This document describes the features of the family and options available within the family
members, and highlights important electrical and physical characteristics of the device.
1.2 Description
This family of 32-bit system-on-chip (SoC) microcontrollers is the latest achievement in
integrated automotive application controllers. It belongs to an expanding family of
automotive-focused products designed to address the next wave of body electronics
applications within the vehicle.
The advanced and cost-efficient e200z0h host processor core of this automotive controller
family complies with the Power Architecture technology and only implements the VLE
(variable-length encoding) APU (Auxiliary Processor Unit), providing improved code density.
It operates at speeds of up to 64 MHz and offers high performance processing optimized for
low power consumption. It capitalizes on the available development infrastructure of current
Power Architecture devices and is supported with software drivers, operating systems and
configuration code to assist with users implementations.
1. Feature set dependent on selected peripheral multiplexing; table shows example
2. Based on 125 °C ambient operating temperature
3. Not shared with 12-bit ADC, but possibly shared with other alternate functions
4. Not shared with 10-bit ADC, but possibly shared with other alternate functions
5. See the eMIOS section of the chip reference manual for information on the channel configuration and functions.
6. Each channel supports a range of modes including Modulus counters, PWM generation, Input Capture, Output Compare.
7. Each channel supports a range of modes including PWM generation with dead time, Input Capture, Output Compare.
8. Each channel supports a range of modes including PWM generation, Input Capture, Output Compare, Period and Pulse
width measurement.
9. Each channel supports a range of modes including PWM generation, Input Capture, and Output Compare.
10. Maximum I/O count based on multiplexing with peripherals
11. LBGA208 available only as development package for Nexus2+
LBGA208
(11)
Doc ID 15131 Rev 69/134
Block diagramSPC560B54/6x
2 Block diagram
Figure 1
shows a top-level block diagram of the SPC560B54/6.
Figure 1.SPC560B54/6 block diagram
JTAG
JTAG Port
Nexus Port
NMI
Clocks
Interrupt
Request
Nexus
Voltage
Regulator
FMPLL
RTC
SIUL
Reset Control
External
Interrupt
Request
IMUX
GPIO &
Pad Control
NMI
SIUL
Interrupt requests
from peripheral
blocks
CMU
SWT
19 ch 10-bit/12-bit
ADC
5 ch 12-bit
ECSM
ADC
e200z0h
Nexus 2+
PITSTM
29 ch 10-bit
ADC
INTC
Instructions
(Master)
Data
(Master)
MPU
Registers
Peripheral Bridge
CTU
(Master)
64 ch
eMIOS
eDMA
64-bit 2 x 3 Crossbar Switch
MPU
10 x
LINFlex
SRAM
96 KB
SRAM
Controller
(Slave)
(Slave)
MC_PCUMC_MEMC_CGMMC_RGM
DSPI
Code Flash
6 x
1.5 MB
WKPU
BAM
I2C
Data Flash
Flash
Controller
(Slave)
request with
functionality
SSCM
FlexCAN
64 KB
Interrupt
wakeup
6 x
I/O
Legend:
ADCAnalog-to-Digital Converter
BAMBoot Assist Module
CMUClock Monitor Unit
CTUCross Triggering Unit
DSPIDeserial Serial Peripheral Interface
ECSMError Correction Status Module
eDMAEnhanced Direct Memory Access
eMIOSEnhanced Modular Input Output System
FlashFlash memory
FlexCAN Controller Area Network
FMPLLFrequency-Modulated Phase-Locked Loop
GPIOGeneral-purpose input/output
2
CInter-Integrated Circuit bus
I
IMUXInternal Multiplexer
INTCInterrupt Controller
JTAGJTAG controller
LINFlexSerial Communication Interface (LIN support)
. . .
. . .
10/134Doc ID 15131 Rev 6
. . .
MC_CGM Clock Generation Module
MC_MEMode Entry Module
MC_PCU Power Control Unit
MC_RGM Reset Generation Module
MPUMemory Protection Unit
NMINon-Maskable Interrupt
PITPeriodic Interrupt Timer
RTCReal-Time Clock
SIULSystem Integration Unit Lite
SRAMStati c Rand om -A cce ss Memory
SSCMSystem Status Configuration Module
STMSystem Timer Module
SWTSoftware Watchdog Timer
VREGVoltage regulator
WKPUWakeup Unit
XBARCrossbar switch
. . .
. . .
SPC560B54/6xBlock diagram
Table 3
Table 3.SPC560B54/6 series block summary
summarizes the functions of the blocks present on the SPC560B54/6.
BlockFunction
Analog-to-digital converter (ADC) Converts analog voltages to digital values
Boot assist module (BAM)
Clock gener ati on mo dul e
(MC_CGM)
A block of read-only memory containing VL E c ode w hi ch is executed according
to the boot mode of the device
Provides logic and control requi red for the generation of system and peripheral
clocks
Clock monitor unit (CMU)Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)
Enables synchro nization of ADC c onve rsions with a timer ev ent from th e eMIOS
or from the PIT
Supports simultaneous connections between two master ports and three slave
Crossbar switch (XBAR)
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus
width.
Deserial serial peripheral
interface (DSPI)
Enhanced Dir ect Me mory Access
(eDMA)
Enhanced modular input output
system (eMIOS)
Provides a synchronous serial interface for communication with external
devices
Performs complex data transfers with minimal intervention from a host
n
processor via “
” programmable channels
Provides the functionality to generate or measure events
Provides a myriad of miscellaneous control functions for the device including
Error Correction Status Module
(ECSM)
program-visible information about configuration and revision levels, a reset
status register, wakeup control for exiting sleep modes, and optional features
such as information on memory errors reported by error-correcting codes
Flash memoryProvides non-volatile storage for program code, constants and variables
FlexCAN (controller area
network)
Frequency-modulated phase-
locked loop (FMPLL)
Inter-integrated circuit (I2C™) bus
Internal multiplexer (IMUX) SIU
subblock
Supports the standard CAN communications protocol
Generates high-speed system clocks and supports programmable frequency
modulation
A two wire bidirectional se rial bus t hat provide s a simple and efficient me thod of
data exchange between devices
Allows flexible mapping of peripheral in terface on the different p ins of the devi ce
Interrupt controller (INTC)Provides priority-based preemptive scheduling of interrupt requests
JTAG controller (JTAGC)
LINFlex co ntr ol ler
Memory protection unit (MPU)
Provides the means to test chip functionality and connectivity while remaining
transparent to system logic when not in test mode
Manages a high number of LIN (Local Interconnect Network protocol)
messages efficiently with a minimum of CPU load
Provides hardware access control for all memory references generated in a
device
Provides a mechanism for controlling the device operational mode and
Mode entry module (MC_ME)
modetransition sequences in all functional states; also manages the power
control unit, reset generation module and clock generation module, and holds
the configuration, control and status registers accessible for applications
Doc ID 15131 Rev 611/134
Block diagramSPC560B54/6x
Table 3.SPC560B54/6 series block summary (continued)
BlockFunction
Non-Maskable Interrupt (NMI)
Handles external events that must produce an immediate response, such as
power down detection
Periodic interrupt timer (PIT)Produces periodic interrupts and triggers
Reduces the overall power consumption by disconnecting parts of the device
Power control unit (MC_PCU)
from the power supply via a power switching device; device components are
grouped into sections called “power domains” which are controlled by the PCU
A free running counter used for time keeping applications, the RTC can be
Real-time counter (RTC)
configured to generate an interrupt at a predefined interval independent of the
mode of operation (run mode or low-power mode)
Reset generation module
(MC_RGM)
Static random-access memory
(SRAM)
Centralizes reset sources and manages the device reset sequence of the
device
Provides storage for program code, constants, and variables
Provides control over all the electrical pad controls and up 32 ports with 16 bits
System integrati on uni t lite (SIUL)
of bidirectional, ge neral-pu rpose input and o utput sign als and supports up to 32
external interrupts with trigger event configuration
System status and configuration
module (SSCM)
System timer module (STM)
Provides system configuration and status data (such as memory size and
status, device mode and security status), device identification data, debug
status port enable and selection, and bus and peripheral abort enable/disable
Provides a set of output compare events to support AUTOSAR (AUTomotive
Open System ARchitecture) and operating system tasks
System watchdog timer (SWT)Provides protection from runaway code
WKPU (wakeup unit)
The wakeup unit supports up to 27 external sources that can generate
interrupts or wakeup events, of which 1 can cause non-maskable interrupt
requests or wakeup events.
12/134Doc ID 15131 Rev 6
SPC560B54/6xPackage pinouts and signal descriptions
3 Package pinouts and signal descriptions
3.1 Package pinouts
The available LQFP pinouts and the ballmap are provided in the following figures. For pin
signal descriptions, please see
NOTE: The LBGA208 is available only as dev elopment package for Nexus 2+.
= Not connected
NC
3.2 Pad configuration during reset phases
All pads have a fixed configuration under reset.
During the power-up phase, all pads are forced to tristate.
After power-up phase, all pads are tristate with the following exceptions:
●PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from
flash.
●PA[8], PC[0] and PH[9:10] are in input weak pull-up when out of reset.
●RESET pad is driven low by the device till 40 FIRC clock cycles after phase2
completion. Minimum phase3 duration is 40 FIRC cycles.
●Nexus output pads (MDO[n], MCKO, EVTO, MSEO) are forced to output.
R
T
16/134Doc ID 15131 Rev 6
SPC560B54/6xPackage pinouts and signal descriptions
3.3 Pad configuration during standby mode exit
Pad configuration (input buffer enable, pull enable) for low-power wakeup pads is controlled
by both the SIUL and WKPU modules. During standby exit, all low power pads
PA[0,1,2,4,15], PB[1,3,8,9,10]
PG[3,5,7,9]
b
, PI[1,3]
(c)
are configured according to their respective configuration done in the
(a)
, PC[7,9,11], PD[0,1], PE[0,9,11], PF[9,11,13]
(b)
,
WKPU module. All other pads will have the same configuration as expected after a reset.
The TDO pad has been moved into the STANDBY domain in order to allow low-power
debug handshaking in STANDBY mode. However, no pull-resistor is active on the TDO pad
while in STANDBY mode. At this time the pad is configured as an input. When no debugger
is connected the TDO pad is floating causing additional current consumption.
To avoid the extra consumption TDO must be connected. An external pull-up resistor in the
range of 47–100 kOhms should be added between the TDO pin and VDD. Only if the TDO
pin is used as an application pin and a pull-up cannot be used should a pull-down resistor
with the same value be used instead between the TDO pin and GND.
3.4 Voltage supply pins
Voltage supply pins are used to provide power to the device. Three dedicated
VDD_LV/VSS_LV supply pairs are used for 1.2 V regulator stabilization.
Table 4.Voltage supply pin descriptions
Pin number
Port pinFunction
LQFP100LQFP144LQFP176LBGA208
15, 37, 70, 84 19, 51, 100,
VDD_HVDigital supply voltage
14, 16, 35,
69, 83
VSS_HVDigital ground
1.2 V decoupling pins. Decoupling
VDD_LV
VSS_LV
VDD_BVInternal regulator supply voltage202432K3
capacitor must be connected
between these pins and the
nearest V
1.2 V decoupling pins. Decoupling
capacitor must be connected
between these pins and the
nearest V
SS_LV
DD_LV
pin.
pin.
(1)
1
19, 32, 8523, 46, 124
18, 33, 8622, 47, 125
123
18, 20, 49,
99, 122
6, 27, 59, 85,
124, 151
7, 26, 28, 57,
86, 123, 150
31, 54, 152
30, 55, 153
C2, D9, E16,
G13, H3, N4,
N9, R5
G7, G8, G9,
G10, H7, H8,
H9, H10, J7,
J8, J9, J10,
K7, K8, K9,
K10
D8, K4, P7
C8, J2, N7
a. PB[8, 9] ports have wakeup functionality in all modes except STANDBY.
b. PF[9,11,13], PG[3,5,7,9], PI[1,3] are not available in the 100-pin LQFP.
c. PI[1,3] are not available in the 144-pin LQFP.
Doc ID 15131 Rev 617/134
Package pinouts and signal descriptionsSPC560B54/6x
1. A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage
(see the recommended operating conditions in the device datasheet).
ground for the A/D converter 0 (10bit)
Reference voltage and analog
supply for the A/D converter 0 (10bit)
Reference ground and analog
ground for the A/D converter 1 (12bit)
Reference voltage and analog
supply for the A/D converter 1 (12bit)
5173
5274
5981
6082
R15
89
P14
90
N12
98
K13
99
3.5 Pad types
In the device the following types of pads are available for system pins and functional port
pins:
S = Slow
M = Mediumd
F = Fastd
I = Input only with analog feature
J = Input/Output (‘S’ pad) with analog feature
X = Oscillator
(d)
(e)
e
d
3.6 System pins
The system pins are listed in
d. See the I/O pad electrical characteristics in the chip datasheet for details.
e. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium.
The only exception is PC[1] which is in medium configuration by default (see the PCR.SRC description in the
chip reference manual, Pad Configuration Registers (PCR0–PCR148)).
18/134Doc ID 15131 Rev 6
Table 5
.
SPC560B54/6xPackage pinouts and signal descriptions
Table 5.System pin descriptions
Pin number
Port pinFuncti on
I/O direction
Bidirectional reset with Schmitt-
RESET
Trigger characteristics and noise
I/OM
filter.
Analog output of the oscillator
amplifier circuit, when the oscillator is
EXTAL
not in bypass mode.
Analog input for the clock generator
I/OXTristate365058N8
when the oscillator is in bypass
mode.
Analog input of the o scillator ampl ifier
XTAL
circuit. Needs to be grounded if
IXTristate344856P8
oscillator bypass mode is used.
1. LBGA208 available only as development package for Nexus2+
RESET
configuration
Pad type
Input weak
pull-up after
RGM PHASE2
and 40 FIRC
cycles
LQFP
100
LQFP
144
LQFP
176
172129J1
LBGA
(1)
208
Doc ID 15131 Rev 619/134
20/134Doc ID 15131 Rev 6
3.7 Functional port pins
Package pinouts and signal descriptionsSPC560B54/6x
The funct ional port pins are listed in
Table 6.Functional port pin descriptions
(1)
Port pinPCR
Table 6
.
FunctionPeripheral
Alternate function
PA[0]PCR[0]
PA[1]PCR[1]
PA[2]PCR[2]
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
GPIO[0]
E0UC[0]
CLKOUT
E0UC[13]
WKPU[19]
GPIO[1]
E0UC[1]
(6)
NMI
—
WKPU[2]
GPIO[2]
E0UC[2]
—
MA[2]
WKPU[3]
(5)
5
5
SIUL
eMIOS_0
MC_CGM
eMIOS_0
WKPU
SIUL
eMIOS_0
WKPU
—
WKPU
SIUL
eMIOS_0
—
ADC_0
WKPU
Port A
I/O
I/O
I/O
I/O
I/O
I/O
I/O
(2)
Pad type
I/O direction
O
MTristate121624G4
(3)
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
I
Pin number
I
STristate71119F3
—
I
—
STristate 5917F2
O
I
LBGA
(4)
208
PA[3]PCR[3]
AF0
AF1
AF2
AF3
—
—
GPIO[3]
E0UC[3]
LIN5TX
CS4_1
EIRQ[0]
ADC1_S[0]
SIUL
eMIOS_0
LINFlex_5
DSPI_1
SIUL
ADC_1
I/O
I/O
O
O
JTristate6890114K15
I
I
Table 6.Functional port pin descriptions (continued)
(1)
SPC560B54/6xPackage pinouts and signal descriptions
(2)
(3)
Pin number
Doc ID 15131 Rev 621/134
Port pinPCR
PA[4]PCR[4]
PA[5]PCR[5]
PA[6]PCR[6]
PA[7]PCR[7]
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
—
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[4]
E0UC[4]
—
CS0_1
LIN5RX
WKPU[9]
GPIO[5]
E0UC[5]
LIN4TX
—
GPIO[6]
E0UC[6]
—
CS1_1
EIRQ[1]
LIN4RX
GPIO[7]
E0UC[7]
LIN3TX
—
EIRQ[2]
ADC1_S[1]
SIUL
eMIOS_0
—
DSPI_1
LINFlex_5
5
WKPU
SIUL
eMIOS_0
LINFlex_4
—
SIUL
eMIOS_0
—
DSPI_1
SIUL
LINFlex_4
SIUL
eMIOS_0
LINFlex_3
—
SIUL
ADC_1
I/O
I/O
—
STristate294351N6
I/O
I
I
I/O
I/O
MTristate79118146C11
O
—
I/O
I/O
—
STristate80119147D11
O
I
I
I/O
I/O
O
JTristate71104128D16
—
I
I
22/134Doc ID 15131 Rev 6
Table 6.Functional port pin descriptions (continued)
(1)
(2)
(3)
Pin number
Package pinouts and signal descriptionsSPC560B54/6x
Port pinPCR
PA[8]PCR[8]
PA[9]PCR[9]
PA[10]PCR[10]
PA[11]PCR[11]
AF0
AF1
AF2
AF3
N/A
AF0
AF1
AF2
AF3
N/A
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
—
—
—
—
—
Alternate function
(7)
FunctionPeripheral
Pad type
I/O direction
GPIO[8]
E0UC[8]
E0UC[14]
—
EIRQ[3]
ABS[0]
LIN3RX
GPIO[9]
E0UC[9]
—
CS2_1
7
FAB
GPIO[10]
E0UC[10]
SDA
LIN2TX
ADC1_S[2]
GPIO[11]
E0UC[11]
SCL
—
EIRQ[16]
LIN2RX
ADC1_S[3]
SIUL
eMIOS_0
eMIOS_0
—
SIUL
BAM
LINFlex_3
SIUL
eMIOS_0
—
DSPI_1
BAM
SIUL
eMIOS_0
2
I
C_0
LINFlex_2
ADC_1
SIUL
eMIOS_0
2
I
C_0
—
SIUL
LINFlex_2
ADC_1
I/O
I/O
I/O
—
SInput, weak pull-up72105129C16
I
I
I
I/O
I/O
—
S
O
I
I/O
I/O
I/O
JTristate74107131B16
O
I
I/O
I/O
I/O
—
JTristate75108132B15
I
I
I
RESET
configuration
Pull-
down
LQFP
100
LQFP
144
LQFP
176
73106130C15
LBGA
(4)
208
Table 6.Functional port pin descriptions (continued)
(1)
SPC560B54/6xPackage pinouts and signal descriptions
(2)
(3)
Pin number
Doc ID 15131 Rev 623/134
Port pinPCR
PA[12]PCR[12]
PA[13]PCR[13]
PA[14]PCR[14]
PA[15]PCR[15]
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[12]
—
E0UC[28]
CS3_1
EIRQ[17]
SIN_0
GPIO[13]
SOUT_0
E0UC[29]
—
GPIO[14]
SCK_0
CS0_0
E0UC[0]
EIRQ[4]
GPIO[15]
CS0_0
SCK_0
E0UC[1]
WKPU[10]
5
SIUL
—
eMIOS_0
DSPI_1
SIUL
DSPI_0
SIUL
DSPI_0
eMIOS_0
—
SIUL
DSPI_0
DSPI_0
eMIOS_0
SIUL
SIUL
DSPI_0
DSPI_0
eMIOS_0
WKPU
I/O
—
I/O
STristate314553T7
O
I
I
I/O
O
MTristate304452R7
I/O
—
I/O
I/O
I/O
MTristate284250P6
I/O
I
I/O
I/O
I/O
MTristate274048R6
I/O
I
PB[0]PCR[16]
AF0
AF1
AF2
AF3
GPIO[16]
CAN0TX
E0UC[30]
LIN0TX
SIUL
FlexCAN_0
eMIOS_0
LINFlex_0
Port B
I/O
I/O
O
MTristate233139N3
O
24/134Doc ID 15131 Rev 6
Table 6.Functional port pin descriptions (continued)
(1)
(2)
(3)
Pin number
Package pinouts and signal descriptionsSPC560B54/6x
Port pinPCR
PB[1]PCR[17]
PB[2]PCR[18]
PB[3]PCR[19]
PB[4]PCR[20]
AF0
AF1
AF2
AF3
—
—
—
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
—
—
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[17]
—
E0UC[31]
—
WKPU[4]
CAN0RX
LIN0RX
GPIO[18]
LIN0TX
SDA
E0UC[30]
GPIO[19]
E0UC[31]
SCL
—
WKPU[11]
LIN0RX
—
—
—
—
ADC0_P[0]
ADC1_P[0]
GPIO[20]
SIUL
—
eMIOS_0
—
5
WKPU
FlexCAN_0
LINFlex_0
SIUL
LINFlex_0
2
I
C_0
eMIOS_0
SIUL
eMIOS_0
2
I
C_0
—
5
WKPU
LINFlex_0
—
—
—
—
ADC_0
ADC_1
SIUL
I/O
—
I/O
—
STristate243240N1
I
I
I
I/O
O
MTristate100144176B2
I/O
I/O
I/O
I/O
I/O
STristate 111C3
—
I
I
—
—
—
—
ITristate507288T16
I
I
I
Table 6.Functional port pin descriptions (continued)
(1)
SPC560B54/6xPackage pinouts and signal descriptions
(2)
(3)
Pin number
Doc ID 15131 Rev 625/134
Port pinPCR
PB[5]PCR[21]
PB[6]PCR[22]
PB[7]PCR[23]
AF0
AF1
AF2
AF3
—
—
—
AF0
AF1
AF2
AF3
—
—
—
AF0
AF1
AF2
AF3
—
—
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
—
—
—
—
ADC0_P[1]
ADC1_P[1]
GPIO[21]
—
—
—
—
ADC0_P[2]
ADC1_P[2]
GPIO[22]
—
—
—
—
ADC0_P[3]
ADC1_P[3]
GPIO[23]
—
—
—
—
ADC_0
ADC_1
SIUL
—
—
—
—
ADC_0
ADC_1
SIUL
—
—
—
—
ADC_0
ADC_1
SIUL
—
—
—
—
ITristate537591R16
I
I
I
—
—
—
—
ITristate547692P15
I
I
I
—
—
—
—
ITristate557793P16
I
I
I
26/134Doc ID 15131 Rev 6
Table 6.Functional port pin descriptions (continued)
(1)
(2)
(3)
Pin number
Package pinouts and signal descriptionsSPC560B54/6x
Port pinPCR
PB[8]PCR[24]
PB[9]PCR[25]
PB[10]PCR[26]
AF0
AF1
AF2
AF3
—
—
—
—
AF0
AF1
AF2
AF3
—
—
—
—
AF0
AF1
AF2
AF3
—
—
—
Alternate function
OSC32K_XTAL
WKPU[25]
ADC0_S[0]
ADC1_S[4]
OSC32K_EXTAL
WKPU[26]
ADC0_S[1]
ADC1_S[5]
ADC0_S[2]
ADC1_S[6]
FunctionPeripheral
GPIO[24]
—
—
—
(8)
5
SIUL
—
—
—
OSC32K
WKPU
ADC_0
ADC_1
GPIO[25]
—
—
—
8
5
SIUL
—
—
—
OSC32K
WKPU
ADC_0
ADC_1
GPIO[26]
—
—
—
WKPU[8]
5
SIUL
—
—
—
WKPU
ADC_0
ADC_1
—
—
—
—
(9)
I
—
—
—
—
I
I/O
—
—
—
I/O direction
Pad type
RESET
LQFP
100
configuration
LQFP
144
LQFP
176
LBGA
208
I
I—395361R9
I
I
I
I—385260T9
9
I
I
JTristate405462P9
I
I
I
(4)
Table 6.Functional port pin descriptions (continued)
(1)
SPC560B54/6xPackage pinouts and signal descriptions
(2)
(3)
Pin number
Doc ID 15131 Rev 627/134
Port pinPCR
PB[11]PCR[27]
PB[12]PCR[28]
PB[13]PCR[29]
PB[14]PCR[30]
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[27]
E0UC[3]
—
CS0_0
ADC0_S[3]
GPIO[28]
E0UC[4]
—
CS1_0
ADC0_X[0]
GPIO[29]
E0UC[5]
—
CS2_0
ADC0_X[1]
GPIO[30]
E0UC[6]
—
CS3_0
ADC0_X[2]
SIUL
eMIOS_0
—
DSPI_0
ADC_0
SIUL
eMIOS_0
—
DSPI_0
ADC_0
SIUL
eMIOS_0
—
DSPI_0
ADC_0
SIUL
eMIOS_0
—
DSPI_0
ADC_0
I/O
I/O
—
I/O
I/O
I/O
—
O
I/O
I/O
—
O
I/O
I/O
—
O
JTristate——97N13
I
JTristate6183101M16
I
JTristate6385103M13
I
JTristate6587105L16
I
PB[15]PCR[31]
AF0
AF1
AF2
AF3
—
GPIO[31]
E0UC[7]
—
CS4_0
ADC0_X[3]
SIUL
eMIOS_0
—
DSPI_0
ADC_0
I/O
I/O
—
O
JTristate6789107L13
I
28/134Doc ID 15131 Rev 6
Table 6.Functional port pin descriptions (continued)
(1)
(2)
(3)
Pin number
Package pinouts and signal descriptionsSPC560B54/6x
Port pinPCR
(10)
PC[0]
PC[1]
PCR[32]
10
PCR[33]
PC[2]PCR[34]
PC[3]PCR[35]
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
—
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
Port C
GPIO[32]
—
TDI
—
GPIO[33]
—
TDO
—
GPIO[34]
SCK_1
CAN4TX
DEBUG[0]
EIRQ[5]
GPIO[35]
CS0_1
MA[0]
DEBUG[1]
EIRQ[6]
CAN1RX
CAN4RX
SIUL
—
JTAGC
—
SIUL
—
JTAGC
—
SIUL
DSPI_1
FlexCAN_4
SSCM
SIUL
SIUL
DSPI_1
ADC_0
SSCM
SIUL
FlexCAN_1
FlexCAN_4
I/O
—
MInput, weak pull-up87126154A8
I
—
I/O
—
(11)
F
O
Tristate82121149C9
—
I/O
I/O
O
MTristate78117145A11
O
I
I/O
I/O
O
O
STristate77116144B11
I
I
I
Table 6.Functional port pin descriptions (continued)
(1)
SPC560B54/6xPackage pinouts and signal descriptions
(2)
(3)
Pin number
Doc ID 15131 Rev 629/134
Port pinPCR
PC[4]PCR[36]
PC[5]PCR[37]
PC[6]PCR[38]
PC[7]PCR[39]
AF0
AF1
AF2
AF3
—
—
—
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[36]
E1UC[31]
—
DEBUG[2]
EIRQ[18]
SIN_1
CAN3RX
GPIO[37]
SOUT_1
CAN3TX
DEBUG[3]
EIRQ[7]
GPIO[38]
LIN1TX
E1UC[28]
DEBUG[4]
GPIO[39]
—
E1UC[29]
DEBUG[5]
LIN1RX
WKPU[12]
SIUL
eMIOS_1
—
SSCM
SIUL
DSPI_1
FlexCAN_3
SIUL
DSPI_1
FlexCAN_3
SSCM
SIUL
SIUL
LINFlex_1
eMIOS_1
SSCM
SIUL
—
eMIOS_1
SSCM
LINFlex_1
5
WKPU
I/O
I/O
—
O
MTristate92131159B7
I
I
I
I/O
O
O
MTristate91130158A7
O
I
I/O
O
STristate253644R2
I/O
O
I/O
—
I/O
STristate263745P3
O
I
I
30/134Doc ID 15131 Rev 6
Table 6.Functional port pin descriptions (continued)
(1)
(2)
(3)
Pin number
Package pinouts and signal descriptionsSPC560B54/6x
Port pinPCR
PC[8]PCR[40]
PC[9]PCR[41]
PC[10]PCR[42]
PC[11]PCR[43]
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
—
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[40]
LIN2TX
E0UC[3]
DEBUG[6]
GPIO[41]
—
E0UC[7]
DEBUG[7]
WKPU[13]
LIN2RX
GPIO[42]
CAN1TX
CAN4TX
MA[1]
GPIO[43]
—
—
MA[2]
WKPU[5]
CAN1RX
CAN4RX
5
5
SIUL
LINFlex_2
eMIOS_0
SSCM
SIUL
—
eMIOS_0
SSCM
WKPU
LINFlex_2
SIUL
FlexCAN_1
FlexCAN_4
ADC_0
SIUL
—
—
ADC_0
WKPU
FlexCAN_1
FlexCAN_4
I/O
O
STristate99143175A1
I/O
O
I/O
—
I/O
STristate 222B1
O
I
I
I/O
O
MTristate222836M3
O
O
I/O
—
—
O
STristate212735M4
I
I
I
Table 6.Functional port pin descriptions (continued)
(1)
SPC560B54/6xPackage pinouts and signal descriptions
(2)
(3)
Pin number
Doc ID 15131 Rev 631/134
Port pinPCR
PC[12]PCR[44]
PC[13]PCR[45]
PC[14]PCR[46]
PC[15]PCR[47]
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[44]
E0UC[12]
—
—
EIRQ[19]
SIN_2
GPIO[45]
E0UC[13]
SOUT_2
—
GPIO[46]
E0UC[14]
SCK_2
—
EIRQ[8]
GPIO[47]
E0UC[15]
CS0_2
—
EIRQ[20]
SIUL
eMIOS_0
—
—
SIUL
DSPI_2
SIUL
eMIOS_0
DSPI_2
—
SIUL
eMIOS_0
DSPI_2
—
SIUL
SIUL
eMIOS_0
DSPI_2
—
SIUL
I/O
I/O
—
MTristate97141173B4
—
I
I
I/O
I/O
STristate98142174A2
O
—
I/O
I/O
I/O
STristate 333C1
—
I
I/O
I/O
I/O
MTristate 444D3
—
I
32/134Doc ID 15131 Rev 6
Table 6.Functional port pin descriptions (continued)
(1)
(2)
(3)
Pin number
Package pinouts and signal descriptionsSPC560B54/6x
Port pinPCR
PD[0]PCR[48]
PD[1]PCR[49]
PD[2]PCR[50]
AF0
AF1
AF2
AF3
—
—
—
AF0
AF1
AF2
AF3
—
—
—
AF0
AF1
AF2
AF3
—
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
Port D
GPIO[48]
—
—
—
WKPU[27]
ADC0_P[4]
ADC1_P[4]
GPIO[49]
—
—
—
WKPU[28]
ADC0_P[5]
ADC1_P[5]
GPIO[50]
—
—
—
ADC0_P[6]
ADC1_P[6]
SIUL
—
—
—
5
WKPU
ADC_0
ADC_1
SIUL
—
—
—
5
WKPU
ADC_0
ADC_1
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
—
ITristate416377P12
I
I
I
I
—
—
—
ITristate426478T12
I
I
I
I
—
—
ITristate436579R12
—
I
I
Table 6.Functional port pin descriptions (continued)
(1)
SPC560B54/6xPackage pinouts and signal descriptions
(2)
(3)
Pin number
Doc ID 15131 Rev 633/134
Port pinPCR
PD[3]PCR[51]
PD[4]PCR[52]
PD[5]PCR[53]
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
—
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[51]
—
—
—
ADC0_P[7]
ADC1_P[7]
GPIO[52]
—
—
—
ADC0_P[8]
ADC1_P[8]
GPIO[53]
—
—
—
ADC0_P[9]
ADC1_P[9]
SIUL
—
—
—
ADC_0
ADC_1
SIUL
—
—
—
ADC_0
ADC_1
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
ITristate446680P13
—
I
I
I
—
—
ITristate456781R13
—
I
I
I
—
—
ITristate466882T13
—
I
I
PD[6]PCR[54]
AF0
AF1
AF2
AF3
—
—
GPIO[54]
—
—
—
ADC0_P[10]
ADC1_P[10]
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
ITristate476983T14
—
I
I
34/134Doc ID 15131 Rev 6
Table 6.Functional port pin descriptions (continued)
(1)
(2)
(3)
Pin number
Package pinouts and signal descriptionsSPC560B54/6x
Port pinPCR
PD[7]PCR[55]
PD[8]PCR[56]
PD[9]PCR[57]
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
—
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[55]
—
—
—
ADC0_P[11]
ADC1_P[11]
GPIO[56]
—
—
—
ADC0_P[12]
ADC1_P[12]
GPIO[57]
—
—
—
ADC0_P[13]
ADC1_P[13]
SIUL
—
—
—
ADC_0
ADC_1
SIUL
—
—
—
ADC_0
ADC_1
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
ITristate487084R14
—
I
I
I
—
—
ITristate497187T15
—
I
I
I
—
—
ITristate567894N15
—
I
I
PD[10]PCR[58]
AF0
AF1
AF2
AF3
—
—
GPIO[58]
—
—
—
ADC0_P[14]
ADC1_P[14]
SIUL
—
—
—
ADC_0
ADC_1
I
—
—
ITristate577995N14
—
I
I
Table 6.Functional port pin descriptions (continued)
(1)
SPC560B54/6xPackage pinouts and signal descriptions
(2)
(3)
Pin number
Doc ID 15131 Rev 635/134
Port pinPCR
PD[11]PCR[59]
PD[12]PCR[60]
PD[13]PCR[61]
PD[14]PCR[62]
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[59]
—
—
—
ADC0_P[15]
ADC1_P[15]
GPIO[60]
CS5_0
E0UC[24]
—
ADC0_S[4]
GPIO[61]
CS0_1
E0UC[25]
—
ADC0_S[5]
GPIO[62]
CS1_1
E0UC[26]
—
ADC0_S[6]
SIUL
—
—
—
ADC_0
ADC_1
SIUL
DSPI_0
eMIOS_0
—
ADC_0
SIUL
DSPI_1
eMIOS_0
—
ADC_0
SIUL
DSPI_1
eMIOS_0
—
ADC_0
—
—
—
I/O
O
I/O
—
I/O
I/O
I/O
—
I/O
O
I/O
—
I
ITristate588096N16
I
I
JTristate——100M15
I
JTristate6284102M14
I
JTristate6486104L15
I
36/134Doc ID 15131 Rev 6
Table 6.Functional port pin descriptions (continued)
(1)
(2)
(3)
Pin number
Package pinouts and signal descriptionsSPC560B54/6x
Port pinPCR
PD[15]PCR[63]
PE[0]PCR[64]
PE[1]PCR[65]
PE[2]PCR[66]
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[63]
CS2_1
E0UC[27]
—
ADC0_S[7]
SIUL
DSPI_1
eMIOS_0
—
ADC_0
I/O
O
I/O
—
JTristate6688106L14
I
Port E
GPIO[64]
E0UC[16]
—
—
WKPU[6]
CAN5RX
GPIO[65]
E0UC[17]
CAN5TX
—
GPIO[66]
E0UC[18]
—
—
EIRQ[21]
SIN_1
SIUL
eMIOS_0
—
—
5
WKPU
FlexCAN_5
SIUL
eMIOS_0
FlexCAN_5
—
SIUL
eMIOS_0
—
—
SIUL
DSPI_1
I/O
I/O
—
STristate61018F1
—
I
I
I/O
I/O
MTristate81220F4
O
—
I/O
I/O
—
MTristate89128156D7
—
I
I
Table 6.Functional port pin descriptions (continued)
(1)
SPC560B54/6xPackage pinouts and signal descriptions
(2)
(3)
Pin number
Doc ID 15131 Rev 637/134
Port pinPCR
PE[3]PCR[67]
PE[4]PCR[68]
PE[5]PCR[69]
PE[6]PCR[70]
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[67]
E0UC[19]
SOUT_1
—
GPIO[68]
E0UC[20]
SCK_1
—
EIRQ[9]
GPIO[69]
E0UC[21]
CS0_1
MA[2]
GPIO[70]
E0UC[22]
CS3_0
MA[1]
EIRQ[22]
SIUL
eMIOS_0
DSPI_1
—
SIUL
eMIOS_0
DSPI_1
—
SIUL
SIUL
eMIOS_0
DSPI_1
ADC_0
SIUL
eMIOS_0
DSPI_0
ADC_0
SIUL
I/O
I/O
MTristate90129157C7
O
—
I/O
I/O
I/O
MTristate93132160D6
—
I
I/O
I/O
MTristate94133161C6
I/O
O
I/O
I/O
O
MTristate95139167B5
O
I
PE[7]PCR[71]
AF0
AF1
AF2
AF3
—
GPIO[71]
E0UC[23]
CS2_0
MA[0]
EIRQ[23]
SIUL
eMIOS_0
DSPI_0
ADC_0
SIUL
I/O
I/O
O
MTristate96140168C4
O
I
38/134Doc ID 15131 Rev 6
Table 6.Functional port pin descriptions (continued)
(1)
(2)
(3)
Pin number
Package pinouts and signal descriptionsSPC560B54/6x
Port pinPCR
PE[8]PCR[72]
PE[9]PCR[73]
PE[10]PCR[74]
PE[11]PCR[75]
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
—
—
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[72]
CAN2TX
E0UC[22]
CAN3TX
GPIO[73]
—
E0UC[23]
—
WKPU[7]
CAN2RX
CAN3RX
GPIO[74]
LIN3TX
CS3_1
E1UC[30]
EIRQ[10]
GPIO[75]
E0UC[24]
CS4_1
—
LIN3RX
WKPU[14]
5
5
SIUL
FlexCAN_2
eMIOS_0
FlexCAN_3
SIUL
—
eMIOS_0
—
WKPU
FlexCAN_2
FlexCAN_3
SIUL
LINFlex_3
DSPI_1
eMIOS_1
SIUL
SIUL
eMIOS_0
DSPI_1
—
LINFlex_3
WKPU
I/O
O
MTristate91321G2
I/O
O
I/O
—
I/O
—
STristate101422G1
I
I
I
I/O
O
O
STristate111523G3
I/O
I
I/O
I/O
O
STristate131725H2
—
I
I
Table 6.Functional port pin descriptions (continued)
(1)
SPC560B54/6xPackage pinouts and signal descriptions
(2)
(3)
Pin number
Doc ID 15131 Rev 639/134
Port pinPCR
PE[12]PCR[76]
PE[13]PCR[77]
PE[14]PCR[78]
PE[15]PCR[79]
AF0
AF1
AF2
AF3
—
—
—
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[76]
—
E1UC[19]
—
EIRQ[11]
SIN_2
ADC1_S[7]
GPIO[77]
SOUT_2
E1UC[20]
—
GPIO[78]
SCK_2
E1UC[21]
—
EIRQ[12]
GPIO[79]
CS0_2
E1UC[22]
—
(12)
SIUL
—
eMIOS_1
—
SIUL
DSPI_2
ADC_1
SIUL
DSPI_2
eMIOS_1
—
SIUL
DSPI_2
eMIOS_1
—
SIUL
SIUL
DSPI_2
eMIOS_1
—
I/O
—
I/O
—
JTristate76109133C14
I
I
I
I/O
O
STristate—103127D15
I/O
—
I/O
I/O
I/O
STristate—112136C13
—
I
I/O
I/O
MTristate—113137A13
I/O
—
40/134Doc ID 15131 Rev 6
Table 6.Functional port pin descriptions (continued)
(1)
(2)
(3)
Pin number
Package pinouts and signal descriptionsSPC560B54/6x
Port pinPCR
PF[0]PCR[80]
PF[1]PCR[81]
PF[2]PCR[82]
PF[3]PCR[83]
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
Port F
GPIO[80]
E0UC[10]
CS3_1
—
ADC0_S[8]
GPIO[81]
E0UC[11]
CS4_1
—
ADC0_S[9]
GPIO[82]
E0UC[12]
CS0_2
—
ADC0_S[10]
GPIO[83]
E0UC[13]
CS1_2
—
ADC0_S[11]
SIUL
eMIOS_0
DSPI_1
—
ADC_0
SIUL
eMIOS_0
DSPI_1
—
ADC_0
SIUL
eMIOS_0
DSPI_2
—
ADC_0
SIUL
eMIOS_0
DSPI_2
—
ADC_0
I/O
I/O
O
—
I/O
I/O
O
—
I/O
I/O
I/O
—
I/O
I/O
O
—
JTristate—5563N10
I
JTri state—5664P10
I
JTristate—5765T10
I
JTristate—5866R10
I
Table 6.Functional port pin descriptions (continued)
(1)
SPC560B54/6xPackage pinouts and signal descriptions
(2)
(3)
Pin number
Doc ID 15131 Rev 641/134
Port pinPCR
PF[4]PCR[84]
PF[5]PCR[85]
PF[6]PCR[86]
PF[7]PCR[87]
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[84]
E0UC[14]
CS2_2
—
ADC0_S[12]
GPIO[85]
E0UC[22]
CS3_2
—
ADC0_S[13]
GPIO[86]
E0UC[23]
CS1_1
—
ADC0_S[14]
GPIO[87]
—
CS2_1
—
ADC0_S[15]
SIUL
eMIOS_0
DSPI_2
—
ADC_0
SIUL
eMIOS_0
DSPI_2
—
ADC_0
SIUL
eMIOS_0
DSPI_1
—
ADC_0
SIUL
—
DSPI_1
—
ADC_0
I/O
I/O
O
—
I/O
I/O
O
—
I/O
I/O
O
—
I/O
—
O
—
JTristate—5967N11
I
JTri state—6068P11
I
JTristate—6169T11
I
JTristate—6270R11
I
PF[8]PCR[88]
AF0
AF1
AF2
AF3
GPIO[88]
CAN3TX
CS4_0
CAN2TX
SIUL
FlexCAN_3
DSPI_0
FlexCAN_2
I/O
O
MTristate—3442P1
O
O
42/134Doc ID 15131 Rev 6
Table 6.Functional port pin descriptions (continued)
(1)
(2)
(3)
Pin number
Package pinouts and signal descriptionsSPC560B54/6x
Port pinPCR
PF[9]PCR[89]
PF[10]PCR[90]
PF[11]PCR[91]
PF[12]PCR[92]
AF0
AF1
AF2
AF3
—
—
—
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[89]
E1UC[1]
CS5_0
—
WKPU[22]
CAN2RX
CAN3RX
GPIO[90]
CS1_0
LIN4TX
E1UC[2]
GPIO[91]
CS2_0
E1UC[3]
—
WKPU[15]
LIN4RX
GPIO[92]
E1UC[25]
LIN5TX
—
SIUL
eMIOS_1
DSPI_0
—
5
WKPU
FlexCAN_2
FlexCAN_3
SIUL
DSPI_0
LINFlex_4
eMIOS_1
SIUL
DSPI_0
eMIOS_1
—
5
WKPU
LINFlex_4
SIUL
eMIOS_1
LINFlex_5
—
I/O
I/O
O
—
STristate—3341N2
I
I
I
I/O
O
MTristate—3846R3
O
I/O
I/O
O
I/O
STristate—3947R4
—
I
I
I/O
I/O
MTristate—3543R1
O
—
Table 6.Functional port pin descriptions (continued)
(1)
SPC560B54/6xPackage pinouts and signal descriptions
(2)
(3)
Pin number
Doc ID 15131 Rev 643/134
Port pinPCR
PF[13]PCR[93]
PF[14]PCR[94]
PF[15]PCR[95]
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
—
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[93]
E1UC[26]
—
—
WKPU[16]
LIN5RX
GPIO[94]
CAN4TX
E1UC[27]
CAN1TX
GPIO[95]
E1UC[4]
—
—
EIRQ[13]
CAN1RX
CAN4RX
5
SIUL
eMIOS_1
—
—
WKPU
LINFlex_5
SIUL
FlexCAN_4
eMIOS_1
FlexCAN_1
SIUL
eMIOS_1
—
—
SIUL
FlexCAN_1
FlexCAN_4
I/O
I/O
—
STristate—4149T6
—
I
I
I/O
O
MTristate—102126D14
I/O
O
I/O
I/O
—
—
STristate—101125E15
I
I
I
Port G
PG[0]PCR[96]
AF0
AF1
AF2
AF3
GPIO[96]
CAN5TX
E1UC[23]
—
SIUL
FlexCAN_5
eMIOS_1
—
I/O
O
MTristate—98122E14
I/O
—
44/134Doc ID 15131 Rev 6
Table 6.Functional port pin descriptions (continued)
(1)
(2)
(3)
Pin number
Package pinouts and signal descriptionsSPC560B54/6x
Port pinPCR
PG[1]PCR[97]
PG[2]PCR[98]
PG[3]PCR[99]
PG[4]PCR[100]
PG[5]PCR[101]
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[97]
—
E1UC[24]
—
EIRQ[14]
CAN5RX
GPIO[98]
E1UC[11]
SOUT_3
—
GPIO[99]
E1UC[12]
CS0_3
—
WKPU[17]
GPIO[100]
E1UC[13]
SCK_3
—
GPIO[101]
E1UC[14]
—
—
WKPU[18]
SIN_3
5
5
SIUL
—
eMIOS_1
—
SIUL
FlexCAN_5
SIUL
eMIOS_1
DSPI_3
—
SIUL
eMIOS_1
DSPI_3
—
WKPU
SIUL
eMIOS_1
DSPI_3
—
SIUL
eMIOS_1
—
—
WKPU
DSPI_3
I/O
—
I/O
STristate—97121E13
—
I
I
I/O
I/O
MTristate —816E4
O
—
I/O
I/O
I/O
STristate—715E3
—
I
I/O
I/O
MTristate —614E1
I/O
—
I/O
I/O
—
STristate—513E2
—
I
I
Table 6.Functional port pin descriptions (continued)
(1)
SPC560B54/6xPackage pinouts and signal descriptions
(2)
(3)
Pin number
Doc ID 15131 Rev 645/134
Port pinPCR
PG[6]PCR[102]
PG[7]PCR[103]
PG[8]PCR[104]
PG[9]PCR[105]
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[102]
E1UC[15]
LIN6TX
—
GPIO[103]
E1UC[16]
E1UC[30]
—
WKPU[20]
LIN6RX
GPIO[104]
E1UC[17]
LIN7TX
CS0_2
EIRQ[15]
GPIO[105]
E1UC[18]
—
SCK_2
WKPU[21]
LIN7RX
5
5
SIUL
eMIOS_1
LINFlex_6
—
SIUL
eMIOS_1
eMIOS_1
—
WKPU
LINFlex_6
SIUL
eMIOS_1
LINFlex_7
DSPI_2
SIUL
SIUL
eMIOS_1
—
DSPI_2
WKPU
LINFlex_7
I/O
I/O
MTristate—3038M2
O
—
I/O
I/O
I/O
STristate—2937M1
—
I
I
I/O
I/O
O
STristate—2634L2
I/O
I
I/O
I/O
—
STristate—2533L1
I/O
I
I
46/134Doc ID 15131 Rev 6
Table 6.Functional port pin descriptions (continued)
(1)
(2)
(3)
Pin number
Package pinouts and signal descriptionsSPC560B54/6x
Port pinPCR
PG[10]PCR[106]
PG[11]PCR[107]
PG[12]PCR[108]
PG[13]PCR[109]
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[106]
E0UC[24]
E1UC[31]
—
SIN_4
GPIO[107]
E0UC[25]
CS0_4
—
GPIO[108]
E0UC[26]
SOUT_4
—
GPIO[109]
E0UC[27]
SCK_4
—
SIUL
eMIOS_0
eMIOS_1
—
DSPI_4
SIUL
eMIOS_0
DSPI_4
—
SIUL
eMIOS_0
DSPI_4
—
SIUL
eMIOS_0
DSPI_4
—
I/O
I/O
I/O
STristate—114138D13
—
I
I/O
I/O
MTristate—115139B12
I/O
—
I/O
I/O
MTristate—92116K14
O
—
I/O
I/O
MTristate—91115K16
I/O
—
PG[14]PCR[110]
AF0
AF1
AF2
AF3
GPIO[110]
E1UC[0]
LIN8TX
—
SIUL
eMIOS_1
LINFlex_8
—
I/O
I/O
STristate—110134B14
O
—
Table 6.Functional port pin descriptions (continued)
(1)
SPC560B54/6xPackage pinouts and signal descriptions
(2)
(3)
Pin number
Doc ID 15131 Rev 647/134
Port pinPCR
PG[15]PCR[111]
PH[0]PCR[112]
PH[1]PCR[113]
PH[2]PCR[114]
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[111]
E1UC[1]
—
—
LIN8RX
SIUL
eMIOS_1
—
—
LINFlex_8
I/O
I/O
—
MTristate—111135B13
—
I
Port H
GPIO[112]
E1UC[2]
—
—
SIN_1
GPIO[113]
E1UC[3]
SOUT_1
—
GPIO[114]
E1UC[4]
SCK_1
—
SIUL
eMIOS_1
—
—
DSPI_1
SIUL
eMIOS_1
DSPI_1
—
SIUL
eMIOS_1
DSPI_1
—
I/O
I/O
—
MTristate—93117F13
—
I
I/O
I/O
MTristate—94118F14
O
—
I/O
I/O
MTristate—95119F16
I/O
—
PH[3]PCR[115]
AF0
AF1
AF2
AF3
GPIO[115]
E1UC[5]
CS0_1
—
SIUL
eMIOS_1
DSPI_1
—
I/O
I/O
MTristate—96120F15
I/O
—
48/134Doc ID 15131 Rev 6
Table 6.Functional port pin descriptions (continued)
(1)
(2)
(3)
Pin number
Package pinouts and signal descriptionsSPC560B54/6x
Port pinPCR
PH[4]PCR[116]
PH[5]PCR[117]
PH[6]PCR[118]
PH[7]PCR[119]
PH[8]PCR[120]
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[116]
E1UC[6]
—
—
GPIO[117]
E1UC[7]
—
—
GPIO[118]
E1UC[8]
—
MA[2]
GPIO[119]
E1UC[9]
CS3_2
MA[1]
GPIO[120]
E1UC[10]
CS2_2
MA[0]
SIUL
eMIOS_1
—
—
SIUL
eMIOS_1
—
—
SIUL
eMIOS_1
—
ADC_0
SIUL
eMIOS_1
DSPI_2
ADC_0
SIUL
eMIOS_1
DSPI_2
ADC_0
I/O
I/O
MTristate—134162A6
—
—
I/O
I/O
STristate—135163B6
—
—
I/O
I/O
MTristate—136164D5
—
O
I/O
I/O
MTristate—137165C5
O
O
I/O
I/O
MTristate—138166A5
O
O
PH[9]
10
PCR[121]
AF0
AF1
AF2
AF3
GPIO[121]
—
TCK
—
SIUL
—
JTAGC
—
I/O
—
SInput, weak pull-up88127155B8
I
—
Table 6.Functional port pin descriptions (continued)
(1)
SPC560B54/6xPackage pinouts and signal descriptions
(2)
(3)
Pin number
Doc ID 15131 Rev 649/134
Port pinPCR
10
PH[10]
PCR[122]
PH[11]PCR[123]
PH[12]PCR[124]
PH[13]PCR[125]
PH[14]PCR[126]
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[122]
—
TMS
—
GPIO[123]
SOUT_3
CS0_4
E1UC[5]
GPIO[124]
SCK_3
CS1_4
E1UC[25]
GPIO[125]
SOUT_4
CS0_3
E1UC[26]
GPIO[126]
SCK_4
CS1_3
E1UC[27]
SIUL
—
JTAGC
—
SIUL
DSPI_3
DSPI_4
eMIOS_1
SIUL
DSPI_3
DSPI_4
eMIOS_1
SIUL
DSPI_4
DSPI_3
eMIOS_1
SIUL
DSPI_4
DSPI_3
eMIOS_1
I/O
—
MInput, weak pull-up81120148B9
I
—
I/O
O
MTristate ——140A14
I/O
I/O
I/O
I/O
MTristate ——141D12
O
I/O
I/O
O
MTristate ——9B3
I/O
I/O
I/O
I/O
MTristate ——10D1
O
I/O
PH[15]PCR[127]
AF0
AF1
AF2
AF3
GPIO[127]
SOUT_5
—
E1UC[17]
SIUL
DSPI_5
—
eMIOS_1
I/O
O
MTristate ——8A3
—
I/O
50/134Doc ID 15131 Rev 6
Table 6.Functional port pin descriptions (continued)
(1)
(2)
(3)
Pin number
Package pinouts and signal descriptionsSPC560B54/6x
Port pinPCR
PI[0]PCR[128]
PI[1]PCR[129]
PI[2]PCR[130]
PI[3]PCR[131]
PI[4]PCR[132]
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
Port I
GPIO[128]
E0UC[28]
LIN8TX
—
GPIO[129]
E0UC[29]
—
—
WKPU[24]
LIN8RX
GPIO[130]
E0UC[30]
LIN9TX
—
GPIO[131]
E0UC[31]
—
—
WKPU[23]
LIN9RX
GPIO[132]
E1UC[28]
SOUT_4
—
5
5
SIUL
eMIOS_0
LINFlex_8
—
SIUL
eMIOS_0
—
—
WKPU
LINFlex_8
SIUL
eMIOS_0
LINFlex_9
—
SIUL
eMIOS_0
—
—
WKPU
LINFlex_9
SIUL
eMIOS_1
DSPI_4
—
I/O
I/O
STristate——172A9
O
—
I/O
I/O
—
STristate——171A10
—
I
I
I/O
I/O
STristate——170B10
O
—
I/O
I/O
—
STristate——169C10
—
I
I
I/O
I/O
STristate——143A12
O
—
Table 6.Functional port pin descriptions (continued)
(1)
SPC560B54/6xPackage pinouts and signal descriptions
(2)
(3)
Pin number
Doc ID 15131 Rev 651/134
Port pinPCR
PI[5]PCR[133]
PI[6]PCR[134]
PI[7]PCR[135]
PI[8]PCR[136]
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
AF0
AF1
AF2
AF3
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[133]
E1UC[29]
SCK_4
—
GPIO[134]
E1UC[30]
CS0_4
—
GPIO[135]
E1UC[31]
CS1_4
—
GPIO[136]
—
—
—
ADC0_S[16]
SIUL
eMIOS_1
DSPI_4
—
SIUL
eMIOS_1
DSPI_4
—
SIUL
eMIOS_1
DSPI_4
—
SIUL
—
—
—
ADC_0
I/O
I/O
STristate——142C12
I/O
—
I/O
I/O
STristate——11D2
I/O
—
I/O
I/O
STristate——12D3
O
—
I/O
—
—
JTristate——108J13
—
I
PI[9]PCR[137]
AF0
AF1
AF2
AF3
—
GPIO[137]
—
—
—
ADC0_S[17]
SIUL
—
—
—
ADC_0
I/O
—
—
—
JTristate——109J14
I
52/134Doc ID 15131 Rev 6
Table 6.Functional port pin descriptions (continued)
(1)
(2)
(3)
Pin number
Package pinouts and signal descriptionsSPC560B54/6x
Port pinPCR
PI[10]PCR[138]
PI[11]PCR[139]
PI[12]PCR[140]
PI[13]PCR[141]
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[138]
—
—
—
ADC0_S[18]
GPIO[139]
—
—
—
ADC0_S[19]
SIN_3
GPIO[140]
CS0_3
—
—
ADC0_S[20]
GPIO[141]
CS1_3
—
—
ADC0_S[21]
SIUL
—
—
—
ADC_0
SIUL
—
—
—
ADC_0
DSPI_3
SIUL
DSPI_3
—
—
ADC_0
SIUL
DSPI_3
—
—
ADC_0
I/O
—
—
—
I/O
—
—
—
I/O
I/O
—
—
I/O
O
—
—
JTristate——110J15
I
JTristate——111J16
I
I
JTristate——112G14
I
JTristate——113G15
I
Table 6.Functional port pin descriptions (continued)
(1)
SPC560B54/6xPackage pinouts and signal descriptions
(2)
(3)
Pin number
Doc ID 15131 Rev 653/134
Port pinPCR
PI[14]PCR[142]
PI[15]PCR[143]
PJ[0]PCR[144]
AF0
AF1
AF2
AF3
—
—
AF0
AF1
AF2
AF3
—
AF0
AF1
AF2
AF3
—
FunctionPeripheral
I/O direction
Pad type
RESET
configuration
LQFP
100
LQFP
144
LQFP
176
LBGA
(4)
208
Alternate function
GPIO[142]
—
—
—
ADC0_S[22]
SIN_4
GPIO[143]
CS0_4
—
—
ADC0_S[23]
SIUL
—
—
—
ADC_0
DSPI_4
SIUL
DSPI_4
—
—
ADC_0
I/O
—
—
—
I/O
I/O
—
—
JTristate——76R8
I
I
JTristate——75T8
I
Port J
GPIO[144]
CS1_4
—
—
ADC0_S[24]
SIUL
DSPI_4
—
—
ADC_0
I/O
O
—
—
JTristate——74N5
I
PJ[1]PCR[145]
AF0
AF1
AF2
AF3
—
—
GPIO[145]
—
—
—
ADC0_S[25]
SIN_5
SIUL
—
—
——
ADC_0
DSPI_5
I/O
—
—
—
JTristate——73P5
I
I
54/134Doc ID 15131 Rev 6
Table 6.Functional port pin descriptions (continued)
(1)
(2)
(3)
Pin number
Package pinouts and signal descriptionsSPC560B54/6x
Port pinPCR
FunctionPeripheral
I/O direction
Pad type
RESET
LQFP
100
LQFP
144
LQFP
176
LBGA
208
configuration
Alternate function
AF0
AF1
PJ[2]PCR[146]
AF2
AF3
—
AF0
AF1
PJ[3]PCR[147]
AF2
AF3
—
AF0
PJ[4]PCR[148]
AF1
AF2
AF3
1. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 → AF0; PCR.PA = 01 → AF1;
PCR.PA = 10
written to ‘1’, regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as “—”.
2. Multiple i nputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx
bitfields inside the SIUL module.
3. The RESET configuration applies during and after reset.
4. LBGA208 available only as development package for Nexus2+
5. All WKPU pins also support external interrupt capability. See the WKPU chapter for further details.
6. NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.
7. “Not applicable” because these functions are available only while the device is booting. Refer to the BAM information for details.
8. Value of PCR.IBE bit must be 0
9. This wakeup input cannot be used to exit STANDBY mode.
→ AF2; PCR.PA= 11 → AF2. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be
GPIO[146]
CS0_5
—
—
ADC0_S[26]
GPIO[147]
CS1_5
—
—
ADC0_S[27]
GPIO[148]
SCK_5
E1UC[18]
—
SIUL
DSPI_5
—
—
ADC_0
SIUL
DSPI_5
—
—
ADC_0
SIUL
DSPI_5
eMIOS_1
—
I/O
I/O
—
JTristate——72P4
—
I
I/O
O
—
JTristate——71P2
—
I
I/O
I/O
MTristate ——5A4
I/O
—
(4)
Doc ID 15131 Rev 655/134
10. Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
PC[0:1] are available as JTAG pins (TDI and TDO respectively).
PH[9:10] are available as JTAG pins (TCK and TMS respectively) .
It is up to the user to configure these pins as GPIO when needed.
11. PC[1] is a fast/medium pad but is in medium configuration by default.
This pad is in Alternate Function 2 mode after reset which has TDO
functionality. The reset value of PCR.OBE is ‘1’, but this setting has no impact as long as this pad stays in AF2 mode. After configuring
this pad as GPIO (PCR.PA = 0), output buffer is enabled as reset value of PCR.OBE = 1.
12. Not available in LQFP100 package
SPC560B54/6xPackage pinouts and signal descriptions
Package pinouts and signal descriptionsSPC560B54/6x
3.8 Nexus 2+ pins
In the LBGA208 package, eight additional debug pins are available (see
Table 7.Nexus 2+ pin descriptions
Table 7
).
Pin number
Port pinFunction
I/O
direction
Pad type
Function
after reset
LQFP
100
LQFP
144
MCKOMessage clock outOF———T4
MDO0Message data out 0OM———H15
MDO1Message data out 1OM———H16
MDO2Message data out 2OM———H14
MDO3Message data out 3OM———H13
EVTIEvent inIMPull-up——K1
EVTOEvent outOM———L4
MSEOMessage start/end outOM———G16
1. LBGA208 available only as development package for Nexus2+
LBGA
(1)
208
56/134Doc ID 15131 Rev 6
SPC560B54/6xElectrical characterist ics
4 Electrical characteristics
This section contains electrical characteristics of the device as well as temperature and
power considerations.
This product contains devices to protect the inputs against damage due to high static
voltages. However, it is advisable to take precautions to avoid application of any voltage
higher than the specified maximum rated voltages.
To enhance reliability , unused inputs can be driven to an appropriate logic voltage level (V
or V
). This could be done by the internal pull-up and pull-down, which is provided by the
SS
product for most general purpose pins.
The parameters listed in the following tables represent the characteristics of the device and
its demands on the system.
In the tables where the device logic provides signals with their respective timing
characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol
column.
In the tables where the external system must provide signals with their respective timing
characteristics to the device, the symbol “SR” for System Requirement is included in the
Symbol column.
4.1 Parameter classification
The electrical parameters shown in this supplement are guaranteed by various methods. To
give the customer a better understanding, the classifications listed in
the parameters are tagged accordingly in the tables where appropriate.
Table 8.Parameter classifications
Classification tagTag description
PThose parameters are guaranteed during production testing on each individual device.
Table 8
DD
are used and
C
T
DThose parameters are derived mainly from simulations.
Those parameters are achieved by the design characterization by measuring a statistically
relevant sample size across process variations.
Those parame ters are a chie v ed b y de sign ch aracteriza tion on a small sample siz e from typi cal
devices under typical conditions unless otherwise noted. All values shown in the typical
column are within this category.
Note:The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
4.2 NVUSRO register
Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the
device configuration, namely electrical parameters such as high voltage supply and
oscillator margin, as well as digital functionality (watchdog enable/disable after reset).
Doc ID 15131 Rev 657/134
Electrical characteristicsSPC560B54/6x
For a detailed description of the NVUSRO register, please refer to the device reference
manual.
4.2.1 NVUSRO[PAD3V5V] field descript ion
The DC electrical characteristics are dependent on the PAD3V5V bit value.
how NVUSRO[PAD3V5V] controls the device configuration.
Table 9.PAD3V5V field description
(2)
Value
0High voltage supply is 5.0 V
1High voltage supply is 3.3 V
1. See the device reference manual for more information on the NVUSRO register.
2. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
(1)
Description
4.2.2 NVUSRO[OSCILLATOR_MARGIN] field description
The fast external crystal oscillator consumption is dependent on the
OSCILLATOR_MARGIN bit value.
controls the device configuration.
Table 10.OSCILLATOR_MARGIN field description
1. See the device reference manual for more information on the NVUSRO register.
2. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
The watchdog enable/disable configuration after reset is dependent on the
WATCHDOG_EN bit value.
device configuration.
Table 11.WATCHDOG_EN field description
1. Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
58/134Doc ID 15131 Rev 6
(1)
Value
0Disable after reset
1Enable after reset
Table 11
shows how NVUSRO[WATCHDOG_EN] controls the
Description
SPC560B54/6xElectrical characterist ics
4.3 Absolute maximum ratings
Table 12.Absolute maximum ratings
SymbolParameterConditions
V
V
V
SS_LV
V
DD_BV
DD
SS
SR Digital ground on VSS_HV pins—00V
Voltage on VDD_HV pins with respect to
SR
ground (V
Voltage on VSS_LV (low voltage digital
SR
supply) pins with respect to ground (V
Voltage on VDD_BV (regulator supply) pin
SR
with respect to ground (V
SS
)
)
SS
)
SS
Relative to V
Voltage on VSS_HV_ADC0,
V
SS_ADC
SR
VSS_HV_ADC1 (ADC reference) pins with
respect to ground (V
SS
)
Voltage on VDD_HV_ADC0,
V
DD_ADC
V
I
INJPAD
I
INJSUM
SR
VDD_HV_ADC1 (ADC reference) pins with
respect to ground (V
Voltage on any GPIO pin with respect to
SR
IN
ground (V
Injected input current on any pin during
SR
overload condi t ion
Absolute su m of all injected input currents
SR
during overload condition
SS
)
SS
)
Relative to V
Relative to V
Value
Unit
MinMax
—–0.36.0V
—V
–0.1 VSS+0.1V
SS
—–0.36.0
V
DD
—V
–0.3VDD+0.3
–0.1 VSS+0.1V
SS
—–0.36.0
V
DD
VDD− 0.3 VDD+0.3
—–0.36.0
V
DD
—VDD+0.3
—–1010
mA
—–5050
= 5.0 V ± 10%,
V
I
AVGSEG
T
STORAGE
DD
Sum of all the static I/O current within a
SR
supply segment
PAD3V5V = 0
= 3.3 V ± 10%,
V
DD
PAD3V5V = 1
SR Storage temperature—–55150°C
—70
mA
—64
Note:Stresses exceeding the recommended absolute maximum ratings may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the operational sections of this
specification are not implied. Exposure to absolute maximum rating conditions for extended
periods may affect device reliability. During overload conditions (V
the voltage on pins with respect to ground (V
) must not exceed the recommended values.
SS
IN>VDD
or VIN<VSS),
Doc ID 15131 Rev 659/134
Electrical characteristicsSPC560B54/6x
4.4 Recommended operating conditions
Table 13.Recommended operating conditions (3.3 V)
Value
SymbolParameterConditions
MinMax
V
V
SS_LV
V
DD_BV
V
DD
SS
(1)
SR Digital ground on VSS_HV pins—00V
Voltage on VDD_HV pins with respect to
(2)
(3)
SR
ground (V
Voltage on VSS_LV (low voltage digital
SR
supply) pins with respect to ground (V
V oltage on VDD _BV pin (regulator supply)
SR
with respect to ground (V
SS
)
)
SS
SS
)
Relative to V
—3.03.6V
—V
− 0.1VSS+0.1V
SS
—3.03.6
VDD− 0.1 VDD+0.1
DD
Voltage on VSS_HV_ADC0,
V
SS_ADC
V
DD_ADC
V
IN
I
INJPAD
I
INJSUM
TV
DD
1. 100nF capacitance needs to be provided between each VDD/VSS pair.
2. 330nF capacitance needs to be provided between each V
3. 470nF capacitance needs to be provided between V
depending on external regulator characteristics). Supply ramp slope on VDD_BV should always be faster or equal to slope
of VDD_HV. Otherwise, device may enter regulator bypass mode if slope on VDD_BV is slower.
4. 100nF capacitance needs to be provided between V
5. Ful l electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical
characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below V
reset.
6. Guaranteed by device validation
SR
VSS_HV_ADC1 (ADC reference) pin with
(4)
respect to ground (V
Voltage on VDD_HV_ADC0,
SR
VDD_HV_ADC1 (ADC reference) with
respect to ground (V
Voltage on any GPIO pin with respect to
SR
ground (V
Injected input current on any pin during
SR
overload condition
Absolute sum of all inject ed in put curre nts
External ballast resistor on V
the device. This resistor is required only when maximum power consumption exceeds the
limit imposed by package thermal characteristics.
As stated in
Table 15
LQFP thermal characteristics, considering a thermal resistance of
LQFP144 as 48.3 °C/W, at ambient temperature T
will cross 150 °C if the total power dissipation is greater than
pin helps in reducing the overall power dissipation inside
DD_BV
= 125 °C, the junction temperature T
A
Doc ID 15131 Rev 661/134
j
Electrical characteristicsSPC560B54/6x
(150 – 125)/48.3 = 517 mW . Therefore, the total device current I
not exceed 94.1 mA (i.e., PD/VDD). Assuming an average I
consumption typically during device RUN mode, the L V domain consumption I
thus limited to I
DDMAX–IDD(VDD_HV
), i.e., 80 mA.
Therefore, respecting the maximum power allowed as explained in
thermal characteristics
, it is recommended to use this resistor only in the 125 °C/5.5 V
operating corner as per the following guidelines:
●If I
●If 80 mA < I
●If I
DD(VDD_BV
DD(VDD_BV
) < 80 mA, then no resistor is required.
DD(VDD_BV
) < 90 mA, then 4 Ω resistor can be used.
) > 90 mA, then 8 Ω resistor can be used.
Using resistance in the range of 4–8 Ω, the gain will be around 10–20% of total consumption
on V
. For example, if 8 Ω resistor is used, then power consumption when IDD(V
DD_BV
is 110 mA is equivalent to power consumption when I
when resistor not used.
In order to ensure correct power up, the minimum V
the supply ramp is slower than this value, then LVDHV3B monitoring ballast supply V
pin gets triggered leading to device reset. Until the supply reaches certain threshold, this
low voltage detector (LVD) generates destructive reset event in the system. This threshold
depends on the maximum I
1. Thermal characteristics are targets based on simulation.
= 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C.
2. V
DD
3. Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets
JEDEC specification for this package. When Greek letters are not available, the symbols are typed as R
4. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for
the specified package. When Greek letters are not available, the symbols are typed as R
5. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is
used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters
are not available, the symbols are typed as R
thJC
.
thJB
.
thJA
and R
thJMA
.
4.5.3 Power considerations
The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using
<Cross Refs>Equation 1:
Equation 1: T
Where:
Most of the time for the applications, P
P
may be significant, if the device is configured to continuously drive external modules
I/O
and/or memories.
An approximate relationship between P
Equation 2: P
Therefore, solving equations <Cross Refs>1 and <Cross Refs>2:
Equation 3: K = P
Where:
= TA + (PD x R
J
T
is the ambient temperature in °C.
A
R
is the package junction-to-ambient thermal resistance, in °C/W.
θJA
is the sum of P
P
D
P
is the product of I
INT
power.
P
represents the power dissipation on input and output pins; user determined.
I/O
= K / (TJ + 273 °C)
D
x (TA + 273 °C) + R
D
K is a constant for the particular part, which may be determined from <Cross
Refs>Equation 3 by measuring P
INT
)
θJA
and P
and VDD, expressed in watts. This is the chip internal
DD
= P
I/O (PD
I/O< PINT
and TJ (if P
D
x P
θJA
(at equilibrium) for a known TA. Using this value
D
+ P
INT
I/O
).
and may be neglected. On the other hand,
is neglected) is given by:
I/O
2
D
Doc ID 15131 Rev 663/134
Electrical characteristicsSPC560B54/6x
of K, the values of PD and TJ may be obtained by solving equations <Cross
Refs>1 and <Cross Refs>2 iteratively for any value of T
.
A
4.6 I/O pad electrical characteristics
4.6.1 I/O pad types
The device provides four main I/O pad types depending on the associated alternate
functions:
●Slow pads—are the most common pads, providing a good compromise between
transition time and low electromagnetic emission.
●Medium pads—provide transition fast enough for the serial communication channels
with controlled current to reduce electromagnetic emission.
●Fast pads—provide maximum speed. These are used for improved Nexus debugging
capability.
●Input only pads—are associated with ADC channels and 32 kHz low power external
crystal oscillator providing low input leakage.
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at
the cost of reducing AC performance.
4.6.2I/O input DC characteristics
Table 16
Figure 6.I/O input DC electrical characteristics definition
PDIx = ‘1
(GPDI register of SIUL)
PDIx = ‘0’
provides input DC electrical characteristics as described in
V
IN
V
DD
V
IH
V
IL
Figure 6
V
HYS
.
64/134Doc ID 15131 Rev 6
SPC560B54/6xElectrical characterist ics
Table 16.I/O input DC electrical characteristics
SymbolCParameterConditions
(1)
Value
MinTypMax
V
V
I
W
W
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified
2. In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage.
SRP
IH
SRP
IL
CC C
HYS
CC
LKG
(2)
SRP Wakeup input filtered pulse———40ns
FI
(2)
SRP W a k eup in put no t filtere d pul se—1000——ns
NFI
Input high level CMOS
(Schmitt Trigger)
Input low lev el CMOS (Schmi tt
Trigger)
Input hysteres is CMOS
(Schmitt Trigger)
D
DT
DT
Digital input leakage
DT
No injection
on adjacent
pin
PT
—0.65V
—VDD+0.4
DD
—−0.4—0.35V
—0.1V
= −40 °C—2200
T
A
= 25 °C—2200
A
= 85 °C—5300
A
= 105 °C—12500
A
= 125 °C—701000
A
——
DD
DD
Unit
VV
nA
4.6.3 I/O output DC characteristics
The following tables provide DC characteristics for bidirectional pads:
●
Table 17
supported.
●
Table 18
configuration.
●
Table 19
configuration.
●
Table 20
Table 17.I/O pull-up/pull-down DC electrical characteristics
SymbolCParameterConditions
|I
|CC
WPU
|I
|CC
WPD
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified.
P
Weak pull-up current
absolute value
PV
P
Weak pull-do w n
current absolute value
PV
provides weak pull figures. Both pull-up and pull-down resistances are
provides output driver characteristics for I/O pads when in SLOW
provides output driver characteristics for I/O pads when in MEDIUM
provides output driver characteristics for I/O pads when in FAST configuration.
(1)
= VIL, VDD = 5.0 V ± 10%
V
IN
= VIL, VDD = 3.3 V ± 10% PAD3V5V = 110—150
IN
= VIH, VDD = 5.0 V ± 10%
V
IN
= VIH, VDD = 3.3 V ± 10% PAD3V5V = 110—150
IN
PAD3V5V = 010—150
PAD3V5V = 010—150
Value
Min Typ Max
(2)
10—250
Unit
µACPAD3V5V = 1
µACPAD3V5V = 110—250
Doc ID 15131 Rev 665/134
Electrical characteristicsSPC560B54/6x
2. The configuration PAD3V5 = 1 when VDD= 5 V is only a transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified
2. The configuration PAD3V5 = 1 when V
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
= 5 V is only a transient configuration during power-up. All pads but RESET and
DD
4.6.4 Output pin transition times
Table 21.Output pin transition times
SymbolCParameterConditions
TtrCC
T
tr
T
tr
D
TC
DC
Output transition time output pin
SLOW configur ati on
DC
TC
DC
D
TC
DC
CC
Output transition time output pin
MEDIUM configuration
DC
TC
DC
CC D
Output transition time output pin
FAST configuration
= 25 pF
C
L
= 50 pF——100
L
(2)
= 100 pF——125
L
= 25 pF
L
= 50 pF——100
L
= 100 pF——125
L
= 25 pF
C
L
= 50 pF——20
L
(2)
= 100 pF——40
L
= 25 pF
L
= 50 pF——25
L
= 100 pF——40
L
= 25 pF
C
L
C
= 50 pF——6
L
(2)
CL = 100 pF——12
C
= 25 pF
L
C
= 50 pF——7
L
V
= 5.0 V ± 10%,
DD
PAD3V5V = 0
V
= 3.3 V ± 10%,
DD
PAD3V5V = 1
= 5.0 V ± 10%,
V
DD
PAD3V5V = 0
SIUL.PCRx.SRC = 1
= 3.3 V ± 10%,
V
DD
PAD3V5V = 1
SIUL.PCRx.SRC = 1
V
= 5.0 V ± 10%,
DD
PAD3V5V = 0
V
= 3.3 V ± 10%,
DD
PAD3V5V = 1
CL = 100 pF——12
(1)
MinTypMax
——0.1V
(2)
——0.1V
——0.5
Value
DD
DD
Value
Min Typ Max
——50
——50
——10
——12
—— 4
—— 4
Unit
VC
Unit
ns
ns
ns
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified
includes device and package capacitances (C
2. C
L
PKG
< 5 pF).
68/134Doc ID 15131 Rev 6
SPC560B54/6xElectrical characterist ics
4.6.5 I/O pad current specification
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is
associated to a V
Table 23
provides I/O consumption figures.
DD/VSS
In order to ensure device reliability, the average current of the I/O on a single segment
should remain below the I
Table 22.I/O supply segments
Package
12345678
supply pair as described in
AVGSEG
maximum value.
Supply segment
Table 22
.
LBGA208
(1)
LQFP176
LQFP144
LQFP100
1. LBGA208 available only as development package for Nexus2+
Table 23.I/O consumption
pin7 –
pin27
pin20 –
pin49
pin16 –
pin35
Equivalent to LQFP176 segment pad distributionMCKO
pin28 –
pin57
pin51 –
pin99
pin37 –
pin69
pin59 –
pin85
pin100 –
pin122
pin70 –
pin83
pin86 –
pin123
pin 123 –
pin19
pin84 –
pin15
SymbolCParameterConditions
I
SWTSLW
I
SWTMED
I
SWTFST
(2)
(2)
(2)
CC D
CC D
CC D
Dynamic I/O current for
SLOW configuration
Dynamic I/O current for
MEDIUM configuration
Dynamic I/O current for
FAST configuration
CL = 25 pF
= 25 pF
C
L
= 25 pF
C
L
pin124 –
pin150
pin151 –
pin6
——
————
————
(1)
Value
Min Typ Max
V
= 5.0 V ± 10%,
DD
PAD3V5V = 0
= 3.3 V ± 10%,
V
DD
PAD3V5V = 1
V
= 5.0 V ± 10%,
DD
PAD3V5V = 0
= 3.3 V ± 10%,
V
DD
PAD3V5V = 1
= 5.0 V ± 10%,
V
DD
PAD3V5V = 0
= 3.3 V ± 10%,
V
DD
PAD3V5V = 1
——20
——16
——29
——17
——110
——50
MDOn
/MSEO
Unit
mA
mA
mA
Doc ID 15131 Rev 669/134
Electrical characteristicsSPC560B54/6x
Table 23.I/O consumption (continued)
SymbolCParameterConditions
CL = 25 pF, 2 MHz
C
= 25 pF, 4 MHz——3.2
L
I
RMSSLW
CC D
Root mean square I/O
current for SLO W
configuration
CL = 100 pF, 2 MHz——6.6
C
= 25 pF, 2 MHz
L
C
= 25 pF, 4 MHz——2.3
L
CL = 100 pF, 2 MHz——4.7
CL = 25 pF, 13 MHz
C
= 25 pF, 40 MHz—— 13.4
L
I
RMSMED
CC D
Root mean square I/O
current for MEDIUM
configuration
CL = 100 pF, 13 MHz——18.3
C
= 25 pF, 13 MHz
L
C
= 25 pF, 40 MHz——8.5
L
CL = 100 pF, 13 MHz——11
CL = 25 pF, 40 MHz
C
= 25 pF, 64 MHz——33
L
I
RMSFST
CC D
Root mean square I/O
current for FAST
configuration
CL = 100 pF, 40 MHz——56
C
= 25 pF, 40 MHz
L
C
= 25 pF, 64 MHz——20
L
CL = 100 pF, 40 MHz——35
(1)
V
= 5.0 V ± 10%,
DD
PAD3V5V = 0
V
= 3.3 V ± 10%,
DD
PAD3V5V = 1
V
= 5.0 V ± 10%,
DD
PAD3V5V = 0
V
= 3.3 V ± 10%,
DD
PAD3V5V = 1
V
= 5.0 V ± 10%,
DD
PAD3V5V = 0
V
= 3.3 V ± 10%,
DD
PAD3V5V = 1
Value
Unit
Min Typ Max
——2.3
mA
——1.6
——6.6
mA
—— 5
——22
mA
——14
Sum of all the static I/O
I
AVGSEG
SR D
current within a supply
segment
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to125 °C, unless otherwise specified
2. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.
Table 24
provides the weight of concurrent switching I/Os.
V
= 5.0 V ± 10%, PAD3V5V = 0——70
DD
= 3.3 V ± 10%, PAD3V5V = 1——65
V
DD
Due to the dynamic current limitations, the sum of the weight of concurrent switching I/Os on
a single segment must not exceed 100% to ensure device functionality.
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified
2. SRC: “Slew Rate Control” bit in SIU_PCRx
Doc ID 15131 Rev 677/134
Electrical characteristicsSPC560B54/6x
4.7 RESET electrical characteristics
The device implements a dedicated bidirectional RESET pin.
Figure 7.Start-up reset requirements
V
DD
V
DDMIN
RESET
V
IH
V
IL
device reset forced by RESET
Figure 8.Noise filtering on reset signal
V
RESET
V
DD
V
IH
V
IL
filtered by
hysteresis
filtered by
lowpass filter
W
FRST
filtered by
lowpass filter
W
device start-up phase
FRST
unknown reset
state
W
NFRST
hw_rst
‘1’
‘0’
device under hardware reset
78/134Doc ID 15131 Rev 6
SPC560B54/6xElectrical characterist ics
Table 25.Reset electrical characteristics
SymbolCParameterConditions
Input High Lev e l
V
SR P
IH
CMOS
(Schmitt Trigger)
V
SR P
IL
Input low Level CMOS
(Schmitt Trigger)
Input hysteres is
V
HYS
CC C
CMOS
(Schmitt Trigger)
Push Pull, I
V
DD
OL
= 5.0 V ±10%, PAD3V5V = 0
(recommended)
Push Pull, I
V
CC P Output low level
OL
V
DD
(2)
1
Push Pull, I
V
DD
OL
= 5.0 V ±10%, PAD3V5V =
OL
= 3.3 V ±10%, PAD3V5V = 1
(recommended)
= 25 pF,
C
L
= 5.0 V ± 10%, PAD3V5V = 0
V
DD
CL = 50 pF,
= 5.0 V ± 10%, PAD3V5V = 0
V
DD
= 100 pF,
C
L
V
= 5.0 V ± 10%, PAD3V5V = 0
DD
C
= 25 pF,
L
= 3.3 V ± 10%, PAD3V5V = 1
V
DD
= 50 pF,
C
L
= 3.3 V ± 10%, PAD3V5V = 1
V
DD
= 100 pF,
C
L
V
= 3.3 V ± 10%, PAD3V5V = 1
DD
W
W
T
tr
FRST
NFRST
CC D
SR P
SR P
Output transition time
output pin
(3)
MEDIUM
configuration
RESET
input filtered
pulse
RESET
input not
filtered pulse
(1)
Value
Unit
MinTypMax
—0.65V
—−0.4—0.35V
—0.1V
—VDD+0.4V
DD
DD
—— V
DD
V
= 2 mA,
——0.1V
DD
= 1 mA,
——0.1V
DD
V
= 1 mA,
—— 0.5
—— 10
—— 20
—— 40
ns
—— 12
—— 25
—— 40
———40ns
—1000——ns
P
DV
|I
WPU
|CC
Weak pull-up current
absolute value
P
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified
2. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of the
device reference manual).
includes device and package capacitance (C
3. C
L
= 3.3 V ± 10%, PAD3V5V = 110—150
V
DD
= 5.0 V ± 10%, PAD3V5V = 010—150
DD
= 5.0 V ± 10%, PAD3V5V =
V
1
DD
(4)
PKG
<5pF).
10—250
Doc ID 15131 Rev 679/134
µA
Electrical characteristicsSPC560B54/6x
4. The configuration PAD3V5 = 1 when VDD= 5 V is only transient configuration during power-up. All pads but RESET and
Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
4.8 Power management electrical characteristics
4.8.1 Voltage regulator electrical characteristics
The device implements an internal voltage regulator to generate the low voltage core supply
V
common I/O supply V
●HV: High voltage external power supply for voltage regulator module. This must be
●BV: High voltage external power supply for internal ballast module. This must be
●LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is
from the high voltage ballast supply V
DD_LV
. The following supplies are involved:
DD
provided externally through V
provided externally through V
V
.
DD
power pin.
DD
power pin. Voltage values should be aligned with
DD_BV
. The regulator itself is supplied by the
DD_BV
generated by the internal voltage regulator but provided outside to connect stability
capacitor. It is further split into four main domains to ensure noise isolation between
critical LV modules within the device:
–LV_COR: Low voltage supply for the core. It is also used to provide supply for
FMPLL through double bonding.
–LV_CFLA: Low voltage supply for code flash module. It is supplied with dedicated
ballast and shorted to LV_COR through double bonding.
–LV_DFLA: Low voltage supply for data flash module. It is supplied with dedicated
ballast and shorted to LV_COR through double bonding.
–LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double
bonding.
80/134Doc ID 15131 Rev 6
SPC560B54/6xElectrical characterist ics
Figure 9.Voltage regulator capacitance connection
C
(LV_COR/LV_CFLA)
REG2
V
DD
V
DD_BV
V
DD_LVn
V
SS_LVn
V
SS_LV
V
REF
Voltage Regulator
I
(Ballast decoupling)
C
(LV_COR/LV_DFLA)
DEC1
REG1
C
DEVICE
V
DD_BV
V
V
V
DD_LV
SS_LV
SS_LV
C
V
REG3
The internal voltage regulator requires external capacitance (C
DD_LV
REGn
V
DD_LV
DEVICE
C
DEC2
V
DD
V
SS
(supply/IO decoupling)(LV_COR/LV_PLL)
) to be connected to the
device in order to provide a stable low voltage digital supply to the device. Capacitances
should be placed on the board as near as possible to the associated pins. Care should also
be taken to limit the serial inductance of the board to less than 5 nH.
Each decoupling capacitor must be placed between each of the three V
pairs to ensure stable voltage (see
CC P Low-power regulator output voltage After trimming1.161.28—V
SR —
CC
CC P
SR —
CC D
CC D
Main regulator current provided to
domain
V
DD_LV
Main regulator module current
consumption
Low-power regulator current
provided to V
DD_LV
domain
D
Low-power regulator module current
consumption
—
Ultra low power regulator output
voltage
Ultra low power regulator current
provided to V
DD_LV
domain
Ultra low power regulator module
current consumptio n
In-rush average current on V
during power-up
(5)
DD_BV
I
= 200 mA——2
MREG
I
= 0 mA——1
MREG
I
LPREG
T
= 55 °C
A
I
LPREG
= 55 °C
T
A
After trimming1.161.28—V
I
ULPREG
= 55 °C
T
A
I
ULPREG
= 55 °C
T
A
(1)
Value
MinTypMax
1.32—
—
———150mA
———15mA
= 15 mA;
= 0 mA;
——
—
600
5—
———5mA
= 5 mA;
= 0 mA;
——
—
———
100
2—
300
(6)
Unit
V
mA
µA
µA
mA
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified
2. This capacitance value is driven by the constraints of the external voltage regulator supplying the V
value is in the range of 470 nF.
3. This value is acceptable to guarantee operation from 4.5 V to 5.5 V
4. External regulator and capacitance circuitry must be capable of providing I
operating range.
5. In-rush average current is seen only for short time during power-up and on standby exit (maximum 20 µs, depending on
external capacitances to be loaded).
6. The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized
accordingly. Refer to I
value for minimum amount of current to be provided in cc.
MREG
while maintaining supply V
DD_BV
voltage. A typical
DD_BV
DD_BV
in
82/134Doc ID 15131 Rev 6
SPC560B54/6xElectrical characterist ics
4.8.2 Low voltage dete ctor electrical characteristics
The device implements a power-on reset (POR) module to ensure correct power-up
initialization, as well as five low voltage detectors (L VDs) to monitor the V
voltage while device is supplied:
●POR monitors V
during the power-up phase to ensure device is maintained in a safe
DD
reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR
in device reference manual)
●LVDHV3 monitors V
to ensure device reset below minimum functional supply (refer
DD
to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device
reference manu al)
●LVDHV3B monitors V
to ensure device reset below minimum functional supply
DD_BV
(refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27_VREG in
device reference manual)
●LVDHV5 monitors V
when application uses device in the 5.0 V ± 10% range (refer to
DD
RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference
manual)
●LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status
(RGM_DES) Register flag F_LVD12_PD1 in device reference manual)
●LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status
(RGM_DES) Register flag F_LVD12_PD0 in device reference manual)
and the V
DD
DD_LV
Note:When enabled, power domain No. 2 is monitored through LVDLVBKP.
Figure 10. Low voltage detector vs reset
V
DD
V
LVDHVxH
V
LVDHVxL
RESET
Doc ID 15131 Rev 683/134
Electrical characteristicsSPC560B54/6x
Table 27.Low voltage detector electrical characteristics
SymbolCParameterConditions
V
PORUP
V
PORH
V
LVDHV3H
V
LVDHV3L
V
LVDHV3BH
V
LVDHV3BL
V
LVDHV5H
V
LVDHV5L
V
LVDLVCORL
V
LVDLVBKPL
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified
SR P Supply for functional POR module
CC P Power-on reset threshold1.5—2.6
CC T LVDHV3 low voltage detector h i gh threshold——2.95
CC P LVDHV3 low voltage detector low threshold2.7—2.9
CC P LVDHV3B low voltage detector high threshold——2.95
CC P LVDHV3B low voltage detector low threshold2.7—2.9
CC T LVDHV5 low voltage detector h i gh threshold——4.5
CC P LVDHV5 low voltage detector low threshold3.8—4.4
CC P LVDLVCOR low voltage detector low threshold1.08—1.16
CC P LVDLVBKP low voltage detector low threshold1.08—1.16
4.9 Power consumption
(1)
T
= 25 °C,
A
after trimming
Value
Unit
MinTypMax
1.0—5.5
V
Table 28
provides DC electrical characteristics for significant application modes. These
values are indicative values; actual consumption depends on the application.
(2)
(4)
CC D
CC
CC
RUN mode maximum
average current
f
T
Tf
RUN mode typic al average
Tf
current
(5)
Pf
Pf
C
HALT mode current
(6)
PT
= 8 MHz—12—
CPU
= 16 MHz—27—
CPU
= 32 MHz—43—
CPU
= 48 MHz—56100
CPU
= 64 MHz—70125
CPU
Slow internal RC
oscillator (128 kHz)
running
P
DT
CC
STOP mode current
DT
(7)
Slow internal RC
oscillator (128 kHz)
running
PT
Table 28.Power consumption on VDD_BV and VDD_HV
SymbolCParameterConditions
I
DDMAX
I
DDRUN
I
DDHALT
I
DDSTOP
(1)
Value
MinTyp Max
——115
=25°C—1018
T
A
= 125 °C—1728
A
TA= 25 °C—350
= 55 °C—750—
A
=85°C—27
A
=105°C—410
A
=125°C—714
A
Unit
140
mA
(3)
mA
mA
900
(8)
µA
mADT
84/134Doc ID 15131 Rev 6
SPC560B54/6xElectrical characterist ics
Table 28.Power consumption on VDD_BV and VDD_HV (continued)
Value
SymbolCParameterConditions
(1)
MinTyp Max
P
I
DDSTDBY2
DT
CC
STANDBY2 mode current
DT
DT
Slow internal RC
(9)
oscillator (128 kHz)
running
PT
T
I
DDSTDBY1
DT
DT
CC
STANDBY1 mode current
DT
Slow internal RC
(10)
oscillator (128 kHz)
running
DT
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified
2. Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is
thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation
ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals
(default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power
mode when possible.
3. Higher current may be sunk by device during power-up and standby exit. Please refer to in-rush average current in
Table 26
4. RUN current measured with typical application with accesses on both Flash and RAM.
5. Only for the “P” classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in
loop back mode, DSPI as Master, PLL as system clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at
max frequency, periodic SW/WDG timer reset enabled.
6. Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz on. 10 MHz XTAL clock. FlexCAN:
instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clocks gated. LINFlex: instances: 0, 1,
2 ON (clocked but not reception or transmission), instance: 3 to 9 clocks gated. eMIOS: instance: 0 ON (16 channels on
PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no
communication), instance: 1 to 5 clocks gated. RTC/API ON. PIT ON. STM ON. ADC1 OFF. ADC0 ON but no conversion
except two analog watchdogs.
7. Only for the “P” classification: No clock, FIRC 16 MHz off, SIRC 128 kHz on, PLL off, HPvreg off, ULPVreg/LPVreg on. All
possible peripherals off and clock gated. Flash in power down mode.
8. When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator
module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures
exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the maximum STOP
specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and
the main regulator will be automatically switched off when the load current is below 6 mA.
9. Only for the “P” classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum consumption, all
possible modules switched off.
10. ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules switched off.
.
TA= 25 °C—30100
=55°C—75—
A
= 85 °C—180700
A
= 105 °C—315 1000
A
= 125 °C—560 1700
A
TA=25°C—2060
=55°C—45—
A
= 85 °C—100350
A
= 105 °C—165500
A
= 125 °C—280900
A
Unit
µA
µA
Doc ID 15131 Rev 685/134
Electrical characteristicsSPC560B54/6x
4.10 Flash memory electrical characteristics
4.10.1 Program/erase characteristics
Table 29
Table 29.Program and erase specifications
shows the program and erase characteristics.
SymbolCParameterConditions
t
dwprogram
t
16Kpperase
Double word (64 bits) program time
16 KB block preprogram and erase time
(4)
C
t
32Kpperase
t
128Kpperase
t
esus
t
ESRT
CC
32 KB block preprogram and erase time
128 KB block preprogram and erase time
D Erase Suspend Latency———3030µs
C Erase Suspend Request Rate
Value
Code Flash
Min
—
Typ
(1)
18
Initial
Max
max
(2)
(3)
50500µs
Data Flash22
Code Flash
—
200
5005000ms
Data Flash300
Code Flash
—
300
6005000ms
Data Flash400
Code Flash
—
600
1300 7500 ms
Data Flash800
Code Flash20———
Data Flash10———
Unit
ms
1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change
pending device characterization.
3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values
are characterized but not guaranteed.
4. Actual hardware programming times. This does not include software overhead.
Table 30.Flash module life
Value
SymbolCParameterConditions
Unit
MinTypMax
Number of p rogram/erase
P/ECC C
cycles per block for 16 KB
blocks over the operating
temperature range (T
)
J
—100000——cycles
Number of p rogram/erase
P/ECC C
cycles per block for 32 KB
blocks over the operating
temperature range (T
)
J
—10000100000—cycles
86/134Doc ID 15131 Rev 6
SPC560B54/6xElectrical characterist ics
Table 30.Flash module life
Value
SymbolCParameterConditions
Number of p rogram/erase
P/ECC C
cycles per block for 128 KB
blocks over the operating
—1000100000—cycles
temperature range (TJ)
MinTypMax
Unit
Retention CC C
Minimum data retention at
85 °C average ambient
temperature
(1)
Blocks with
0–1000 P/E cycles
Blocks with
1001–10000 P/E
cycles
20——years
10——years
Blocks with
10001–100000 P/E
5——years
cycles
1. Ambient temperature averaged over duration of application, not to exceed recom mended produc t operating temperature
range.
ECC circuitry provides correction of single bit faults and is used to improve further
automotive reliability results. Some units will experience single bit corrections throughout
the life of the product with no impact to product reliability.
Table 31.Flash read access timing
SymbolCParameterConditions
f
READ
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified
CC
P
Maximum frequency for Flash reading
2 wait states64
C0 wait states20
(1)
MaxUnit
MHzC1 wait state40
4.10.2 Flash power supply DC characteristics
Table 32
Table 32.Flash power supply DC electrical characteristics
SymbolParameterConditions
I
CFREAD
I
DFREAD
I
CFMOD
I
DFMOD
Sum of the current consumption on
CC
V
Sum of the current consumption on
CC
V
modification (program/erase)
shows the power supply DC characteristics on external supply.
Flash module read
DD_HV
DD_HV
and V
and V
on read access
DD_BV
on matrix
DD_BV
= 64 MHz
f
CPU
Program/Erase
on-going while
reading
Flash registers
= 64 MHz
f
CPU
Doc ID 15131 Rev 687/134
(1)
Value
Min Typ Max
Code Flash——33
Data Flash——33
Code Flash——52
Data Flash——33
Unit
mA
mA
Electrical characteristicsSPC560B54/6x
Table 32.Flash power supply DC electrical characteristics (continued)
SymbolParameterConditions
I
CFLPW
I
DFLPW
I
CFPWD
I
DFPWD
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified
Sum of the current consumption on
CC
V
DD_HV
and V
DD_BV
during Flash
low power mode
Sum of the current consumption on
CC
V
DD_HV
and V
DD_BV
during Flash
power down mode
—
—
4.10.3Start-up/Switch-off timings
Table 33.Start-up time/Switch-off time
SymbolCParameterConditions
t
FLARSTEXIT
t
FLALPEXIT
t
FLAPDEXIT
t
FLALPENTRY
t
FLAPDENTRY
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified
CC T Delay for Flash module to exit reset mode———125
CC T Delay for Flash module to exit low-power mode———0.5
CC T Delay for Flash module to exit power-down mode———30
CC T Delay for Flash module to enter low-power mode———0.5
CC T Delay for Flash module to enter power-down mode———1.5
(1)
Value
Unit
Min Typ Max
Code Flash——1.1mA
Data Flash——900µA
Code Flash——150
Data Flash——150
Susceptibility tests are performed on a sample basis during product characterization.
4.11.1 Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
88/134Doc ID 15131 Rev 6
SPC560B54/6xElectrical characterist ics
Therefore it is recommended that the user apply EMC software optimization and
prequalification tests in relation with the EMC level requested for the application.
●Software recommendations − The softw are fl owchart must includ e t he ma na g eme nt of
runaway conditions such as:
–Corrupted program counter
–Unexpected reset
–Critical data corruption (control registers...)
●Prequalification trials − Most of the common failures (unexpected reset and program
counter corruption) can be reproduced by manually forcing a low state on the reset pin
or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device. When
unexpected behavior is detected, the software can be hardened to prevent
unrecoverable errors occurring (see application note
Improving Microcontroller EMC Performance
(AN1015)).
Software Techniques For
4.11.2 Electromagnetic interference (EMI)
The product is monitored in terms of emission based on a typical application. This emission
test conforms to the IEC61967-1 standard, which specifies the general conditions for EMI
measurements.
Table 34.EMI radiated emission measurement
(1)(2)
Value
SymbolCParameterConditions
MinTypMax
—SR — Scan range—0.1501000 MHz
f
CPU
V
DD_LV
S
1. EMI testing and I/O port waveforms per IEC 61967-1, -2, -4
2. For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local
SR — Operating frequency——64—MHz
SR — LV operating voltages——1.28—V
No PLL frequency
modulation
± 2% PLL
frequency
=
modulation
——18dBµV
——14dBµV
CC T Peak level
EMI
marketing representative.
VDD= 5V, TA=25°C,
LQFP144 package
Test conforming to IEC
61967-2,
f
=8 MHz/f
OSC
64 MHz
CPU
4.11.3 Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Unit
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts×( n + 1) suppl y p in ). This test
Doc ID 15131 Rev 689/134
Electrical characteristicsSPC560B54/6x
conforms to the AEC-Q100-002/-003/-011 standard. For more details, refer to the
application note
Table 35.ESD absolute maximum ratings
Symbol RatingsConditionsClassMax value
Electrostatic Discharge Sensitivity Measurement
(1)(2)
(AN1181).
(3)
Unit
V
ESD(HBM)
V
ESD(MM)
V
ESD(CDM)
1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
2. A device will be defined as a failure if aft er exposure to ESD pulses the device no longer meets the device specification
requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at
room temperature followed by hot temperature, unless specified otherwise in the device specification.
3. Data based on characterization results, not tested in production
Electrostatic discharge voltage
(Human Body Model)
Electrostatic discharge voltage
(Machine Model)
Electrostatic discharge voltage
(Charged Device Model)
TA = 25 °C
conforming to AEC-Q100-002
TA = 25 °C
conforming to AEC-Q100-003
TA = 25 °C
conforming to AEC-Q100-011
H1C2000
M2200
500
C3A
750
(corners)
Static latch-up (LU)
Two complementary static tests are required on six parts to assess the latch-up
performance:
●A supply overvoltage is applied to each power supply pin.
●A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with the EIA/JESD 78 IC latch-up standard.
Table 36.Latch-up results
V
SymbolPa rameterConditionsClass
= 125 °C
T
LUStatic latch-up class
A
conforming to JESD 78
II level A
4.12 Fast external crystal oscillator (4 to 16 MHz) electri cal
characteristics
The device provides an oscillator/resonator driver.
the internal oscillator driver and provides an example of a connection for an oscillator or a
resonator.
Table 37
provides the parameter description of 4 MHz to 16 MHz crystals used for the
design simulations.
90/134Doc ID 15131 Rev 6
Figure 11
describes a simple model of
SPC560B54/6xElectrical characterist ics
Figure 11. Crystal oscillator and resonator connection scheme
EXTAL
C1
EXTAL
Crystal
XTAL
V
DD
I
R
DEVICE
C2
XTAL
EXTAL
DEVICE
Resonator
XTAL
DEVICE
Notes:
1. XTAL/EXTAL must not be directly used to drive external circuits
2. A series resistor may be required, according to crystal oscillator supplier recommendations.
Table 37.Crystal description
Nominal
frequency
(MHz)
NDK crystal
reference
Crystal
equivalent
series
resistance
ESR Ω
Crystal
motional
capacitance
) fF
(C
m
Crystal
motional
inductance
(Lm) mH
Load on
xtalin/xtalout
C1 = C2
(1)
(pF)
4NX8045GB3002.68591.0212.93
8
3002.46160.7173.01
101502.9386.6152.91
NX5032GA
121203.1156.5152.93
Shunt
capacitance
between
xtalout
and xtalin
(2)
(pF)
C0
161203.9025.3103.00
1. The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all
the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.
2. The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package,
etc.).
Doc ID 15131 Rev 691/134
Electrical characteristicsSPC560B54/6x
Figure 12. Fast external crystal oscillator (4 to 16 MHz) timing diagram
The device provides a low power oscillator/resonator driver.
Figure 13. Crystal oscillator and resonator connection scheme
Unit
ms
V
OSC32K_EXTAL
OSC32K_XTAL
DEVICE
Note: OSC32_XTAL/OSC32_EXTAL must not be directly used to drive external circuits
OSC32K_EXTAL
C1
R
Crystal
P
Resonator
OSC32K_XTAL
C2
DEVICE
Doc ID 15131 Rev 693/134
Electrical characteristicsSPC560B54/6x
Figure 14. lEquivalent circuit of a quartz crystal
C0
Crystal
C2C1
C1
Table 39.Crystal motional characteristics
(1)
SymbolParameterConditions
L
Motional inductance——11.796—KH
m
C
Motional capacitance——2—fF
m
Load capacitance at O SC32K_XT AL a nd
C1/C2
OSC32K_EXTAL with respect to
(2)
ground
—18—28pF
AC coupled at C0 = 2.85 pF
(3)
R
Motional resistance
m
AC coupled at C0 = 4.9 pF
AC coupled at C0 = 7.0 pF
AC coupled at C0 = 9.0 pF
C
R
m
m
L
m
C2
Value
Unit
MinTypMax
(4)
——65
(4)
(4)
(4)
——50
kW
——35
——30
1. The crystal used is Epson Toyocom MC306.
2. This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It
includes all the parasitics due to board traces, crystal and package.
3. Maximum ESR (R
4. C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins.
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. Values are specified for no neighbor
GPIO pin activity. If oscillator is enabled (OSC32K_XTAL and OSC32K_EXTAL pins), neighboring pins should not toggle.
2. Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.
SR — Slow external crystal oscillator frequency—3232.76840kHz
CC T Oscillation amplitude——2.1—V
CC T Oscillation bias current—2.5µA
CC T
CC T
Slow external crystal oscillator
consumption
Slow external crystal oscillator start-up
time
———8µA
———2
(2)
4.14 FMPLL electrical characteristics
The device provides a frequency modulated phase locked loop (FMPLL) module to generate
a fast system clock from the main oscillator driver.
Slow internal RC oscillator precision
after software trimming of f
SIRC
Slow internal RC oscillator trimming
step
TA = 25 °C−2—2
——2.7—
Slow internal RC oscillato r variati on in
Δ
SIRCVAR
CC C
temperature and supply with respect
to f
at TA= 55 °C in high
SIRC
High frequency
configuration
−10—10%
frequency configur ati on
1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified
2. This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.
4.17 ADC electrical characteristics
4.17.1 Introduction
The device provides two Successive Approximation Register (SAR) analog-to-digital
converters (10-bit and 12-bit).
Unit
%
98/134Doc ID 15131 Rev 6
SPC560B54/6xElectrical characterist ics
Figure 16. ADC_0 characteristic and error definitions
code out
1023
1022
1021
1020
1019
1018
Offset Error (EO)
1 LSB ideal = V
(2)
7
(1)
6
5
(5)
4
3
2
(4)
(3)
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Differential non-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfer curve
Gain Error (E
DD_ADC
/ 1024
)
G
1
0
12345671017 1018 1019 1020 1021 1022 1023
Offset Error (E
O
)
1 LSB (ideal)
V
in(A)
4.17.2 Input impedance and ADC accuracy
In the following analysis, the input circuit corresponding to the precise channels is
considered.
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have
low AC impedance. Placing a capacitor with good high frequency characteristics at the input
pin of the device can be effective: the capacitor should be as large as possible, ideally
infinite. This capacitor contributes to attenuating the noise present on the input pin;
furthermore, it sources charge during the sampling phase, when the analog signal source is
a high-impedance source.
A real filter can typically be obtained by using a series resistance with a capacitor on the
input pin (simple RC filter). The RC filtering may be limited according to the value of source
impedance of the transducer or circuit supplying the analog signal to be measured. The filter
Doc ID 15131 Rev 699/134
(LSB
ideal
)
Electrical characteristicsSPC560B54/6x
at the input pins must be designed taking into account the dynamic characteristics of the
input signal (bandwidth) and the equivalent input impedance of the ADC itself.
In fact a current sink contributor is represented by the charge sharing effects with the
sampling capacitance: C
being substantially a switched capacitance, with a frequency
S
equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For
instance, assuming a conversion rate of 1 MHz, with C
kΩ is obtained (R
= 1 / (fc*CS), where fc represents the conversion rate at the considered
EQ
equal to 3 pF, a resistance of 330
S
channel). To minimize the error induced by the voltage partitioning between this resistance
(sampled voltage on C
) and the sum of RS + RF + RL + RSW + RAD, the external circuit
S
must be designed to respect the <Cross Refs>Equation 4: