCD internal reference voltage 4 3.0 V
LCD internal reference voltage 5 3.1 V
LCD internal reference voltage 6 3.2 V
LCD internal reference voltage 7 3.3 V
V
external capacitance 0.1 2 µF
LCD
Supply current
Supply current
Segment/Common 2/3 level voltage 2/3V
Segment/Common 1/2 level voltage 1/2V
Segment/Common 1/3 level voltage 1/3V
(1)
at VDD = 1.8 V
(1)
at VDD = 3 V 3 µA
A
LCDx
LCDx
LCDx
LCDx
V
V
V
V
VLCD external capacitor
The application can achieve a stabilized LCD reference voltage by connecting an external capacitor C
86/102 Doc ID 023331 Rev 1
EXT
to the V
LCD
pin. C
is specified in Ta bl e 4 2 .
EXT
STM8L052C6 Electrical parameters

8.3.10 Embedded reference voltage

In the following table, data is based on characterization results, not tested in production, unless otherwise specified.
Table 43. Reference voltage characteristics
Symbol Parameter Conditions Min Typ Max. Unit
I
REFINT
T
S_VREFINT
I
BUF
V
REFINT out
I
LPBUF
I
REFOUT
C
REFOUT
t
VREFINT
t
BUFEN
ACC
STAB
(1)(2)
(2)
(2)
(2)
(2)
VREFINT
VREFINT
Internal reference voltage consumption
ADC sampling time when reading the internal reference voltage
Internal reference voltage buffer consumption (used for ADC)
Reference voltage output 1.202
Internal reference voltage low power buffer consumption
Buffer output current
(4)
1.4 µA
51s
13.5 25 µA
(3)
1.224 1.242
730 1200 nA
(3)
A
Reference voltage output load 50 pF
Internal reference voltage startup time
Internal reference voltage buffer startup time once enabled
Accuracy of V
REFINT
VREFINT_Factory_CONV byte
Stability of V
REFINT
(1)
stored in the
over
(5)
temperature
Stability of V
REFINT
over
temperature
-40 °C ≤ TA ≤ 85 °C
0 °C ≤ TA ≤ 50
°C
23ms
10 µs
± 5 mV
20 50 ppm/°C
20 ppm/°C
V
STAB
VREFINT
1. Defined when ADC output reaches its final value ±1/2LSB
2. Data guaranteed by Design. Not tested in production.
3. Tested in production at V
4. To guaranty less than 1%
5. Measured at V
Stability of V hours
= 3 V ±10 mV.
DD
V
REFOUT
= 3 V ±10 mV. This value takes into account VDD accuracy and ADC conversion accuracy.
DD
REFINT
deviation.
after 1000
Doc ID 023331 Rev 1 87/102
TBD ppm
Electrical parameters STM8L052C6

8.3.11 12-bit ADC1 characteristics

In the following table, data is guaranteed by design, not tested in production.
Table 44. ADC1 characteristics
Symbol Parameter Conditions Min Typ Max Unit
V
DDA
V
REF+
V
REF-
I
VDDA
I
VREF+
V
AIN
T
R
AIN
C
ADC
f
ADC
f
CONV
Analog supply voltage 1.8 3.6 V
Reference supply voltage
Lower reference voltage
Current on the VDDA input pin
2.4 V V
1.8 V V
3.6 V
DDA
2.4 V V
DDA
2.4
V
DDA
DDA
V
SSA
1000 1450 µA
700
Current on the VREF+ input pin
400
(peak)
450
(average)
Conversion voltage range
Temperature range -40 85 °C
A
External resistance on V
AIN
Internal sample and hold capacitor
ADC sampling clock frequency
on PF0 fast channel
on all other channels
on PF0 fast channel
on all other channels
2.4 V≤ V
DDA
3.6 V
without zooming
1.8 VV
DDA
2.4 V
with zooming
V
on PF0 fast
AIN
channel
(2)
0
V
REF+
50
16 pF
0.320 16 MHz
0.320 8 MHz
(4)(5)
1
12-bit conversion rate
V
on all other
AIN
channels
760
(1)
(3)
(4)(5)
(1)
V
V
V
µA
µA
kΩ
MHz
kHz
f
TRIG
t
LAT
External trigger frequency
External trigger latency 3.5 1/f
88/102 Doc ID 023331 Rev 1
t
conv
1/f
ADC
SYSCLK
STM8L052C6 Electrical parameters
Table 44. ADC1 characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
V
on PF0 fast
t
S
t
conv
t
WKUP
t
IDLE
t
VREFINT
Sampling time
12-bit conversion time
Wakeup time from OFF state
Time before a new
(6)
conversion
Internal reference voltage startup time
AIN
channel
< 2.4 V
V
DDA
on PF0 fast
V
AIN
channel
2.4 V V
on slow channels
V
AIN
V
DDA
V
on slow channels
AIN
2.4 V V
3.6 V
DDA
< 2.4 V
3.6 V
DDA
16 MHz 1
= +25 °C 1
T
A
T
= +70 °C 20
A
0.43
0.22
0.86
0.41
(4)(5)
(4)(5)
(4)(5)
(4)(5)
12 + t
(4)
S
µs
µs
µs
µs
1/f
ADC
µs
s
(7)
(7)
refer to
Ta bl e 4 3
s
ms
ms
1. The current consumption through V
- one constant (max 300 µA)
- one variable (max 400 µA), only during sampling time + 2 first conversion pulses. So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at 1Msps
2. V
3. Guaranteed by design, not tested in production.
4. Minimum sampling and conversion time is reached for maximum Rext = 0.5 kΩ.
5. Value obtained for continuous conversion on fast channel.
6. The time between 2 conversions, or between ADC ON and the first conversion must be lower than t
7. The t
REF-
or V
IDLE
must be tied to ground.
DDA
maximum value is on the “Z” revision code of the device.
is composed of two parameters:
REF
IDLE.
Doc ID 023331 Rev 1 89/102
Electrical parameters STM8L052C6
In the following three tables, data is guaranteed by characterization result, not tested in production.
Table 45. ADC1 accuracy with V
Symbol Parameter Conditions Typ Max Unit
DNL Differential non linearity
INL Integral non linearity
TUE Total unadjusted error
Offset Offset error
Gain Gain error
= 3.3 V to 2.5 V
DDA
= 16 MHz 1 1.6
f
ADC
f
= 8 MHz 1 1.6
ADC
= 4 MHz 1 1.5
f
ADC
= 16 MHz 1.2 2
f
ADC
f
= 8 MHz 1.2 1.8
ADC
= 4 MHz 1.2 1.7
f
ADC
= 16 MHz 2.2 3.0
f
ADC
f
= 8 MHz 1.8 2.5
ADC
= 4 MHz 1.8 2.3
f
ADC
f
= 16 MHz 1.5 2
ADC
= 8 MHz 1 1.5
f
ADC
= 4 MHz 0.7 1.2
f
ADC
f
= 16 MHz
ADC
= 8 MHz
ADC
= 4 MHz
f
ADC
LSB
LSB
11.5f
Table 46. ADC1 accuracy with V
Symbol Parameter Typ Max Unit
DNL Differential non linearity 1 2 LSB
INL
TUE
Integral non linearity
Total unadjusted error
Offset Offset error 1 2 LSB
Gain Gain error 1.5 3 LSB
Table 47. ADC1 accuracy with V
Symbol Parameter Typ Max Unit
DNL Differential non linearity 1 2 LSB
INL
TUE
Integral non linearity
Total unadjusted error
Offset Offset error 2 3 LSB
Gain Gain error 2 3 LSB
= 2.4 V to 3.6 V
DDA
= V
DDA
REF+
= 1.8 V to 2.4 V
1.7 3 LSB
24LSB
23LSB
35LSB
90/102 Doc ID 023331 Rev 1
STM8L052C6 Electrical parameters
E
O
E
G
1LSB
IDEAL
(1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line
E
T
=Total Unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
E
O
=Offset Error: deviation between the first actual
transition and the first ideal one.
E
G
=Gain Error: deviation between the last ideal
transition and the last actual one.
E
D
=Differential Linearity Error: maximum deviation
between actual steps and the ideal one.
E
L
=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.
4095
4094
4093
5
4
3
2
1
0
7
6
1234567
4093 4094 4095 4096
(1)
(2)
E
T
E
D
E
L
(3)
V
DDA
V
SSA
ai14395b
V
REF+
4096
(or depending on package)]
V
DDA
4096
[1LSB
IDEAL =
ai17090e
STM8L05xxx
V
DD
AINx
IL±50 nA
0.6 V
V
T
R
AIN
(1)
C
parasitic
V
AIN
0.6 V
V
T
R
ADC
C
ADC
(1)
12-bit
converter
Sample and hold ADC converter
Figure 33. ADC1 accuracy characteristics
Figure 34. Typical connection diagram using the ADC
1. Refer to Ta b le 4 4 for the values of R
2. C
represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
parasitic
pad capacitance (roughly 7 pF). A high C this, f
should be reduced.
ADC
and C
AIN
Doc ID 023331 Rev 1 91/102
.
ADC
value will downgrade conversion accuracy. To remedy
parasitic
Electrical parameters STM8L052C6
ADC clock
Sampling (n cycles)
Conversion (12 cycles)
I
ref+
300µA
700µA
Figure 35. Maximum dynamic current consumption on V
supply pin during ADC
REF+
conversion
Table 48. R
Ts
(cycles)
AIN
Ts
(µs)
max for f
2.4 V < V
= 16 MHz
ADC
Slow channels Fast channels
< 3.6 V 1.8 V < V
DDA
4 0.25 Not allowed Not allowed 0.7 Not allowed
(1)
R
max (kohm)
AIN
< 2.4 V 2.4 V < V
DDA
< 3.3 V 1.8 V < V
DDA
DDA
< 2.4 V
9 0.5625 0.8 Not allowed 2.0 1.0
16 1 2.0 0.8 4.0 3.0
24 1.5 3.0 1.8 6.0 4.5
48 3 6.8 4.0 15.0 10.0
96 6 15.0 10.0 30.0 20.0
192 12 32.0 25.0 50.0 40.0
384 24 50.0 50.0 50.0 50.0
1. Guaranteed by design, not tested in production.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 36 or Figure 37, depending on whether V
is connected to V
REF+
or not. Good quality ceramic 10 nF
DDA
capacitors should be used. They should be placed as close as possible to the chip.
92/102 Doc ID 023331 Rev 1
STM8L052C6 Electrical parameters
V
REF+
S
STM8L
V
DDA
V
SSA/VREF-
1 μF // 10 nF
F
1 μF // 10 nF
Supply
External
reference
ai17031b
V
REF+/VDDA
STM8L
1 μF // 10 nF
V
REF–/VSSA
ai17032b
Supply
Figure 36. Power supply and reference decoupling (V
// 10 n
Figure 37. Power supply and reference decoupling (V
not connected to V
REF+
TM8L
connected to V
REF+
DDA
DDA
)
)
Doc ID 023331 Rev 1 93/102
Electrical parameters STM8L052C6

8.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device
until a functional disturbance occurs. This test conforms with the IEC 61000 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to V
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000 standard.
A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.
and VSS
DD
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).
Table 49. EMS data
Symbol Parameter Conditions
V
= 3.3 V, TA = +25 °C,
DD
= 16 MHz,
f
CPU
conforms to IEC 61000
= 3.3 V, TA = +25 °C,
V
DD
= 16 MHz,
f
CPU
conforms to IEC 61000
V
FESD
V
EFTB
Voltage limits to be applied on any I/O pin to induce a functional disturbance
Fast transient voltage burst limits to be applied through 100 pF on
and V
V
DD
functional disturbance
pins to induce a
SS
Using HSI
Using HSE 2B
Level/
Class
3B
4A
Electromagnetic interference (EMI)
Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC61967-2 which specifies the board and the loading of each pin.
94/102 Doc ID 023331 Rev 1
STM8L052C6 Electrical parameters
Table 50. EMI data
Symbol Parameter Conditions
S
EMI
1. Not tested in production.
Peak level
(1)
V
DD
TA = +25 °C, LQFP32 conforming to IEC61967-2
= 3.6 V,
Monitored
frequency band
Max vs.
Unit
16 MHz
0.1 MHz to 30 MHz -3
dBμV30 MHz to 130 MHz 9
130 MHz to 1 GHz 4
SAE EMI Level 2 -
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: human body model and charge device model. This test conforms to the JESD22-A114A/A115A standard.
Table 51. ESD absolute maximum ratings
Symbol Ratings Conditions
V
ESD(HBM)
V
ESD(CDM)
1. Data based on characterization results, not tested in production.
Electrostatic discharge voltage (human body model)
Electrostatic discharge voltage (charge device model)
= +25 °C
T
A
Maximum
(1)
value
2000
500
Static latch-up
LU: 3 complementary static tests are required on 6 parts to assess the latch-up
performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.
Table 52. Electrical sensitivities
Symbol Parameter Class
LU Static latch-up class II
Unit
V
Doc ID 023331 Rev 1 95/102
Electrical parameters STM8L052C6

8.4 Thermal characteristics

The maximum chip junction temperature (T
) must never exceed the values given in
Jmax
Table 15: General operating conditions on page 55.
The maximum chip-junction temperature, T
, in degree Celsius, may be calculated using
Jmax
the following equation:
T
Jmax
= T
Amax
+ (P
Dmax
x ΘJA)
Where:
T
Θ
P
P
is the maximum ambient temperature in °C
Amax
is the package junction-to-ambient thermal resistance in °C/W
JA
is the sum of P
Dmax
is the product of I
INTmax
INTmax
DD
and P
I/Omax (PDmax
= P
INTmax
+ P
and VDD, expressed in Watts. This is the maximum chip
I/Omax
)
internal power.
P
represents the maximum power dissipation on output pins
I/Omax
Where: P
I/Omax =
taking into account the actual V
Σ (VOL*IOL) + Σ((VDD-VOH)*I OH),
and VOH/IOH of the I/Os at low and high level in
OL/IOL
the application.

Table 53. Thermal characteristics

Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient LQFP 48- 7 x 7 mm
(1)
65 °C/W
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.
96/102 Doc ID 023331 Rev 1
STM8L052C6 Package characteristics

9 Package characteristics

9.1 ECOPACK

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.
Doc ID 023331 Rev 1 97/102
Package characteristics STM8L052C6
5B_ME
L
A1 K
L1
D
"
"
ccc
$
D
D1
D3
E3
E1 E
24
25
36
37
b
48
1
Pin 1 identification
12
13

9.2 Package mechanical data

9.2.1 48-pin low profile quad flat 7x7mm package (LQFP48)

Figure 38. LQFP48 48-pin low profile quad flat package outline
1. Drawing is not to scale.
Table 54. LQFP48 48-pin low profile quad flat package, mechanical data
mm inches
(1)
Dim.
Min Typ Max Min Typ Max
A 1.6 0.063
A1 0.05 0.15 0.002 0.0059
A2 1.35 1.4 1.45 0.0531 0.0551 0.0571
b 0.17 0.22 0.27 0.0067 0.0087 0.0106
c 0.09 0.2 0.0035 0.0079
D 8.8 9 9.2 0.3465 0.3543 0.3622
D1 6.8 7 7.2 0.2677 0.2756 0.2835
D3 5.5 0.2165
E 8.8 9 9.2 0.3465 0.3543 0.3622
E1 6.8 7 7.2 0.2677 0.2756 0.2835
E3 5.5 0.2165
e 0.5 0.0197
L 0.45 0.6 0.75 0.0177 0.0236 0.0295
L1 1 0.0394
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc 0.08 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
98/102 Doc ID 023331 Rev 1
STM8L052C6 Package characteristics
9.70
5.80
7.30
12
24
0.20
7.30
1
37
36
1.20
5.80
9.70
0.30
25
1.20
0.50
5B_FP
1348
Figure 39. LQFP48 recommended footprint
1. Dimensions are in millimeters.
Doc ID 023331 Rev 1 99/102
Device ordering information STM8L052C6
STM8 L 052 C 6 T 6
Product class
STM8 microcontroller
Pin count
C = 48 pins
Example:
Sub-family type
052 = Ultra-low-power with LCD
Family type
L = Low power
Temperature range
6 = - 40 °C to 85 °C
Program memory size
6 = 32 Kbytes
Package
T = LQFP

10 Device ordering information

Figure 40. Medium density value line STM8L05xxx ordering information scheme

1. For a list of available options (e.g. memory size, package) and orderable part numbers
or for further information on any aspect of this device, please contact the ST sales office nearest to you
100/102 Doc ID 023331 Rev 1
Loading...