ST M27W201 User Manual

M27W201
2 Mbit (256Kb x 8) Low Voltage UV EPROM and OTP EPROM
2.7V to 3.6V LOW VOLTAGE in READ
OPERATION
ACCESS TIME:
–70nsatV –80nsatV
PIN COMPATIBLE with M27C2001
LOW POWER CONSUMPTION:
CC
CC
– 15µA m ax Standby Current – 15mA max Active Current at 5MHz
PROGRAMMING TIME 100µs/byte
HIGH RELIABILITY CMOS TECHNOLOGY
– 2,000V ESD Protection – 200mA Latch up Protection Immunity
ELECTRONIC SIGNATURE
– Manufacturer Code: 20h – Device Code: 61h
32
1
FDIP32W (F) PDIP32 (B)
PLCC32 (K) TSOP32 (N)
32
1
8 x 20 mm
DESCRIPTION
The M27W201 is a low voltage 2 Mbit EPRO M of­fered in the two range UV (ultra violet erase) and OTP (one time programmable). It is ideally suited for microprocessor systemsrequiring large data or program storage and is organised as262,144 by 8 bits.
The M27W201 operates in the read mode with a supply voltage as low as 2.7V at –40 t o 85°C tem­perature range. The decrease in operating power allows either a reduction of the size of the battery or an increase in the time between battery re­charges.
The FDIP32W (window ceramic frit-seal package) has a transparent lid which allows the user to ex­pose the chip to ultraviolet light t o erase the bit pat­tern. A new pattern can then be written to the device by following the programming procedu re .
For application where the content is programmed only one time and erasure is not required, the M27W201 is offered in PDIP32, PLCC32 and TSOP32 (8 x 20mm and 8 x 14mm) packages.
TSOP32 (NZ)
8 x 14 mm
Figure 1. Logic Diagram
V
CC
18
A0-A17
P
E
G
M27W201
V
SS
V
PP
8
Q0-Q7
AI01359
1/16October 2001
M27W201
Figure 2A. DIP Connections
V
1
PP
2
A15
3
A12
4 5
A7
6
A6
7
A5
8
A4 A3 A2 A1 A0
Q0
Q2 SS
M27W201
9 10 11 12 13 14 15 16
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
AI02675
V
CC
PA16 A17 A14 A13 A8 A9 A11 G A10 E Q7 Q6 Q5Q1 Q4 Q3V
Figure 2B. LCC Connections
A16
A7 A6 A5 A4 A3 A2 A1 A0
Q0
A12
9
Q1
VPPV
A15
1
32
M27W201
17
Q2
Q3
SS
V
Q4
CC
P
Q5
A17
25
Q6
A14 A13 A8 A9 A11 G A10 E Q7
AI01360
Figure 2C. TSOP Connections
A11 G
A9
A8 A13 A14 A17
V
CC
V
PP
A16 A15 A12
A7
A6
A5
A4 A3
1
P
8
M27W201
9
16 17
32
25 24
AI01361
A10 E Q7 Q6 Q5 Q4 Q3 V
SS
Q2 Q1 Q0 A0 A1 A2
Table 1. Signal Names
A0-A17 Address Inputs Q0-Q7 Data Outputs E G P V
PP
V
CC
V
SS
Chip Enable Output Enable Program Program Supply Supply Voltage Ground
2/16
M27W201
Table 2. Absolute Maximum Ratings
(1)
Symbol Parameter Value Unit
T
A Ambient Operating Temperature
T
BIAS
T
STG
(2)
V
IO
V
CC
(2)
V
A9
V
PP
Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi­tionsfor extended periodsmayaffect device reliability.Refer also to theSTMicroelectronics SURE Programand other relevant qual­ity documents.
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC voltage on Output is V
3. Depends on range.
Temperature Under Bias –50 to 125 °C Storage Temperature –65 to 150 °C Input or Output Voltage (except A9) –2 to 7 V Supply Voltage –2 to 7 V A9 Voltage –2 to 13.5 V
Program Supply Voltage –2 to 14 V
+0.5VwithpossibleovershoottoVCC+2V for a period less than 20ns.
CC
(3)
–40 to 125 °C
Table 3. Operating Modes
Mode E
Read Output Disable Program Verify Program Inhibit Standby Electronic Signature
Note: X = VIHor VIL,VID= 12V ± 0.5V.
G P A9
V
IL
V
IL
V
IL
V
IL
V
IH
V
IH
V
IL
V
IL
V
IH
V
IH
V
IL
XX XX
VILPulse
V
IH
X
X XXX XXX
V
IL
V
IH
V
ID
V
PP
V
or V
CC
SS
V
or V
CC
SS
V
PP
V
PP
V
PP
V
or V
CC
SS
V
CC
Q7-Q0
Data Out
Hi-Z
Data In
Data Out
Hi-Z Hi-Z
Codes
Table 4. Electronic Signature
Identifier A0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Hex Data
Manufacturer’s Code Device Code
V
IL
V
IH
00100000 20h 01100001 61h
3/16
M27W201
Table 5. AC M easurement Conditions
High Speed Standard
Input Rise and Fall Times 10ns 20ns Input Pulse Voltages 0 to 3V 0.4V to 2.4V Input and Output Timing Ref. Voltages 1.5V 0.8V and 2V
Figure 3. AC Testing Input Output Waveform
High Speed
3V
1.5V
0V
Standard
2.4V
0.4V
Table 6. Capacitance
Symbol Parameter Test Condition Min Max Unit
C
IN
C
OUT
Note: 1. Sampled only, not 100% tested.
(1)
(TA=25°C,f=1MHz)
Input Capacitance Output Capacitance
2.0V
0.8V
AI01822
Figure 4. AC Testing Load Circuit
1.3V
DEVICE UNDER
TEST
CL = 30pF for High Speed CL = 100pF for Standard CL includes JIG capacitance
V
=0V
IN
V
=0V
OUT
1N914
3.3k
CL
6pF
12 pF
OUT
AI01823B
DEVICE OPERATION
Theoperating modes of the M27W201 are l isted in the Operating Modes table. A s ingle power supply is required in the read mode. All inputs are TTL levels except for V
and 12V on A9 for Electronic
PP
Signature.
Read Mode
The M27W201 has two control functions, both of which must be logicall y active in order to obtain data at the outputs. Chip Enable (E
) is the power control and should be used for device selection. Output Enable (G
) is the output control and should be used to gate dat a to the out put pi ns , ind epen­dent of device selection. Assum ing that the ad­dresses are s ta ble, the address access time
4/16
(t
) is equal to the delay from E to output
AVQV
(t
).Data is available at the output after a delay
ELQV
of t E ble for at least t
from the falling edge of G, assuming that
GLQV
has been l ow an d the address es have been sta-
AVQV-tGLQV
.
Standby Mode
The M27W201 has a st andby mode which reduc­es the supply current from 15mA to 15µA with low voltage operation V
3.6V, see Read Mode DC
CC
Characteristics table for details.The M27W201 is placed in the standby mode by applying a CMOS high signal to the E
input. When in the standby mode, the outp uts are in a high impedance state, independent of the G
input.
M27W201
Table 7. Read Mode DC Char acteri stics
(1)
(TA= –40 to 85 °C; VCC=2.7Vto3.6V;VPP=VCC)
Symbol Parameter Test Condition Min Max Unit
I
I
LO
I
CC
I
CC
I
CC
I
PP
V
V
IH
V V
Note: 1. VCCmust be applied simultaneously with or before VPPand removed simultaneously or after VPP.
Input Leakage Current
LI
Output Leakage Current
Supply Current
1
Supply Current (Standby) TTL
2
Supply Current (Standby) CMOS
Program Current Input Low Voltage –0.6
IL
(2)
Input High Voltage Output Low Voltage
OL
Output High Voltage TTL
OH
2. Maximum DC voltage on Output is V
CC
+0.5V.
I
OUT
0V V
0V V
E
E
I
OH
V
IN
CC
V
OUT
=VIL,G=VIL, =0mA,f=5MHz
V
CC
E =V
>VCC– 0.2V
V
CC
V
PP=VCC
I
= 2.1mA
OL
= –400µA
CC
≤ 3.6V
IH
≤ 3.6V
±10 µA ±10 µA
15 mA
1mA
15 µA
10 µA
0.2 V
CC
0.7 V
CCVCC
2.4 V
+ 0.5
0.4 V
V V
Two Line Output Control
Because EPROMs are usually used in larger memory arrays, this product features a 2 line con­trol function which accommodates the use of mul­tiple memory connection. The two line control function allows:
a. the lowest possible memory power dissipation, b. complete assurance that output bus contention
will not occur.
For the most efficient use of these two control lines, E ry device selecting function, while G
should be decoded and used as the prima-
should be made a common connection to all devices in the array and connected to the READ
line from the system control bus. This ensures that all deselect­ed memory devices are in their low power standby mode and that the output pins are only active when data is required from a particular memory device.
System Considerations
The power switching characteristics of Advanced CMOS EPROMs require careful decoupling of the devices. The supply current, I
, has three seg-
CC
ments that are of interest to the system designer: the standby current level, the active current level, and transient current peaks that are produced by the falling and rising edges of E
. The magnitude of the transient current peaks is dependent on the capacitive and inductive loading of the device at the output.
The associated transient voltage peaks can be suppressed by complying with the two line output control and by properly selected decoupling ca­pacitors. It is recommended that a 0.1µF ceramic capacitor be used on every device between V
CC
and VSS. This should be a high frequency capaci­tor of low inherent inductance and should be placed as close to the device as possible. In addi­tion, a 4.7µF bulk electrolytic capacitor should be used between V
and VSSfor every eight devic-
CC
es. The bulk capacitor should be located near the power supply connection point.The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of PCB traces.
5/16
Loading...
+ 11 hidden pages