ST M24LR64E-R User Manual

M24LR64E-R
SO8 (MN)
150 mils width
UFDFPN8 (MC)
2 x 3 mm
TSSOP8 (DW)
Sawn wafer on UV tape
64-Kbit EEPROM with password protection, dual interface & energy harvesting: 400 kHz I²C bus & ISO 15693 RF protocol at 13.56 MHz
Datasheet − production data
Features
I2C interface
Two-wire I
400 kHz protocol
Single supply voltage:
– 1.8 V to 5.5 V
Byte and Page Write (up to 4 bytes)
Random and Sequential read modes
Self-timed programming cycle
Automatic address incrementing
Enhanced ESD/latch-up protection
I²C timeout
C serial interface supports
Contactless interface
ISO 15693 and ISO 18000-3 mode 1
compatible
13.56 MHz ± 7 kHz carrier frequency
To tag: 10% or 100% ASK modulation using
1/4 (26 Kbit/s) or 1/256 (1.6 Kbit/s) pulse position coding
From tag: load modulation using Manchester
coding with 423 kHz and 484 kHz subcarriers in low (6.6 kbit/s) or high (26 kbit/s) data rate mode. Supports the 53 kbit/s data rate with Fast commands
Internal tuning capacitance: 27.5 pF
64-bit unique identifier (UID)
Read Block & Write (32-bit blocks)
Digital output pin
User configurable pin: RF write in progress or
RF busy mode
Energy harvesting
Analog pin for energy harvesting
4 sink current configurable ranges
Memory
64-Kbit EEPROM organized into:
– 8192 bytes in I – 2048 blocks of 32 bits in RF mode
Write time
–I
C: 5 ms (max.)
– RF: 5.75 ms including the internal Verify
time
More than 1 million write cycles
More than 40-year data retention
Multiple password protection in RF mode
Single password protection in I
Package
– ECOPACK2
Halogen-free)
C mode
C mode
®
(RoHS compliant and
June 2012 Doc ID 022712 Rev 3 1/140
This is information on a product in full production.
www.st.com
1
Contents M24LR64E-R
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Serial clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Serial data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 RF Write in progress / RF Busy (RF WIP/BUSY) . . . . . . . . . . . . . . . . . . . 15
2.4 Energy harvesting analog output (Vout) . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Antenna coil (AC0, AC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1 Device reset in RF mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Supply voltage (V
2.7.1 Operating supply voltage V
2.7.2 Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7.3 Device reset in I²C mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7.4 Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
CC
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 User memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 System memory area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1 M24LR64E-R block security in RF mode . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.1 Example of the M24LR64E-R security protection in RF mode . . . . . . . 26
4.2 M24LR64E-R block security in I²C mode (I2C_Write_Lock bit area) . . . . 27
4.3 Configuration byte and Control register . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 RF WIP/BUSY pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Energy harvesting configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.3 FIELD_ON indicator bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.4 Configuration byte access in I²C and RF modes . . . . . . . . . . . . . . . . . . 30
4.3.5 Control register access in I²C or RF mode . . . . . . . . . . . . . . . . . . . . . . 30
4.4 ISO 15693 system parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5I
2
C device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2/140 Doc ID 022712 Rev 3
M24LR64E-R Contents
5.3 Acknowledge bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5 I²C timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5.1 I²C timeout on Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5.2 I²C timeout on clock period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.6 Memory addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.7 Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.8 Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.9 Page write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.10 Minimizing system delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . . 36
5.11 Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.12 Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.13 Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.14 Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.15 Acknowledge in Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.16 M24LR64E-R I
5.16.1 I2C present password command description . . . . . . . . . . . . . . . . . . . . . 39
5.16.2 I
C password security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2
C write password command description . . . . . . . . . . . . . . . . . . . . . . . 40
6 M24LR64E-R memory initial state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7 RF device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.1 RF communication and energy harvesting . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3 Initial dialog for vicinity cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.3.1 Power transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.3.2 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.3.3 Operating field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8 Communication signal from VCD to M24LR64E-R . . . . . . . . . . . . . . . . 45
9 Data rate and data coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.1 Data coding mode: 1 out of 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.2 Data coding mode: 1 out of 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.3 VCD to M24LR64E-R frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Doc ID 022712 Rev 3 3/140
Contents M24LR64E-R
9.4 Start of frame (SOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10 Communication signal from M24LR64E-R to VCD . . . . . . . . . . . . . . . . 52
10.1 Load modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.2 Subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.3 Data rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
11 Bit representation and coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
11.1 Bit coding using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
11.1.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
11.1.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
11.2 Bit coding using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
11.2.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
11.2.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
12 M24LR64E-R to VCD frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
12.1 SOF when using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
12.1.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
12.1.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
12.2 SOF when using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
12.2.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
12.2.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
12.3 EOF when using one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
12.3.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
12.3.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
12.4 EOF when using two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
12.4.1 High data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
12.4.2 Low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
13 Unique identifier (UID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
14 Application family identifier (AFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
15 Data storage format identifier (DSFID) . . . . . . . . . . . . . . . . . . . . . . . . . 62
15.1 CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
16 M24LR64E-R protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4/140 Doc ID 022712 Rev 3
M24LR64E-R Contents
17 M24LR64E-R states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
17.1 Power-off state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
17.2 Ready state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
17.3 Quiet state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
17.4 Selected state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
18 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
18.1 Addressed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
18.2 Non-addressed mode (general request) . . . . . . . . . . . . . . . . . . . . . . . . . 67
18.3 Select mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
19 Request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
19.1 Request flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
20 Response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
20.1 Response flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
20.2 Response error code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
21 Anticollision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
21.1 Request parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
22 Request processing by the M24LR64E-R . . . . . . . . . . . . . . . . . . . . . . . 74
23 Explanation of the possible cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
24 Inventory Initiated command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
25 Timing definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
25.1 t1: M24LR64E-R response delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
25.2 t2: VCD new request delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
25.3 t
: VCD new request delay when no response is received
from the M24LR64E-R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
26 Command codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
26.1 Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
26.2 Stay Quiet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Doc ID 022712 Rev 3 5/140
Contents M24LR64E-R
26.3 Read Single Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
26.4 Write Single Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
26.5 Read Multiple Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
26.6 Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
26.7 Reset to Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
26.8 Write AFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
26.9 Lock AFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
26.10 Write DSFID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
26.11 Lock DSFID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
26.12 Get System Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
26.13 Get Multiple Block Security Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
26.14 Write-sector Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
26.15 Lock-sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
26.16 Present-sector Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
26.17 Fast Read Single Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
26.18 Fast Inventory Initiated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
26.19 Fast Initiate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
26.20 Fast Read Multiple Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
26.21 Inventory Initiated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
26.22 Initiate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
26.23 ReadCfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
26.24 WriteEHCfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
26.25 WriteDOCfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
26.26 SetRstEHEn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
26.27 CheckEHEn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
27 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
28 I2C DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
29 RF electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
30 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
31 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6/140 Doc ID 022712 Rev 3
M24LR64E-R Contents
Appendix A Anticollision algorithm (informative) . . . . . . . . . . . . . . . . . . . . . . . 135
A.1 Algorithm for pulsed slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Appendix B CRC (informative) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B.1 CRC error detection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B.2 CRC calculation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Appendix C Application family identifier (AFI) (informative) . . . . . . . . . . . . . . 138
32 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Doc ID 022712 Rev 3 7/140
List of tables M24LR64E-R
List of tables
Table 1. Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 2. Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 3. Address most significant byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 4. Address least significant byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 5. Sector details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 6. Sector security status byte area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 7. Sector security status byte organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 8. Read/Write protection bit setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 9. Password control bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 10. Password system area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 11. M24LR64E-R sector security protection after power-up. . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 12. M24LR64E-R sector security protection after a valid presentation of password 1 . . . . . . . 26
Table 13. I2C_Write_Lock bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 14. Configuration byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 15. Control register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 16. EH_enable bit value after power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 17. System parameter sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 18. Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 19. 10% modulation parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 20. Response data rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 21. UID format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 22. CRC transmission rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 23. VCD request frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 24. M24LR64E-R Response frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 25. M24LR64E-R response depending on Request_flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 26. General request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 27. Definition of request flags 1 to 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 28. Request flags 5 to 8 when Bit 3 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 29. Request flags 5 to 8 when Bit 3 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 30. General response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 31. Definitions of response flags 1 to 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 32. Response error code definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 33. Inventory request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 34. Example of the addition of 0-bits to an 11-bit mask value . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 35. Timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 36. Command codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 37. Inventory request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 38. Inventory response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 39. Stay Quiet request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 40. Read Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 41. Read Single Block response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . 83
Table 42. Sector security status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 43. Read Single Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 44. Write Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 45. Write Single Block response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . 84
Table 46. Write Single Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 47. Read Multiple Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 48. Read Multiple Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . 88
8/140 Doc ID 022712 Rev 3
M24LR64E-R List of tables
Table 49. Sector security status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 50. Read Multiple Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . 89
Table 51. Select request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 52. Select Block response format when Error_flag is NOT set. . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 53. Select response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 54. Reset to Ready request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 55. Reset to Ready response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . 91
Table 56. Reset to ready response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 57. Write AFI request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 58. Write AFI response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 59. Write AFI response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 60. Lock AFI request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 61. Lock AFI response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 62. Lock AFI response format when Error_flag is set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 63. Write DSFID request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 64. Write DSFID response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 65. Write DSFID response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 66. Lock DSFID request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 67. Lock DSFID response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 68. Lock DSFID response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 69. Get System Info request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 70. Get System Info response format when Protocol_extension_flag = 0 and
Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 71. Get System Info response format when Protocol_extension_flag = 1 and
Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 72. Get System Info response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 73. Get Multiple Block Security Status request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 74. Get Multiple Block Security Status response format when Error_flag is NOT set . . . . . . 100
Table 75. Sector security status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 76. Get Multiple Block Security Status response format when Error_flag is set . . . . . . . . . . . 100
Table 77. Write-sector Password request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 78. Write-sector Password response format when Error_flag is NOT set . . . . . . . . . . . . . . . 101
Table 79. Write-sector Password response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . 101
Table 80. Lock-sector request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 81. Sector security status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 82. Lock-sector response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 83. Lock-sector response format when Error_flag is set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 84. Present-sector Password request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 85. Present-sector Password response format when Error_flag is NOT set . . . . . . . . . . . . . 104
Table 86. Present-sector Password response format when Error_flag is set . . . . . . . . . . . . . . . . . . 104
Table 87. Fast Read Single Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 88. Fast Read Single Block response format when Error_flag is NOT set . . . . . . . . . . . . . . . 106
Table 89. Sector security status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 90. Fast Read Single Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . . 106
Table 91. Fast Inventory Initiated request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 92. Fast Inventory Initiated response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 93. Fast Initiate request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 94. Fast Initiate response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 95. Fast Read Multiple Block request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 96. Fast Read Multiple Block response format when Error_flag is NOT set. . . . . . . . . . . . . . 110
Table 97. Sector security status if Option_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 98. Fast Read Multiple Block response format when Error_flag is set . . . . . . . . . . . . . . . . . . 110
Doc ID 022712 Rev 3 9/140
List of tables M24LR64E-R
Table 99. Inventory Initiated request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 100. Inventory Initiated response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 101. Initiate request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 102. Initiate response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 103. ReadCfg request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 104. ReadCfg response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 105. ReadCfg response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 106. WriteEHCfg request format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 107. WriteEHCfg response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 108. WriteEHCfg response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 109. WriteDOCfg request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 110. WriteDOCfg response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 111. WriteDOCfg response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 112. SetRstEHEn request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 113. SetRstEHEn response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . 117
Table 114. SetRstEHEn response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 115. CheckEHEn request format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 116. CheckEHEn response format when Error_flag is NOT set . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 117. CheckEHEn response format when Error_flag is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 118. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 119. I
2
C operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 120. AC test measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 121. Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 122. I Table 123. I
2
C DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
2
C AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 124. RF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 125. Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 126. Energy harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 127. SO8N – 8-lead plastic small outline, 150 mils body width, package data. . . . . . . . . . . . . 131
Table 128. UFDFPN8 (MLP8) 8-lead ultra thin fine pitch dual flat package no lead
2 x 3 mm, data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 129. TSSOP8 – 8-lead thin shrink small outline, package mechanical data. . . . . . . . . . . . . . . 133
Table 130. Ordering information scheme for packaged devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 131. CRC definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 132. AFI coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 133. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
10/140 Doc ID 022712 Rev 3
M24LR64E-R List of figures
List of figures
Figure 1. Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2. 8-pin package connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 3. I
Figure 4. I
Figure 5. Circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 6. Memory sector organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 7. I²C timeout on Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 8. Write mode sequences with I2C_Write_Lock bit = 1 (data write inhibited). . . . . . . . . . . . . 34
Figure 9. Write mode sequences with I2C_Write_Lock bit = 0 (data write enabled) . . . . . . . . . . . . . 35
Figure 10. Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 11. Read mode sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 12. I Figure 13. I
Figure 14. 100% modulation waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 15. 10% modulation waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 16. 1 out of 256 coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 17. Detail of a time period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 18. 1 out of 4 coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 19. 1 out of 4 coding example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 20. SOF to select 1 out of 256 data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 21. SOF to select 1 out of 4 data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 22. EOF for either data coding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 23. Logic 0, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 24. Logic 0, high data rate, fast commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 25. Logic 1, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 26. Logic 1, high data rate, fast commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 27. Logic 0, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 28. Logic 0, low data rate, fast commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 29. Logic 1, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 30. Logic 1, low data rate, fast commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 31. Logic 0, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 32. Logic 1, high data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 33. Logic 0, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 34. Logic 1, low data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 35. Start of frame, high data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 36. Start of frame, high data rate, one subcarrier, fast commands. . . . . . . . . . . . . . . . . . . . . . 56
Figure 37. Start of frame, low data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 38. Start of frame, low data rate, one subcarrier, fast commands . . . . . . . . . . . . . . . . . . . . . . 57
Figure 39. Start of frame, high data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 40. Start of frame, low data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 41. End of frame, high data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 42. End of frame, high data rate, one subcarrier, fast commands . . . . . . . . . . . . . . . . . . . . . . 58
Figure 43. End of frame, low data rate, one subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 44. End of frame, low data rate, one subcarrier, Fast commands . . . . . . . . . . . . . . . . . . . . . . 58
Figure 45. End of frame, high data rate, two subcarriers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 46. End of frame, low data rate, two subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 47. M24LR64E-R decision tree for AFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2
C Fast mode (fC = 400 kHz): maximum R
capacitance (C
2
C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2
C present password command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2
C write password command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
bus
value versus bus parasitic
bus
Doc ID 022712 Rev 3 11/140
List of figures M24LR64E-R
Figure 48. M24LR64E-R protocol timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 49. M24LR64E-R state transition diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 50. Principle of comparison between the mask, the slot number and the UID . . . . . . . . . . . . . 73
Figure 51. Description of a possible anticollision sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 52. M24LR64E RF-Busy management following Inventory command . . . . . . . . . . . . . . . . . . . 81
Figure 53. Stay Quiet frame exchange between VCD and M24LR64E-R . . . . . . . . . . . . . . . . . . . . . . 82
Figure 54. Read Single Block frame exchange between VCD and M24LR64E-R. . . . . . . . . . . . . . . . 84
Figure 55. Write Single Block frame exchange between VCD and M24LR64E-R . . . . . . . . . . . . . . . . 85
Figure 56. M24LR64E RF-Busy management following Write command . . . . . . . . . . . . . . . . . . . . . . 86
Figure 57. M24LR64E RF-Wip management following Write command . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 58. Read Multiple Block frame exchange between VCD and M24LR64E-R . . . . . . . . . . . . . . 89
Figure 59. Select frame exchange between VCD and M24LR64E-R . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 60. Reset to Ready frame exchange between VCD and M24LR64E-R . . . . . . . . . . . . . . . . . . 91
Figure 61. Write AFI frame exchange between VCD and M24LR64E-R . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 62. Lock AFI frame exchange between VCD and M24LR64E-R . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 63. Write DSFID frame exchange between VCD and M24LR64E-R . . . . . . . . . . . . . . . . . . . . 96
Figure 64. Lock DSFID frame exchange between VCD and M24LR64E-R. . . . . . . . . . . . . . . . . . . . . 97
Figure 65. Get System Info frame exchange between VCD and M24LR64E-R . . . . . . . . . . . . . . . . . 99
Figure 66. Get Multiple Block Security Status frame exchange between VCD and M24LR64E-R . . 100
Figure 67. Write-sector Password frame exchange between VCD and M24LR64E-R . . . . . . . . . . . 102
Figure 68. Lock-sector frame exchange between VCD and M24LR64E-R . . . . . . . . . . . . . . . . . . . . 103
Figure 69. Present-sector Password frame exchange between VCD and M24LR64E-R . . . . . . . . . 105
Figure 70. Fast Read Single Block frame exchange between VCD and M24LR64E-R. . . . . . . . . . . 106
Figure 71. Fast Initiate frame exchange between VCD and M24LR64E-R . . . . . . . . . . . . . . . . . . . . 109
Figure 72. Fast Read Multiple Block frame exchange between VCD and M24LR64E-R . . . . . . . . . 110
Figure 73. Initiate frame exchange between VCD and M24LR64E-R . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 74. ReadCfg frame exchange between VCD and M24LR64E-R . . . . . . . . . . . . . . . . . . . . . . 114
Figure 75. WriteEHCfg frame exchange between VCD and M24LR64E-R. . . . . . . . . . . . . . . . . . . . 115
Figure 76. WriteDOCfg frame exchange between VCD and M24LR64E-R. . . . . . . . . . . . . . . . . . . . 116
Figure 77. SetRstEHEn frame exchange between VCD and M24LR64E-R . . . . . . . . . . . . . . . . . . . 118
Figure 78. CheckEHEn frame exchange between VCD and M24LR64E-R. . . . . . . . . . . . . . . . . . . . 119
Figure 79. AC test measurement I/O waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 80. I
2
C AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 81. ASK modulated signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 82. Energy harvesting: Vout min vs. Isink. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Figure 83. Energy harvesting: working domain range 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Figure 84. Energy harvesting: working domain range 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 85. Energy harvesting: working domain range 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 86. Energy harvesting: working domain range 00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 87. SO8N – 8-lead plastic small outline, 150 mils body width, package outline. . . . . . . . . . . 131
Figure 88. UFDFPN8 (MLP8) – 8-lead ultra thin fine pitch dual flat package no lead
2 × 3mm, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 89. TSSOP8 – 8-lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . . . . 133
12/140 Doc ID 022712 Rev 3
M24LR64E-R Description

1 Description

The M24LR64E-R device is a dual-interface, electrically erasable programmable memory (EEPROM). It features an I also a contactless memory powered by the received carrier electromagnetic wave. The M24LR64E-R is organized as 8192 × 8 bits in the I 15693 and ISO 18000-3 mode 1 RF mode.
The M24LR64E-R also features an energy harvesting analog output, as well as a user­configurable digital output pin toggling during either RF write in progress or RF busy mode.

Figure 1. Logic diagram

2
C interface and can be operated from a VCC power supply. It is
2
C mode and as 2048 × 32 bits in the ISO
V
CC
SCL
Vout
SDA
AC0
M24LR64E-R
AC1
RF WIP/
#64:
V
SS
MS19740V1
2
I
C uses a two-wire serial interface, comprising a bidirectional data line and a clock line. The
devices carry a built-in 4-bit device type identifier code (1010) in accordance with the I bus definition.
The device behaves as a slave in the I by the serial clock. Read and Write operations are initiated by a Start condition, generated by the bus master. The Start condition is followed by a device select code and Read/Write bit (RW
When writing data to the memory, the device inserts an acknowledge bit during the 9 time, following the bus master’s 8-bit transmission. When data is read by the bus master, the bus master acknowledges the receipt of the data byte in the same way. Data transfers are terminated by a Stop condition after an Ack for Write, and after a NoAck for Read.
In the ISO15693/ISO18000-3 mode 1 RF mode, the M24LR64E-R is accessed via the
13.56 MHz carrier electromagnetic wave on which incoming data is demodulated from the received signal amplitude modulation (ASK: amplitude shift keying). When connected to an antenna, the operating power is derived from the RF energy and no external power supply is required. The received ASK wave is 10% or 100% modulated with a data rate of 1.6 Kbit/s
) (as described in Ta bl e 2 ), terminated by an acknowledge bit.
2
C protocol, with all memory operations synchronized
th
2
C
bit
Doc ID 022712 Rev 3 13/140
Description M24LR64E-R
SDAV
SS
SCL
RF WIP/BUSYAC0
Vout V
CC
MS19742V1
1 2 3 4
8 7 6 5
AC1
using the 1/256 pulse coding mode or a data rate of 26 Kbit/s using the 1/4 pulse coding mode.
Outgoing data is generated by the M24LR64E-R load variation using Manchester coding with one or two subcarrier frequencies at 423 kHz and 484 kHz. Data is transferred from the M24LR64E-R at 6.6 Kbit/s in low data rate mode and 26 Kbit/s in high data rate mode. The M24LR64E-R supports the 53 Kbit/s fast mode in high data rate mode using one subcarrier frequency at 423 kHz.
The M24LR64E-R follows the ISO 15693 and ISO 18000-3 mode 1 recommendation for radio-frequency power and signal interface.
The M24LR64E-R provides an Energy harvesting mode on the analog output pin Vout. When the Energy harvesting mode is activated, the M24LR64E-R can output the excess energy coming from the RF field on the Vout analog pin. In case the RF field strength is insufficient or when Energy harvesting mode is disabled, the analog output pin Vout goes into high-Z state and Energy harvesting mode is automatically stopped.
The M24LR64E-R features a user configurable digital out pin RF WIP/BUSY that can be used to drive a microcontroller interrupt input pin (available only when the M24LR64E-R is correctly powered on the Vcc pin).
When configured in the RF write in progress mode (RF WIP mode), the RF WIP/BUSY pin is driven low for the entire duration of the RF internal write operation. When configured in the RF busy mode (RF BUSY mode), the RF WIP/BUSY pin is driven low for the entire duration of the RF command progress.
The RF WIP/BUSY pin is an open drain output and must be connected to a pull-up resistor.

Table 1. Signal names

Signal name Function Direction
Vout Energy harvesting Output Analog output
SDA Serial Data I/O
SCL Serial Clock Input
AC0, AC1 Antenna coils I/O
V
CC
RF WIP/BUSY Digital signal Digital output
V
SS
Supply voltage
Ground

Figure 2. 8-pin package connections

1. See Section 30 for package dimensions, and how to identify pin 1.
14/140 Doc ID 022712 Rev 3
M24LR64E-R Signal descriptions

2 Signal descriptions

2.1 Serial clock (SCL)

This input signal is used to strobe all data in and out of the device. In applications where this signal is used by slave devices to synchronize the bus to a slower clock, the bus master must have an open drain output, and a pull-up resistor must be connected from Serial Clock (SCL) to V most applications, though, this method of synchronization is not employed, and so the pull­up resistor is not necessary, provided that the bus master has a push-pull (rather than open drain) output.

2.2 Serial data (SDA)

This bidirectional signal is used to transfer data in or out of the device. It is an open drain output that may be wire-OR’ed with other open drain or open collector signals on the bus. A pull-up resistor must be connected from Serial Data (SDA) to V the value of the pull-up resistor can be calculated).
. (Figure 3 indicates how the value of the pull-up resistor can be calculated). In
CC
. (Figure 3 indicates how
CC

2.3 RF Write in progress / RF Busy (RF WIP/BUSY)

This configurable output signal is used either to indicate that the M24LR64E-R is executing an internal write cycle from the RF channel or that an RF command is in progress. RF WIP and signals are available only when the M24LR64E-R is powered by the Vcc pin. It is an open drain output and a pull-up resistor must be connected from RF WIP/BUSY to V

2.4 Energy harvesting analog output (Vout)

This analog output pin is used to deliver the analog voltage Vout available when the Energy harvesting mode is enabled and the RF field strength is sufficient. When the Energy harvesting mode is disabled or the RF field strength is not sufficient, the energy harvesting analog voltage output Vout is in High-Z state.

2.5 Antenna coil (AC0, AC1)

These inputs are used to connect the device to an external coil exclusively. It is advised not to connect any other DC or AC path to AC0 or AC1.
When correctly tuned, the coil is used to power and access the device using the ISO 15693 and ISO 18000-3 mode 1 protocols.

2.5.1 Device reset in RF mode

CC
.
To ensure a proper reset of the RF circuitry, the RF field must be turned off (100% modulation) for a minimum t
RF_OFF
period of time.
Doc ID 022712 Rev 3 15/140
Signal descriptions M24LR64E-R

2.6 VSS ground

VSS is the reference for the VCC supply voltage and Vout analog output voltage.

2.7 Supply voltage (VCC)

This pin can be connected to an external DC supply voltage.
Note: An internal voltage regulator allows the external voltage applied on V
M24LR64E-R, while preventing the internal power supply (rectified RF waveforms) to output a DC voltage on the V
2.7.1 Operating supply voltage V
CC
pin.
CC
Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage within the specified [V
(min), VCC(max)] range must be applied (see Tab l e 1 19 ). To
CC
maintain a stable DC supply voltage, it is recommended to decouple the V suitable capacitor (usually around 10 nF) close to the V
CC/VSS
package pins.
This voltage must remain stable and valid until the end of the transmission of the instruction and, for a Write instruction, until the completion of the internal I²C write cycle (t

2.7.2 Power-up conditions

When the power supply is turned on, VCC rises from VSS to VCC. The VCC rise time must not vary faster than 1V/µs.

2.7.3 Device reset in I²C mode

In order to prevent inadvertent write operations during power-up, a power-on reset (POR) circuit is included. At power-up (continuous rise of V I²C instruction until V lower than the minimum V
has reached the power-on reset threshold voltage (this threshold is
CC
operating voltage defined in Ta bl e 1 19 ). When VCC passes
CC
over the POR threshold, the device is reset and enters the Standby power mode. However, the device must not be accessed until V within the specified [V
(min), VCC(max)] range.
CC
has reached a valid and stable VCC voltage
CC
In a similar way, during power-down (continuous decrease in V below the power-on reset threshold voltage, the device stops responding to any instruction sent to it.
), the device does not respond to any
CC
), as soon as VCC drops
CC
to supply the
CC
line with a
CC
).
W

2.7.4 Power-down conditions

During power-down (continuous decay of VCC), the device must be in Standby power mode (mode reached after decoding a Stop condition, assuming that there is no internal write cycle in progress).
16/140 Doc ID 022712 Rev 3
M24LR64E-R Signal descriptions
1
10
100
10 100 1000
Bus line capacitor (pF)
Bus line pull-up resistor
(k
)
When t
LOW
= 1.3 µs (min value for
f
C
= 400 kHz), the R
bus
× C
bus
time constant must be below the 400 ns time constant line represented on the left.
I²C bus master
M24xxx
R
bus
V
CC
C
bus
SCL
SDA
ai14796b
R
bus
× C
bus
= 400 ns
Here R
bus
× C
bus
= 120 ns
4 kΩ
30 pF
SCL
SDA
SCL
SDA
SDA
Start
Condition
SDA
Input
SDA
Change
AI00792B
Stop
Condition
1 23 7 89
MSB
ACK
Start
Condition
SCL
1 23 7 89
MSB ACK
Stop
Condition
Figure 3. I2C Fast mode (fC = 400 kHz): maximum R
Figure 4. I
capacitance (C
2
C bus protocol
bus
)
value versus bus parasitic
bus
Doc ID 022712 Rev 3 17/140
Signal descriptions M24LR64E-R
Table 2. Device select code
Device type identifier
b7 b6 b5 b4 b3 b2 b1 b0
Device select code1010E2
1. The most significant bit, b7, is sent first.
2. E2 is not connected to any external pin. It is however used to address the M24LR64E-R as described in
Section 3 and Section 4.
Table 3. Address most significant byte
b15 b14 b13 b12 b11 b10 b9 b8
Table 4. Address least significant byte
b7 b6 b5 b4 b3 b2 b1 b0
(1)
Chip Enable address RW
(2)
11RW
18/140 Doc ID 022712 Rev 3
M24LR64E-R User memory organization
MS19780V1
RF V
CC
AC0
AC1
RF
Power management
Vout
RF WIP/BUSY
Logic
EEPROM
Latch
I
2
C
Contact V
CC
SCL
SDA
V
CC
V
SS
Row decoder

3 User memory organization

The M24LR64E-R is divided into 16 sectors of 32 blocks of 32 bits, as shown in Ta bl e 5 .
Figure 6 shows the memory sector organization. Each sector can be individually read-
and/or write-protected using a specific password command. Read and write operations are possible if the addressed data is not in a protected sector.
The M24LR64E-R also has a 64-bit block that is used to store the 64-bit unique identifier (UID). The UID is compliant with the ISO 15963 description, and its value is used during the anticollision sequence (Inventory). This block is not accessible by the user and its value is written by ST on the production line.
The M24LR64E-R includes an AFI register that stores the application family identifier, and a DSFID register that stores the data storage family identifier used in the anticollision algorithm.
The M24LR64E-R has four 32-bit blocks that store an I codes.

Figure 5. Circuit diagram

2
C password plus three RF password
Doc ID 022712 Rev 3 19/140
User memory organization M24LR64E-R
MS19741V1
1 Kbit EEPROM sector 1 Kbit EEPROM sector 1 Kbit EEPROM sector
1 Kbit EEPROM sector
Sector
Area
Sector security
status
1 Kbit EEPROM sector 1 Kbit EEPROM sector
1 Kbit EEPROM sector 1 Kbit EEPROM sector
I²C password RF password 1 RF password 2 RF password 3
8-bit DSFID
8-bit AFI
8-bit configuration
16-bit I²C Write Lock_bit
64-bit UID
0 1
2 3
12 13 14 15
5 bits
5 bits 5 bits 5 bits
5 bits
5 bits 5 bits 5 bits
System
System
System
System
System
System
System
System
80-bit SSS
System

Figure 6. Memory sector organization

Sector details
The M24LR64E-R user memory is divided into 16 sectors. Each sector contains 1024 bits.
20/140 Doc ID 022712 Rev 3
The protection scheme is described in Section 4: System memory area. In RF mode, a sector provides 32 blocks of 32 bits. Each read and write access is done by
block. Read and write block accesses are controlled by a Sector Security Status byte that defines the access rights to the 32 blocks contained in the sector. If the sector is not protected, a Write command updates the complete 32 bits of the selected block.
2
In I
C mode, a sector provides 128 bytes that can be individually accessed in Read and Write modes. When protected by the corresponding I2C_Write_Lock bit, the entire sector is write-protected. To access the user memory, the device select code used for any I command must have the E2 Chip Enable address at 0.
2
C
M24LR64E-R User memory organization

Table 5. Sector details

Sector
number
0
RF block
address
I2C byte
address
Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0]
0 0 user user user user
1 4 user user user user
2 8 user user user user
3 12 user user user user
4 16 user user user user
5 20 user user user user
6 24 user user user user
7 28 user user user user
8 32 user user user user
9 36 user user user user
10 40 user user user user
11 44 user user user user
12 48 user user user user
13 52 user user user user
14 56 user user user user
15 60 user user user user
16 64 user user user user
17 68 user user user user
18 72 user user user user
19 76 user user user user
20 80 user user user user
21 84 user user user user
22 88 user user user user
23 92 user user user user
24 96 user user user user
25 100 user user user user
26 104 user user user user
27 108 user user user user
28 112 user user user user
29 116 user user user user
30 120 user user user user
31 124 user user user user
Doc ID 022712 Rev 3 21/140
User memory organization M24LR64E-R
Table 5. Sector details (continued)
Sector
number
1
... ... ... ... ... ... ...
RF block
address
32 128 user user user user
33 132 user user user user
34 136 user user user user
35 140 user user user user
36 144 user user user user
37 148 user user user user
38 152 user user user user
39 156 user user user user
... ... ... ... ... ...
I2C byte address
Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0]
22/140 Doc ID 022712 Rev 3
M24LR64E-R User memory organization
Table 5. Sector details (continued)
Sector
number
63
RF block
address
2016 8064 user user user user
2017 8068 user user user user
2018 8072 user user user user
2019 8076 user user user user
2020 8080 user user user user
2021 8084 user user user user
2022 8088 user user user user
2023 8092 user user user user
2024 8096 user user user user
2025 8100 user user user user
2026 8104 user user user user
2027 8108 user user user user
2028 8112 user user user user
2029 8116 user user user user
2030 8120 user user user user
2031 8124 user user user user
2032 8128 user user user user
I2C byte address
Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0]
2033 8132 user user user user
2034 8136 user user user user
2035 8140 user user user user
2036 8144 user user user user
2037 8148 user user user user
2038 8152 user user user user
2039 8156 user user user user
2040 8160 user user user user
2041 8164 user user user user
2042 8168 user user user user
2043 8172 user user user user
2044 8176 user user user user
2045 8180 user user user user
2046 8184 user user user user
2047 8188 user user user user
Doc ID 022712 Rev 3 23/140
System memory area M24LR64E-R

4 System memory area

4.1 M24LR64E-R block security in RF mode

The M24LR64E-R provides a special protection mechanism based on passwords. In RF mode, each memory sector of the M24LR64E-R can be individually protected by one out of three available passwords, and each sector can also have Read/Write access conditions set.
Each memory sector of the M24LR64E-R is assigned with a Sector security status byte including a Sector Lock bit, two Password Control bits and two Read/Write protection bits, as shown in Ta bl e 7 .
Ta bl e 6 describes the organization of the Sector security status byte, which can be read
using the Read Single Block and Read Multiple Block commands with the Option_flag set to 1.
On delivery, the default value of the SSS bytes is set to 00h.

Table 6. Sector security status byte area

I2C byte address Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0]
E2 = 1 0 SSS 3 SSS 2 SSS 1 SSS 0
E2 = 1 4 SSS 7 SSS 6 SSS 5 SSS 4
E2 = 1 8 SSS 11 SSS 10 SSS 9 SSS 8
E2 = 1 12 SSS 15 SSS 14 SSS 13 SSS 12
E2 = 1 16 SSS 19 SSS 18 SSS 17 SSS 16
E2 = 1 20 SSS 23 SSS 22 SSS 21 SSS 20
E2 = 1 24 SSS 27 SSS 26 SSS 25 SSS 24
E2 = 1 28 SSS 31 SSS 30 SSS 29 SSS 28
E2 = 1 32 SSS 35 SSS 34 SSS 33 SSS 32
E2 = 1 36 SSS 39 SSS 38 SSS 37 SSS 36
E2 = 1 40 SSS 43 SSS 42 SSS 41 SSS 40
E2 = 1 44 SSS 47 SSS 46 SSS 45 SSS 44
E2 = 1 48 SSS 51 SSS 50 SSS 49 SSS 48
E2 = 1 52 SSS 55 SSS 54 SSS 53 SSS 52
E2 = 1 56 SSS 59 SSS 58 SSS 57 SSS 56
E2 = 1 60 SSS 63 SSS 62 SSS 61 SSS 60

Table 7. Sector security status byte organization

b
7
0 0 0 Password control bits
b
6
b
5
b
4
b
3
b
2
b
1
Read / Write
protection bits
b
0
Sector
Lock
24/140 Doc ID 022712 Rev 3
M24LR64E-R System memory area
When the Sector Lock bit is set to 1, for instance by issuing a Lock-sector command, the two Read/Write protection bits (b
, b2) are used to set the Read/Write access of the sector as
1
described in Ta b le 8 .

Table 8. Read/Write protection bit setting

Sector
Lock
, b
b
2
1
Sector access
when password presented
when password not presented
Sector access
0 xx Read Write Read Write
1 00 Read Write Read No Write
1 01 Read Write Read Write
1 10 Read Write No Read No Write
1 11 Read No Write No Read No Write
The next two bits of the Sector security status byte (b3, b4) are the password control bits. The value of these two bits is used to link a password to the sector, as defined in Ta bl e 9 .

Table 9. Password control bits

b4, b
3
Password
00 The sector is not protected by a password.
01 The sector is protected by password 1.
10 The sector is protected by password 2.
11 The sector is protected by password 3.
The M24LR64E-R password protection is organized around a dedicated set of commands, plus a system area of three password blocks where the password values are stored. This system area is described in Ta bl e 1 0.

Table 10. Password system area

Add
1 Password 1
2 Password 2
3 Password 3
The dedicated commands for protection in RF mode are:
Write-sector password:
The Write-sector password command is used to write a 32-bit block into the password system area. This command must be used to update password values. After the write cycle, the new password value is automatically activated. It is possible to modify a password value after issuing a valid Present-sector password command. On delivery, the three default password values are set to 0000 0000h and are activated.
Lock-sector:
The Lock-sector command is used to set the sector security status byte of the selected sector. Bits b
to b1 of the sector security status byte are affected by the Lock-sector
4
Doc ID 022712 Rev 3 25/140
System memory area M24LR64E-R
command. The sector lock bit, b0, is set to 1 automatically. After issuing a Lock-sector command, the protection settings of the selected sector are activated. The protection of a locked block cannot be changed in RF mode. A Lock-sector command sent to a locked sector returns an error code.
Present-sector password:
The Present-sector password command is used to present one of the three passwords to the M24LR64E-R in order to modify the access rights of all the memory sectors linked to that password (Ta b le 8 ) including the password itself. If the presented password is correct, the access rights remain activated until the tag is powered off or until a new Present-sector password command is issued. If the presented password value is not correct, all the access rights of all the memory sectors are deactivated.
Sector security status byte area access conditions in I
2
In I
C mode, read access to the sector security status byte area is always allowed.
Write access depends on the correct presentation of the I
2
C mode:
2
C password (see
Section 5.16.1: I2C present password command description).
To access the Sector security status byte area, the device select code used for any I
2
C
command must have the E2 Chip Enable address at 1.
2
An I
C write access to a sector security status byte re-initializes the RF access
condition to the given memory sector.

4.1.1 Example of the M24LR64E-R security protection in RF mode

Ta bl e 1 1 and Ta bl e 1 2 show the sector security protections before and after a valid Present-
sector password command. Tab le 1 1 shows the sector access rights of an M24LR64E-R after power-up. After a valid Present-sector password command with password 1, the memory sector access is changed as shown in Ta bl e 1 2.
Table 11. M24LR64E-R sector security protection after power-up
Sector
address
0 Protection: standard Read No Write xxx 00001
1 Protection: pswd 1 Read No Write xxx 01001
2 Protection: pswd 1 Read Write xxx 01011
3 Protection: pswd 1 No Read No Write xxx 01101
4 Protection: pswd 1 No Read No Write xxx 01111
Table 12. M24LR64E-R sector security protection after a valid presentation of
password 1
Sector
address
0 Protection: standard Read No Write xxx 00001
Sector security status byte
b
7b6b5b4b3b2b1b0
Sector security status byte
b7b6b5b4b3b2b1b
0
1 Protection: pswd 1 Read Write xxx 01001
2 Protection: pswd 1 Read Write xxx 01011
26/140 Doc ID 022712 Rev 3
M24LR64E-R System memory area
Table 12. M24LR64E-R sector security protection after a valid presentation of
password 1
Sector
address
3 Protection: pswd 1 Read Write xxx 01101
4 Protection: pswd 1 Read No Write xxx 01111
Sector security status byte
b7b6b5b4b3b2b1b
0

4.2 M24LR64E-R block security in I²C mode (I2C_Write_Lock bit area)

In the I2C mode only, it is possible to protect individual sectors against Write operations. This feature is controlled by the I2C_Write_Lock bits stored in the 2 bytes of the I2C_Write_Lock bit area. I2C_Write_Lock bit area starts from location 8192 (see Ta bl e 1 3 ). To access the I2C_Write_Lock bit area, the device select code used for any I must have the E2 Chip Enable address at 1.
Using these 16 bits, it is possible to write-protect all the 16 sectors of the M24LR64E-R memory. Each bit controls the I is always possible to unprotect a sector in the I
2
C write access to a specific sector as shown in Ta bl e 1 3 . It
2
C mode. When an I2C_Write_Lock bit is reset to 0, the corresponding sector is unprotected. When the bit is set to 1, the corresponding sector is write-protected.
2
In I
C mode, read access to the I2C_Write_Lock bit area is always allowed. Write access
depends on the correct presentation of the I
2
C password.
2
C command
On delivery, the default value of the eight bytes of the I2C_Write_Lock bit area is reset to 00h.
m

Table 13. I2C_Write_Lock bit

I2C byte address Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0]
E2 = 1 2048 sectors 31-24 sectors 23-16 sectors 15-8 sectors 7-0
E2 = 1 2052 sectors 63-56 sectors 55-48 sectors 47-40 sectors 39-32

4.3 Configuration byte and Control register

The M24LR64E-R offers an 8-bit non-volatile Configuration byte located at I²C location 2320 of the system area used to store the RF WIP/BUSY pin and the energy harvesting configuration (see Ta b le 1 4 ).
The M24LR64E-R also offers an 8-bit volatile Control register located at I²C location 2336 of the system area used to store the energy harvesting enable bit as well as a FIELD_ON bit indicator (see Tab le 1 5 ).
Doc ID 022712 Rev 3 27/140
System memory area M24LR64E-R

4.3.1 RF WIP/BUSY pin configuration

The M24LR64E-R features a configurable open drain output RF WIP/BUSY pin used to provide RF activity information to an external device.
The RF WIP/BUSY pin functionality depends on the value of bit 3 of the Configuration byte.
RF busy mode
When bit 3 of the Configuration byte is set to 0, the RF WIP/BUSY pin is configured in RF busy mode.
The purpose of this mode is to indicate to the I²C bus master whether the M24LR64E-R is busy in RF mode or not.
In this mode, the RF WIP/BUSY pin is tied to 0 from the RF command Start Of Frame (SOF) until the end of the command execution.
If a bad RF command is received, the RF WIP/BUSY pin is tied to 0 from the RF command SOF until the reception of the RF command CRC. Otherwise, the RF WIP/BUSY pin is in high-Z state.
When tied to 0, the RF WIP/BUSY signal returns to High-Z state if the RF field is cut-off. During the execution of I²C commands, the RF WIP/BUSY pin remains in high-Z state.
RF Write in progress
When bit 3 of the Configuration byte is set to 1, the RF WIP/BUSY pin is configured in RF Write in progress mode.
The purpose of this mode is to indicate to the I²C bus master that some data has been changed in RF mode.
In this mode, the RF WIP/BUSY pin is tied to 0 for the duration of an internal write operation (i.e. between the end of a valid RF write command and the beginning of the RF answer).
During the execution of I²C write operations, the RF WIP/BUSY pin remains in high-Z state.

4.3.2 Energy harvesting configuration

The M24LR64E-R features an Energy harvesting mode on the Vout analog output. The general purpose of the Energy harvesting mode is to deliver a part of the non-
necessary RF power received by the M24LR64E-R on the AC0-AC1 RF input in order to supply an external device. The current consumption on the analog voltage output Vout is limited to ensure that the M24LR64E-R is correctly supplied during the powering of the external device.
When the Energy harvesting mode is enabled and the power delivered on the AC0-AC1 RF input exceeds the minimum required P limited and unregulated voltage on the Vout pin, assuming the current consumption on the Vout does not exceed the I
sink_max
If one of the conditions above is not met, the analog voltage output pin Vout is set in High-Z state.
AC0-AC1_min
maximum value.
, the M24LR64E-R is able to deliver a
For robust applications using the Energy harvesting mode, four current fan-out levels can be chosen.
28/140 Doc ID 022712 Rev 3
M24LR64E-R System memory area
Vout sink current configuration
The sink current level is chosen by programming EH_cfg1 and EH_cfg0 into the Configuration byte (see Ta bl e 1 4 ).
The minimum power level required on AC0-AC1 RF input P voltage Vout, as well as the maximum current consumption I
AC0-AC1_min
sink_max
, the delivered
on the Vout pin
corresponding to the <EH_cfg1,EH_cfg0> bit values are described in Ta bl e 1 26 .
Table 14. Configuration byte
I2C byte address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 BIT 1 BIT 0
(1)
(1)X(1)X(1)
E2=1 2320 X
1. Bit 7 to bit 4 are don’t care bits.
Energy harvesting enable control
X
RF WIP/BUSY EH_mode EH_cfg1 EH_cfg0
Delivery of Energy harvesting analog output voltage on the Vout pin depends on the value of the EH_enable bit of the volatile Control register (see Tab le 1 5 ).
Table 15. Control register
I2C byte address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 BIT 1 BIT 0
E2=1 2336 0
1. Bit 7 to bit 1 are read-only bits.
(1)
(1)
0
(1)
0
(1)
0
(1)
0
(1)
0
FIELD_ON
(1)
EH_enable
When set to 1, the EH_enable bit enables the Energy harvesting mode, meaning
that the Vout analog output signal is delivered when the P
AC0-AC1_min
and I
sink_max
conditions corresponding to the chosen sink current configuration bit are met (see
Ta bl e 1 26 ).
When set to 0, the EH_enable bit disables the Energy harvesting mode and the
analog output Vout remains in High-Z state.
Energy harvesting default mode control
At power-up, in I²C or RF mode, the EH_enable bit is updated according to the value of the EH_mode bit stored in the non-volatile Configuration byte (see Ta bl e 1 6 ). In other words, the EH_mode bit is used to configure whether the Energy harvesting mode is enabled or not by default.
Table 16. EH_enable bit value after power-up
EH_mode value EH_enable after power-up
0 1 enabled
1 0 disabled
Doc ID 022712 Rev 3 29/140
Energy harvesting
after power-up
System memory area M24LR64E-R

4.3.3 FIELD_ON indicator bit

The FIELD_ON indicator bit located as bit 1 of the Control register is a read-only bit used to indicate when the RF power level delivered to the M24LR64E-R is sufficient to execute RF commands.
When FIELD_ON = 0, the M24LR64E-R is not able to execute any RF commands.
When FIELD_ON =1, the M24LR64E-R is able to execute any RF commands.
Note: During read access to the Control register in RF mode, the FIELD_ON bit is always read
at 1.

4.3.4 Configuration byte access in I²C and RF modes

In I²C mode, read and write accesses to the non-volatile Configuration byte are always allowed. To access the Configuration byte, the device select code used for any I²C command must have the E2 Chip enable address at 1.
The dedicated commands to access the Configuration byte in RF mode are:
Read configuration byte command (ReadCfg):
The ReadCfg command is used to read the eight bits of the Configuration byte.
Write energy harvesting configuration command (WriteEHCfg):
The WriteEHCfg command is used to write the EH_mode, EH_cfg1 and EH_cfg0
bits into the Configuration byte.
Write RF WIP/BUSY pin configuration command (WriteDOCfg):
The WriteDOCfg command is used to write the RF WIP/BUSY bit into the
Configuration byte.
After any write access to the Configuration byte, the new configuration is automatically applied.

4.3.5 Control register access in I²C or RF mode

In I²C mode, read and write accesses to the volatile Control register are always allowed. To access the Control register, the device select code used for any I²C command must have the E2 Chip enable address at 1.
The dedicated commands to access the Control register in RF mode are:
Check energy harvesting enable bit command (CheckEHEn):
The CheckEHEn command is used to read the eight bits of the Control register.
When it is run, the FIELD_ON bit is always read at 1.
Set/reset energy harvesting enable bit command (SetRstEHEn):
The SetRstEHEn command is used to set or reset the value of the EH_enable bit
into the Control register.

4.4 ISO 15693 system parameters

The M24LR64E-R provides the system area required by the ISO 15693 RF protocol, as shown in Ta bl e 1 7 .
The first 32-bit block starting from I is used to activate/deactivate the write protection of the protected sector in I
2
C address 2304 stores the I2C password. This password
2
C mode. At
30/140 Doc ID 022712 Rev 3
Loading...
+ 110 hidden pages