ST M28C64 User Manual

Fast Access Time:
–90nsatVCC=5 V forM28C64 andM28C64-A – 120 ns at VCC=3 V for M28C64-xxW
Single Supply Voltage:
– 4.5 V to 5.5V for M28C64 and M28C64-A – 2.7 V to 3.6V for M28C64-xxW
Low Power Consumption
Fast BYTE and PAGE WRITE (up to 64 Bytes)
– 1 ms at VCC=4.5 V for M28C64-A – 3 ms at VCC=4.5 V for M28C64 – 5 ms at VCC=2.7 V for M28C64-xxW
Enhanced Write Detection and Monitoring:
– Ready/Busy Open DrainOutput – Data Polling – Toggle Bit – Page Load Timer Status
JEDEC Approved Bytewide Pin-Out
Software Data Protection
100000 Erase/Write Cycles (minimum)
Data Retention (minimum):
– 40 Years for M28C64 and M28C64-xxW – 10 Years for M28C64-A
M28C64
64 Kbit (8K x 8) Parallel EEPROM
With Software Data Protection
28
1
PDIP28 (BS)
28
1
SO28 (MS)
300 mil width
Figure 1. Logic Diagram
V
CC
PLCC32 (KA)
TSOP28 (NS)
8 x 13.4 mm
Table 1. Signal Names
A0-A12 Address Input DQ0-DQ7 Data Input / Output W Write Enable E Chip Enable G Output Enable RB Ready / Busy V
CC
V
SS
Supply Voltage
Ground
A0-A12
W
13
M28C64
E
G
V
SS
8
DQ0-DQ7
RB
AI01350C
1/24June 2000
M28C64
Figure 2A. DIP Connections
RB V
1
A12
2
A7
3
A6
4
A5
5
A4
6
A3
7 8 9 10 11 12 13 14
M28C64
AI01351C
A2 A1 A0
DQ0
DQ2
SS
Note: 1. NC = Not Connected
Figure 2B. PLLC Connections
CC
RB
A7
A6 A5 A4 A3 A2
9 A1 A0
NC
DQ0
DQ1
Note: 1. NC = Not Connected
2. DU = Do Not Use
A12
1
M28C64
17
SS
V
DQ2
DU
32
DU
V
DQ3
28 27 26 25 24 23 22 21 20 19 18 17 16 15
W
DQ4
CC
W NC A8 A9 A11 G A10 E DQ7 DQ6 DQ5DQ1 DQ4 DQ3V
NC
25
DQ5
A8 A9 A11 NC G A10 E DQ7 DQ6
AI01352D
Figure 2C. SO Connections
RB
A12
DQ0 DQ1 DQ2
V
SS
Note: 1. NC =Not Connected
A7 A6 A5 A4 A3 A2 A1 A0
1 2 3 4 5 6 7 8 9 10 11 12 13 14
M28C64
AI01353C
Figure 2D. TSOP Connections
G
22
A11
A9 A8
NC
W
V
CC RB
A12
Note: 1. NC =Not Connected
28
M28C64
1
A7 A6 A5 A4 A3
78
AI01354C
V
28 27 26 25 24 23 A11 22 21 20 19 18 17 16 15
CC
W NC A8 A9
G A10 E DQ7 DQ6 DQ5 DQ4 DQ3
21
15 14
A10 E DQ7 DQ6 DQ5 DQ4 DQ3 V
SS
DQ2 DQ1 DQ0 A0 A1 A2
DESCRIPTION
The M28C64 devices consist of 8192x8 bits of low power, parallel EEPROM, fabricated with STMicroelectronics’ proprietary single polysilicon CMOS technology. The devices offer fast access time, with low power dissipation, and require a single voltage supply (5V or 3V, depending on the option chosen).
The device has been designed to offer a flexible microcontroller interface, featuring both hardware
2/24
and software handshaking, with Ready/Busy, Data Polling and Toggle Bit. The device supports a 64 byte Page Write operation. Software Data Protection (SDP) is also supported, using the standard JEDEC algorithm.
M28C64
Table 2. Absolute Maximum Ratings
1
Symbol Parameter Value Unit
T
A
T
STG
V
CC
V
IO
V
I
V
ESD Electrostatic Discharge Voltage (Human Body model)
Note: 1. Except for the rating “Operating Temperature Range”, stresses above those listed in the Table “Absolute Maximum Ratings” may
cause permanent damage to the device. These arestress ratings only, and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi­tions for extended periods may affect device reliability. Refer also to the ST SURE Program and other relevant quality documents.
2. MIL-STD-883C, 3015.7 (100 pF, 1500 )
Ambient Operating Temperature -40 to 125 °C Storage Temperature -65 to 150 °C Supply Voltage -0.3 to VCC+1 V Input or Output Voltage
-0.6 to V
CC
+0.6
V
Input Voltage -0.3 to 6.5 V
2
4000 V
Figure 3. Block Diagram
RB E G W
A6-A12
(Page Address)
A0-A5
VPPGEN RESET
ADDRESS
LATCH
ADDRESS
LATCH
Y DECODE
X DECODE
CONTROL LOGIC
64K ARRAY
SENSE AND DATA LATCH
I/O BUFFERS
DQ0-DQ7
PAGE
LOAD TIMER STATUS TOGGLE BIT DATA POLLING
AI01355
3/24
M28C64
IH
or V
1
; V=12V ± 5%.
IL
Ready/Busy (RB). Ready/Busy is an open drain output that can be used to detect the end of the internal write cycle.
DEVICE OPERATION
In order to prevent datacorruption and inadvertent write operations, an internal VCCcomparator inhibits the Write operations if the VCCvoltage is lowerthan VWI(see Table 4A and Table4B). Once the voltage applied on the VCCpin goes over the VWIthreshold (VCC>VWI), write access to the memory is allowed after a time-out t specified in Table 4A and Table 4B.
Further protection against data corruption is offered by the E and W low pass filters: any glitch, on the E and W inputs, witha pulsewidth less than 10 ns (typical) is internally filtered out to prevent inadvertent write operations to the memory.
Table 3. Operating Modes
Mode E G W DQ0-DQ7
Stand-by 1 X X Hi-Z Output Disable X 1 X Hi-Z Write Disable X X 1 Hi-Z Read 0 0 1 Data Out Write 0 1 0 Data In Chip Erase 0 V 0 Hi-Z
Note: 1. 0=VIL;1=VIH;X=V
SIGNAL DESCRIPTION
The external connections to the device are summarized in Table 1,and their use in Table 3.
Addresses (A0-A12). The address inputs are used to select one byte from the memory array during a read or write operation.
Data In/Out (DQ0-DQ7). The contents of the data byte arewritten to,or read from,the memory array through the Data I/O pins.
Chip Enable (E). The chip enable input must be held low to enable read and write operations. When Chip Enable is high, power consumption is reduced.
Output Enable (G). The Output Enable input controls the data output buffers, and is used to initiate read operations.
Write Enable(W). TheWrite Enable input controls whether the addressed locationis to be read, from or written to.
PUW
,as
Table 4A. Power-Up Timing1for M28C64 (5V range)
(TA= 0 to70 °C or –40 to 85 °C or –40 to 125 °C; VCC= 4.5 to 5.5 V)
Symbol Parameter Min. Max. Unit
t
PUR
t
PUW
V
WI
Note: 1. Sampled only, not 100% tested.
Time Delay to Read Operation 1 µs Time Delay to Write Operation (once VCC≥ VWI)10ms Write Inhibit Threshold 3.0 4.2 V
Table 4B. Power-Up Timing1for M28C64-xxW (3V range)
(TA= 0 to70 °C or –40 to 85 °C; VCC= 2.7 to 3.6 V)
Symbol Parameter Min. Max. Unit
t
PUR
t
PUW
V
WI
Note: 1. Sampled only, not 100% tested.
4/24
Time Delay to Read Operation 1 µs Time Delay to Write Operation (once VCC≥ VWI)15ms Write Inhibit Threshold 1.5 2.5 V
M28C64
Read
The deviceis accessed like a static RAM. When E and G are low, and W is high, the contents of the addressed location are presented on the I/O pins. Otherwise, when either G or Eis high,the I/Opins revert to their high impedance state.
Write
Write operations are initiated when both W and E are low and G is high. The device supports both W-controlled and E-controlled write cycles (as shown in Figure 11 and Figure12). The address is latched during the falling edge of W or E (which ever occurs later) and the data is latched on the rising edge of W or E (which ever occurs first). After a delay, t
, that cannot be shorter than
WLQ5H
the value specified in Table 10Ato Table 10C, the internal write cycle starts. It continues, under internal timing control, until the write operation is complete. The commencement of this period can be detected by reading the Page Load Timer Status on DQ5. The end of the cycle can be detected by reading the status of the Data Polling and the Toggle Bit functions on DQ7 and DQ6.
Page Write
The Page Write mode allows up to 64 bytes to be written on a single page in a single go. This is achieved through a series of successive Write operations, notwoof which are separatedbymore than the t
WLQ5H
value (as specified in Table 10A
to Table 10C).
All bytes must be located on the same page address (A12-A6 must be the same for all bytes).
The internal write cycle can start at any instant after t
. Once initiated, the write operation is
WLQ5H
internally timed, and continues, uninterrupted, until completion.
As with the single byte Write operation, described above, the DQ5, DQ6 and DQ7 lines can be used to detect the beginning and end of the internally controlled phase of the Page Write cycle.
Software Data Protection (SDP)
The device offers a software-controlled write­protection mechanism that allows the user to inhibit all write operations to the device. This can be useful for protecting the memory from inadvertent write cycles that may occur during periods of instability (uncontrolled bus conditions when excessive noise is detected,or when power supply levels are outside their specified values).
By default, the device is shipped in the “unprotected” state: the memory contents can be freely changed by the user. Once the Software Data Protection Mode is enabled, all write commands are ignored,and have no effecton the memory contents.
The device remains in this mode until a valid Software Data Protection disable sequence is received. The device reverts to its “unprotected” state.
The status of the Software Data Protection (enabled or disabled) is represented by a non-
Figure 4. Software Data Protection Enable Algorithm and Memory Write
Write AAh in
Address 1555h
Page Write
Timing
(see note 1)
Note: 1. The most significant address bits (A12 to A6) differ during these specific Page Write operations.
Write 55h in
Address 0AAAh
Write A0h in
Address 1555h
SDP is set
SDP Enable Algorithm
Page Write
Timing
(see note 1)
Physical
Page Write
Instruction
Write AAh in
Address 1555h
Write 55h in
Address 0AAAh
Write A0h in
Address 1555h
Page Write
(1 up to 64 bytes)
Write to
When SDP is SET
Memory
AI01356C
Write is enabled
5/24
M28C64
Figure 5. Software Data Protection Disable Algorithm
Write AAhin
Address 1555h
Write 55h in
Address 0AAAh
Write 80h in
Page Write
Timing
Address 1555h
Write AAhin
Address 1555h
Write 55h in
Address 0AAAh
Write 20h in
Address 1555h
Unprotected State
AI01357B
volatile latch, and is remembered across periods of the power being off.
The Software Data Protection Enable command consists of the writing of three specific data bytes to three specific memory locations (each location being on a different page), as shown in Figure 4.
Similarly to disable the Software Data Protection, the user has to write specific data bytes into six different locations, as shown in Figure 5. This complex series of operations protects against the chance of inadvertent enabling or disabling of the Software Data Protection mechanism.
When SDP is enabled, the memoryarray can still have data written to it, but the sequence is more complex (and hence better protected from inadvertent use). The sequence is as shown in Figure 4. This consists of anunlock key, to enable the write action, at the end of which the SDP continues to be enabled. This allows the SDP to be enabled, and data to be written, within a single Write cycle (tWC).
Software Chip Erase
Using this function, available on the M28C64 but not on the M28C64-A or M28C64-xxW, the contents of the entire memory are erased (set to FFh) by holding Chip Enable (E) low, and holding Output Enable (G) at VCC+7.0V. The chip is cleared when a 10 ms low pulse is applied to the Write Enable (W) signal (seeFigure 7 and Table 5 for details).
Status Bits
The devices provide three status bits (DQ7, DQ6 and DQ5), and one output pin (RB), foruse during write operations. These allow the application to use the write time latency of the device for getting on with other work. These signals areavailable on the I/O port bits DQ7, DQ6 and DQ5 (but only during programming cycle, once a byte or more has been latched into the memory)or continuously on the RB output pin.
Data Polling bit (DQ7). Theinternally timed write cycle starts after t
WLQ5H
(defined in Table 10A to Table 10C) has elapsed since the previous byte was latched in to the memory. The value of the DQ7 bit of this last byte, is used as a signal
Figure 6. Status Bit Assignment
DQ7 DQ6 DQ5 DQ4 DQ3 DQ2 DQ1 DQ0
DP TB PLTS Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z
DP
= Data TB PLTS Hi-Z
Polling = Toggle Bit = Page Load Timer = High impedance
Status
AI02815
6/24
Figure 7. Chip Erase AC Waveforms (M28C64 and M28C64-xxW)
E
G
tGLWH
W
M28C64
tWHEH
throughout this write operation: it is inverted while the internal write operation is underway, and is inverted back to its original value once the operation is complete.
Toggle bit (DQ6). The device offers another way for determining when the internal write cycle is completed. During the internal Erase/Write cycle, DQ6 toggles from ’0’ to ’1’ and ’1’ to ’0’ (the first read value being ’0’) on subsequent attempts to read any byte of the memory. When the internal write cycle is complete, the toggling is stopped, and the valuesread on DQ7-DQ0are those ofthe addressed memory byte. This indicates that the device is again available for new Read and Write operations.
Page Load Timer Status bit (DQ5). An internal timer is used to measure the period between successive Write operations, up to t
WLQ5H
(defined in Table 10Ato Table 10C). The DQ5 line is held low to show when this timer is running (hence showing that the device has received one write operation, and is waiting for the next). The DQ5 line is held high when the counter has
tWLWH2tELWL
tWHRH
AI01484B
overflowed (hence showingthat the device is now starting the internal write to the memory array).
Ready/Busy pin. The RB pin is an open drain output that isheld low duringthe erase/write cycle, and that is released (allowed to float) at the completion of the programming cycle.
Table 5. Chip Erase AC Characteristics1for M28C64 and M28C64-xxW
(TA= 0 to70 °C or –40 to 85 °C or –40 to 125 °C; VCC= 4.5 to 5.5 V) (TA= 0 to 70 °C or –40 to 85 °C; VCC= 2.7 to 3.6 V)
Symbol Parameter Test Condition Min. Max. Unit
t
ELWL
t
WHEH
t
WLWH2
t
GLWH
t
WHRH
Note: 1. Sampled only, not 100% tested.
Chip Enable Low to Write Enable Low Write Enable High to Chip Enable High G = VCC+7V 0 ns Write Enable Low to Write Enable High Output Enable Low to Write Enable High Write Enable High to WriteEnable Low G = VCC+7V 3 ms
G=V
G=V G=V
CC
CC
CC
+7V
+7V +7V
1 µs
10 ms
1 µs
7/24
M28C64
Table 6A. Read Mode DC Characteristics for M28C64 and M28C64-A (5V range)
(TA= 0 to70 °C or –40 to 85 °C or –40 to 125 °C; VCC= 4.5 to 5.5 V)
Symbol Parameter Test Condition Min. Max. Unit
I
Input Leakage Current 0 V VIN≤ V
LI
I
I
CC
I
CC1
I
CC2
V V V
V
Note: 1. All inputs and outputs open circuit.
Output Leakage Current 0 V V
LO
Supply Current (TTL inputs) E = VIL,G=VIL, f = 5 MHz 30 mA
1
Supply Current (CMOS inputs)
1
Supply Current (Stand-by) TTL
1
Supply Current (Stand-by) CMOS E > VCC- 0.3V 100 µA Input Low Voltage -0.3 0.8 V
IL
Input High Voltage 2
IH
Output Low Voltage
OL
Output High Voltage IOH= -400 µA 2.4 V
OH
E=V
,G=VIL, f = 5 MHz
IL
E=V
I
= 2.1 mA
OL
OUT
IH
V
CC
CC
Table 6B. Read Mode DC Characteristics for M28C64-xxW (3V range)
(TA= 0 to70 °C or –40 to 85 °C; VCC= 2.7 to 3.6 V)
Symbol Parameter Test Condition Min. Max. Unit
I
Input Leakage Current
LI
I
I
CC
I
CC2
V V
V V
Note: 1. All inputs and outputs open circuit.
Output Leakage Current 0 V V
LO
1
Supply Current (CMOS inputs)
1
Supply Current (Stand-by) CMOS E > VCC- 0.3V 20 µA Input Low Voltage -0.3 0.6 V
IL
Input High Voltage 2
IH
Output Low Voltage IOL= 1.6 mA 0.2 V
OL
Output High Voltage IOH= -400 µA 0.8 V
OH
E=V E=V
0V V
,G=VIL, f = 5 MHz, VCC= 3.3V 8 mA
IL
,G=VIL, f = 5 MHz, VCC= 3.6V 10 mA
IL
IN
OUT
V
V
CC
CC
CC
10 µA 10 µA
25 mA
1mA
V
+ 0.5
CC
0.4 V
10 µA 10 µA
V
+ 0.5
CC
CC
V
V V V
8/24
Table 7. Input and Output Parameters1(TA=25°C, f = 1 MHz)
Symbol Parameter Test Condition Min. Max. Unit
C
IN
C
OUT
Note: 1. Sampled only, not 100% tested.
Input Capacitance VIN=0V 6 pF Output Capacitance V
=0V 12 pF
OUT
Table 8. AC Measurement Conditions
Input Rise and Fall Times 20 ns Input Pulse Voltages (M28C64, M28C64-A) 0.4 V to 2.4 V Input Pulse Voltages (M28C64-xxW)
0 V to V
Input and Output Timing Reference Voltages (M28C64, M28C64-A) 0.8 V to 2.0 V
CC
-0.3V
M28C64
Input and Output Timing Reference Voltages (M28C64-xxW) 0.5 V
Figure 8. AC Testing Input Output Waveforms
4.5V to 5.5V Operating Voltage
2.4V
0.4V
2.7V to 3.6V Operating Voltage
VCC– 0.3V
0V
2.0V
0.8V
0.5 V
AI02101B
CC
Figure 9. AC Testing Equivalent Load Circuit
I
OL
DEVICE UNDER
TEST
I
OH
CLincludes JIG capacitance
CC
OUT
CL= 100pF
AI02102B
9/24
M28C64
Table 9A. Read Mode AC Characteristics for M28C64 and M28C64-A (5V range)
(TA= 0 to70 °C or –40 to 85 °C; VCC= 4.5 to 5.5 V)
Test
Symbol Alt. Parameter
t
AVQVtACC
t
ELQV
t
GLQV
1
t
EHQZ
1
t
GHQZ
t
AXQXtOH
Note: 1. Output Hi-Z is defined as the point at which data is no longer driven.
Address Valid to Output Valid
t
Chip Enable Low to Output Valid
CE
t
Output Enable Low to Output Valid E = V
OE
t
Chip Enable High to Output Hi-Z G = V
DF
t
Output Enable High to Output Hi-Z
DF
Address Transitionto Output Transition
Condit
ion
E=V
IL
G=V G=V
E=V
E=V
IL
G=V
Min Max Min Max Min Max
,
IL
IL
IL
IL
IL
,
IL
90 120 150 ns
90 120 150 ns 40 45 50 ns
040045050ns 040045050ns
000ns
Table 9B. Read Mode AC Characteristics for M28C64 (5V range)
(TA= –40 to 125 °C; VCC= 4.5 to 5.5 V)
Test
Symbol Alt. Parameter
t
AVQVtACC
t
ELQV
t
GLQV
1
t
EHQZ
1
t
GHQZ
t
AXQXtOH
Note: 1. Output Hi-Z is defined as the point at which data is no longer driven.
Address Valid to Output Valid
t
Chip Enable Low to Output Valid
CE
t
Output Enable Low to Output Valid
OE
t
Chip Enable High to Output Hi-Z
DF
t
Output Enable High to Output Hi-Z
DF
Address Transitionto Output Transition
Condit
ion
E=V
IL
G=V G=V E=V
G=V E=V
E=V
IL
G=V
Min Max
,
IL
IL
IL
IL
IL
,
IL
065ns 065ns
0ns
M28C64
M28C64
Unit-90 -12 -15
Unit-12
120 ns
120 ns
45 ns
10/24
Table 9C. Read Mode AC Characteristics for M28C64-xxW (3V range)
(TA= 0 to70 °C or –40 to 85 °C; VCC= 2.7 to 3.6 V)
Test
Symbol Alt. Parameter
t
AVQVtACC
t
ELQVtCE
t
GLQVtOE
1
t
EHQZ
1
t
GHQZ
t
AXQXtOH
Note: 1. Output Hi-Z is defined as the point at which data is no longer driven.
Address Valid to Output Valid
Chip Enable Low to Output Valid
Output Enable Low to Output Valid
Chip Enable High to
t
DF
Output Hi-Z Output EnableHigh
t
DF
to Output Hi-Z Address Transition
to Output Transition
Condit
ion
E=V
G=V
G=V
E=V
G=V
E=V
E=V
G=V
Min Max Min Max Min Max Min Max Min Max
,
IL
IL
IL
IL
IL
IL
,
IL
IL
120 150 200 250 300 ns
120 150 200 250 300 ns
80 80 100 150 150 ns
045050055060060ns
045050055060060ns
00000ns
M28C64-xxW
M28C64
Unit-12 -15 -20 -25 -30
Figure 10. Read Mode AC Waveforms (with Write Enable, W, high)
A0-A12
E
G
DQ0-DQ7
Note: 1. Write Enable (W) = V
tAVQV tAXQX
tGLQV tEHQZ
tELQV
IH
VALID
DATA OUT
tGHQZ
Hi-Z
AI00749B
11/24
M28C64
Table 10A. Write Mode AC Characteristics for M28C64 and M28C64-A (5V range)
(TA= 0 to70 °C or –40 to 85 °C; VCC= 4.5 to 5.5 V)
Symbol Alt. Parameter Test Condition
t
AVWL
t
AVEL
t
ELWLtCES
t
GHWLtOES
t
GHELtOES
t
WLELtWES
t
WLAX
t
ELAX
t
WLDV
t
ELDV
t
ELEH
t
WHEHtCEH
t
WHGLtOEH
t
EHGLtOEH
t
EHWHtWEH
t
WHDX
t
EHDX
t
WHWLtWPH
t
WLWHtWP
t
WLQ5HtBLC
t
Q5HQ5XtWC
t
WHRL
t
EHRL
t
DVWH
t
DVEH
Note: 1. With a 3.3 kpull-up resistor.
t
Address Valid to Write Enable Low
AS
t
Address Valid to Chip Enable Low
AS
Chip Enable Low to Write Enable Low Output Enable High to Write Enable Low E = V Output Enable High to Chip Enable Low Write Enable Low to Chip Enable Low G = V
t
Write Enable Low to Address Transition 50 ns
AH
t
Chip Enable Low to Address Transition 50 ns
AH
t
Write Enable Low to Input Valid
DV
t
Chip Enable Low to Input Valid
DV
t
Chip Enable Low to Chip Enable High 50 ns
WP
Write Enable High to Chip Enable High 0 ns Write Enable High to Output Enable Low 0 ns Chip Enable High to Output Enable Low 0 ns Chip Enable High to Write Enable High 0 ns
t
Write Enable High to Input Transition 0 ns
DH
t
Chip Enable High to Input Transition 0 ns
DH
Write Enable High to WriteEnable Low 50 1000 ns Write Enable Low to Write Enable High 50 ns Time-out after last byte write (M28C64) 100 µs Time-out after last byte write (M28C64-A) 20 µs Write Cycle Time (M28C64) 3 ms Write Cycle Time (M28C64-A) 1 ms
t
Write Enable High to Ready/Busy Low Note 1 150 ns
DB
t
Chip Enable High to Ready/Busy Low Note 1 150 ns
DB
t
Data Validbefore Write Enable High 50 ns
DS
t
Data Validbefore Chip Enable High 50 ns
DS
E=V
G=V
G=V
W=V
E=V
G=V
,G=V
IL
,W=V
IH
,G=V
IL
,W=V
IH
IH
IL
IL
IH
IH
IL
IH
IL
Min Max
0ns 0ns 0ns 0ns 0ns 0ns
M28C64
Unit
1 µs 1 µs
12/24
Table 10B. Write Mode AC Characteristics for M28C64 (5V range)
(TA= –40 to 125 °C; VCC= 4.5 to 5.5 V)
Symbol Alt. Parameter Test Condition
t
AVWL
t
AVEL
t
ELWLtCES
t
GHWLtOES
t
GHELtOES
t
WLELtWES
t
WLAX
t
ELAX
t
WLDV
t
ELDV
t
ELEH
t
WHEHtCEH
t
WHGLtOEH
t
EHGLtOEH
t
EHWHtWEH
t
WHDX
t
EHDX
t
WHWLtWPH
t
WLWHtWP
t
WLQ5HtBLC
t
Q5HQ5XtWC
t
WHRL
t
EHRL
t
DVWH
t
DVEH
t
t t
t t t t
WP
t t
t t t t
AS
AS
AH
AH
DV
DV
DH
DH
DB
DB
DS
DS
Address Valid to Write Enable Low Address Valid to Chip Enable Low Chip Enable Low to Write Enable Low Output Enable High to Write Enable Low Output Enable High to Chip Enable Low Write Enable Low to Chip Enable Low G = V Write Enable Low to Address Transition 75 ns Chip Enable Low to Address Transition 75 ns Write Enable Low to Input Valid Chip Enable Low to Input Valid Chip Enable Low to Chip Enable High 50 ns Write Enable High to Chip Enable High 0 ns Write Enable High to Output Enable Low 0 ns Chip Enable High to Output Enable Low 0 ns Chip Enable High to Write Enable High 0 ns Write Enable High to Input Transition 0 ns Chip Enable High to Input Transition 0 ns Write Enable High to WriteEnable Low 50 1000 ns Write Enable Low to Write Enable High 50 ns Time-out after last byte write (M28C64) 100 µs Time-out after last byte write (M28C64-A) 20 µs Write Cycle Time (M28C64) 3 ms Write Cycle Time (M28C64-A) 1 ms Write Enable High to Ready/Busy Low Note 1 150 ns Chip Enable High to Ready/Busy Low Note 1 150 ns Data Validbefore Write Enable High 50 ns Data Validbefore Chip Enable High 50 ns
E=V
G=V
G=V
W=V
E=V
G=V
,G=V
IL
,W=V
IH
E=V
,G=V
IL
,W=V
IH
IH
IL
IL
IH
M28C64
M28C64
Min Max
IH
IL
0ns 0ns 0ns 0ns 0ns 0ns
IH
IL
Unit
1 µs 1 µs
13/24
M28C64
Table 10C. Write Mode AC Characteristics for M28C64-xxW (3V range)
(TA= 0 to70 °C or –40 to 85 °C; VCC= 2.7 to 3.6 V)
Symbol Alt. Parameter Test Condition
t
AVWL
t
AVEL
t
ELWLtCES
t
GHWLtOES
t
GHELtOES
t
WLELtWES
t
WLAX
t
ELAX
t
WLDV
t
ELDV
t
ELEH
t
WHEHtCEH
t
WHGLtOEH
t
EHGLtOEH
t
EHWHtWEH
t
WHDX
t
EHDX
t
WHWLtWPH
t
WLWHtWP
t
WLQ5HtBLC
t
Q5HQ5XtWC
t
WHRL
t
EHRL
t
DVWH
t
DVEH
Note: 1. With a 3.3 kpull-up resistor.
t
Address Valid to Write Enable Low
AS
t
Address Valid to Chip Enable Low
AS
Chip Enable Low to Write Enable Low Output Enable High to Write Enable Low E = V Output Enable High to Chip Enable Low Write Enable Low to Chip Enable Low G = V
t
Write Enable Low to Address Transition 100 ns
AH
t
Chip Enable Low to Address Transition 100 ns
AH
t
Write Enable Low to Input Valid
DV
t
Chip Enable Low to Input Valid
DV
t
Chip Enable Low to Chip Enable High 100 1000 ns
WP
Write Enable High to Chip Enable High 0 ns Write Enable High to Output Enable Low 0 ns Chip Enable High to Output Enable Low 0 ns Chip Enable High to Write Enable High 0 ns
t
Write Enable High to Input Transition 0 ns
DH
t
Chip Enable High to Input Transition 0 ns
DH
Write Enable High to WriteEnable Low 50 1000 ns Write Enable Low to Write Enable High 100 ns Time-out after the last byte write 100 µs Write Cycle Time 5 ms
t
Write Enable High to Ready/Busy Low Note 1 150 ns
DB
t
Chip Enable High to Ready/Busy Low Note 1 150 ns
DB
t
Data Validbefore Write Enable High 50 ns
DS
t
Data Validbefore Chip Enable High 50 ns
DS
E=V
G=V
G=V
W=V
E=V
G=V
,G=V
IL
,W=V
IH
,G=V
IL
,W=V
IH
IH
IH
IL
IL
IH
IH
M28C64-xxW
Unit
Min Max
0ns
IL
0ns 0ns 0ns 0ns 0ns
1 µs
IL
1 µs
14/24
Figure 11. Write Mode AC Waveforms (Write Enable, W, controlled)
M28C64
tAVWL
tELWL
VALID
tWLAX
tWLDV
DATA IN
A0-A12
E
G
tGHWL
W
DQ0-DQ7
RB
Figure 12. Write Mode AC Waveforms (Chip Enable, E, controlled)
tAVEL
VALID
tELAX
A0-A12
tWHEH
tWHGLtWLWH
tWHWL
tWHDXtDVWH
tWHRL
AI01126
E
G
W
DQ0-DQ7
RB
tGHEL
tWLEL
tELDV
tELEH
tEHGL
tEHWH
DATA IN
tEHDXtDVEH
tEHRL
AI00751
15/24
M28C64
Figure 13. Page Write Mode AC Waveforms (Write Enable, W, controlled)
A0-A12
E
G
W
tWLWH
DQ0-DQ7 (in)
DQ5 (out)
RB
Addr 0
tWHWL
Byte 0 Byte 1 Byte 2 Byte n
Addr 1 Addr 2 Addr n
tWHRL
Figure 14. Software Protected Write Cycle Waveforms
G
tWLQ5H
tQ5HQ5X
AI00752D
E
tWLWH
W
tAVEL
A0-A5
A6-A12
DQ0-DQ7
Note: 1. A12 to A6 must specify the same page address during each high-to-low transition of W (or E). G must be high only when W and E
are both low.
1555h 0AAAh 1555h
tWLAX
tWHDX
tDVWH
tWHWL
Byte Address
Page Address
Byte 0
Byte 62 Byte 63AAh 55h A0h
AI01358B
16/24
Figure 15. Data Polling Sequence Waveforms
M28C64
A0-A12
E
G
W
DQ7
Address of the last byte of the Page Write instruction
DQ7 DQ7DQ7 DQ7DQ7
Figure 16. Toggle Bit Sequence Waveforms
A0-A12
READYLAST WRITE INTERNAL WRITE SEQUENCE
AI00753C
E
G
W
DQ6
Note: 1. The Toggle Bit is first set to ‘0’.
(1)
TOGGLE
INTERNAL WRITE SEQUENCE
READYLAST WRITE
AI00754D
17/24
M28C64
Table 11. Ordering Information Scheme
Example: M28C64 – A 12 BS 6 T
Write Time Option
= 3 ms at 4.5V to 5.5V;
t
blank
A
WC
= 5 ms at 2.7V to 3.6V
t
WC
1
tWC= 1 ms at 4.5V to 5.5V
Speed Temperature Range
2
90 ns 10°Cto70°C
90 12 120 ns 6 –40 °Cto85°C
150 ns 3
15
3
200 ns
20
3
250 ns
25
3
300 ns Package
30
Operating Voltage KA PLCC32
blank 4.5 V to 5.5 V MS SO28 (300 mil width)
4
2.7 V to 3.6 V
W
T Tape and Reel Packing
–40 °C to 125 °C
5
BS PDIP28
TSOP28 (8 x 13.4 mm)
NS
Note: 1. Available only with 120 ns speed (-12), 5V operating range (-blank), and -40 to 85 °C temperature range (-6).
2. Available for the M28C64 only.
3. Available for the 3V range (-xxW) only.
4. Not available for the1 ms write time option (-A).
5. Available only for the“M28C64 - 12 MS 3” (5V range, SO28 package)
ORDERING INFORMATION
Devices are shipped from the factory with the memory content set at all ‘1’s (FFh).
The notation used for the device number is as shown in Table 11. For a list of available options (speed, package,etc.) orfor further information on any aspect of this device, please contact your nearest ST Sales Office.
18/24
Table 12. PDIP28 -28 pin Plastic DIP, 600 mils width
mm inches
Symb.
Typ. Min. Max. Typ. Min. Max.
A 3.94 5.08 0.155 0.200 A1 0.38 1.78 0.015 0.070 A2 3.56 4.06 0.140 0.160
B 0.38 0.56 0.015 0.021 B1 1.14 1.78 0.045 0.070
C 0.20 0.30 0.008 0.012
D 34.70 37.34 1.366 1.470
E 14.80 16.26 0.583 0.640 E1 12.50 13.97 0.492 0.550
e1 2.54 0.100
eA 15.20 17.78 0.598 0.700
L 3.05 3.82 0.120 0.150
S 1.02 2.29 0.040 0.090
α 0° 15° 0° 15°
N28 28
M28C64
Figure 17. PDIP28 (BS)
Note: 1. Drawing is not to scale.
B1 B e1
D2
D
S
N
1
A2A1A
E1 E
L
α
C
eA eB
PDIP
19/24
M28C64
Table 13. PLCC32 - 32lead Plastic Leaded Chip Carrier, rectangular
Symbol
Typ. Min. Max. Typ. Min. Max.
A 2.54 3.56 0.100 0.140 A1 1.52 2.41 0.060 0.095 A2 0.38 0.015
B 0.33 0.53 0.013 0.021 B1 0.66 0.81 0.026 0.032
D 12.32 12.57 0.485 0.495 D1 11.35 11.56 0.447 0.455 D2 9.91 10.92 0.390 0.430
E 14.86 15.11 0.585 0.595 E1 13.89 14.10 0.547 0.555 E2 12.45 13.46 0.490 0.530
e 1.27 0.050
F 0.00 0.25 0.000 0.010
R 0.89 0.035
N32 32 Nd 7 7 Ne 9 9 CP 0.10 0.004
mm inches
Figure 18. PLCC (KA)
Ne E1 E
Note: 1. Drawing is not to scale.
PLCC
D
D1
1N
Nd
R
F
0.51 (.020)
1.14 (.045)
D2/E2
A1
A2
B1
e
B
A
CP
20/24
Table 14. SO28 - 28 lead Plastic Small Outline, 300 mils body width
mm inches
Symb.
Typ. Min. Max. Typ. Min. Max.
A 2.46 2.64 0.097 0.104 A1 0.13 0.29 0.005 0.011 A2 2.29 2.39 0.090 0.094
B 0.35 0.48 0.014 0.019
C 0.23 0.32 0.009 0.013
D 17.81 18.06 0.701 0.711
E 7.42 7.59 0.292 0.299
e 1.27 0.050
H 10.16 10.41 0.400 0.410
L 0.61 1.02 0.024 0.040 α 0° 8° 0° 8°
N28 28
CP 0.10 0.004
M28C64
Figure 19. SO28 wide (MS)
B
Note: 1. Drawing is not to scale.
N
1
SO-b
A2
e
D
CP
E
H
A
C
LA1 α
21/24
M28C64
Table 15. TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm
Symb.
Typ. Min. Max. Typ. Min. Max.
A 1.25 0.049 A1 0.20 0.008 A2 0.95 1.15 0.037 0.045
B 0.17 0.27 0.007 0.011
C 0.10 0.21 0.004 0.008
D 13.20 13.60 0.520 0.535 D1 11.70 11.90 0.461 0.469
E 7.90 8.10 0.311 0.319
e 0.55 0.022 – L 0.50 0.70 0.020 0.028 α 0° 5° 0° 5°
N28 28
CP 0.10 0.004
mm inches
Figure 20. TSOP28 (NS)
Note: 1. Drawing is not to scale.
1N
N/2
D1
D
DIE
TSOP-a
A2
e
E
B
A
CP
C
LA1 α
22/24
Table 16. Revision History
Date Description of Revision
31-Mar-2000 –40to 125°C temperature range added to timing and characteristics tables, and order info 19-Jun-2000 Paragraph on behaviour, following an out-of-bounds page write operation, corrected
M28C64
23/24
M28C64
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor forany infringement ofpatents or other rights of third parties which mayresult from itsuse. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express writtenapproval of STMicroelectronics.
2000 STMicroelectronics - All Rights Reserved
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong -India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain -
Sweden - Switzerland -United Kingdom - U.S.A.
http://www.st.com
24/24
Loading...