ST LSM333D User Manual

9 degrees of freedom sensing solution
LGA-28
(3.5x6x1 mm)
3 acceleration channels, 3 angular rate
channels, 3 magnetic field channels
±2/±4/±8/±16 g dynamically selectable linear
acceleration full-scale
±2/±4/±8/±12 gauss dynamically selectable
magnetic full-scale
±250/±500/±2000 dps dynamically selectable
angular rate full-scale
16-bit data output
SPI / I
Analog supply voltage 2.4 V to 3.6 V
Power-down mode / Low-power mode
Programmable interrupt generators
Embedded temperature sensor
Embedded FIFO
ECOPACK
Applications
Indoor navigation
Smart user interface
Advanced gesture recognition
Gaming and virtual reality input device
Display/map orientation and browsing
eCompass
Position and motion detection functions
Click/double click recognition
Intelligent power saving for handheld devices
Description
The LSM333D is an inertial module capable of providing 9 DOF (degrees of freedom) inertial sensing by combining a 3D accelerometer, a 3D
2
C serial interfaces
®
RoHS and “Green” compliant
LSM333D
iNEMO Intertial Module:
Datasheet — preliminary data
gyroscope and a 3D magnetometer in a system­in-package.
The LSM333D has linear acceleration full-scales of ±2g/±4g/±8g/±16g, a magnetic field full-scale of ±2/±4/±8/±12 gauss and an angular rate of 250/±500/±2000 dps. All full-scales available are fully selectable by the user.
The LSM333D includes an I supporting standard and Fast mode 100 kHz and 400 kHz, and SPI serial standard interface.
The system can be configured to generate interrupt signals, on dedicated pins, motion and magnetic field detection. Thresholds and the timing of interrupt generators are programmable by the end user.
Magnetic, accelerometer and gyroscope sensing can be enabled or set in Power-down mode separately for smart power management.
The LSM333D is available in a plastic land grid array package (LGA) and it is guaranteed to operate over an extended temperature range from
-40 °C to +85 °C.

Table 1. Device summary

Part number
LSM333D -40 to +85 LGA-28 Tray
LSM333DTR -40 to +85 LGA-28
Temperature
range [°C]
2
C serial bus interface
Package Packing
Tape and
reel
March 2012 Doc ID 022907 Rev 1 1/75
This is preliminar y information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
www.st.com
75
Contents LSM333D
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 Sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Sensor I2C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Set/Reset pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Linear acceleration sensor sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Angular rate sensor sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Magnetic sensor sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Zero-rate level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Zero-gauss level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 Accelerometer / Gyroscope self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Linear acceleration digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.3 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.4 Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.5 Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.6 Retrieve data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Gyroscope digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2/75 Doc ID 022907 Rev 1
LSM333D Contents
4.3.1 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.2 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.3 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.4 Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.5 Bypass-to-stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.6 Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.7 Retrieve data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Level-sensitive / edge-sensitive data enable . . . . . . . . . . . . . . . . . . . . . . 28
4.4.1 Level-sensitive trigger stamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.2 Edge-sensitive trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1 External capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Pull-up resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Digital interface power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 High current wiring effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.1.1 I2C Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7 Output register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.1 Accelerometer and Magnetometer register description . . . . . . . . . . . . . . 42
8.2 STATUS_REG_M (07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.3 OUT_X_L_M (08h), OUT_X_H_M (09h) . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.4 OUT_Y_L_M (0Ah), OUT_X_H_M (0Bh) . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.5 OUT_X_L_M (0Ch), OUT_X_H_M (0Dh) . . . . . . . . . . . . . . . . . . . . . . . . . 43
Doc ID 022907 Rev 1 3/75
Contents LSM333D
8.6 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.7 INT_CTRL_REG_M (12h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.8 INT_SRC_REG_M (13h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.9 INT_THS_L_M (14h), INT_THS_H_M (15h) . . . . . . . . . . . . . . . . . . . . . . 44
8.10 OFFSET_X_L_M (16h), OFFSET_X_H_M (17h) . . . . . . . . . . . . . . . . . . . 44
8.11 OFFSET_Y_L_M (18h), OFFSET_Y_H_M (19h) . . . . . . . . . . . . . . . . . . . 45
8.12 OFFSET_Z_L_M (1Ah), OFFSET_Z_H_M (1Bh) . . . . . . . . . . . . . . . . . . 45
8.13 REFERENCE_X (1Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.14 REFERENCE_Y (1Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.15 REFERENCE_Z (1Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.16 CNTRL0_A (1Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.17 CNTRL1_A (20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . h) 46
8.18 CNTRL2_A (21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . h) 47
8.19 CNTRL3_A (22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . h) 47
8.20 CNTRL4_A (23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . h) 48
8.21 CNTRL5_A (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.22 CNTRL6_A (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.23 CNTRL7_A (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.24 STATUS_REG_A (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.25 OUT_X_L_A (28h), OUT_X_H_A (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.26 OUT_Y_L_A (2Ah), OUT_X_H_A (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.27 OUT_X_L_A (2Ch), OUT_X_H_A (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.28 FIFO_CNTRL_REG_A (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.29 FIFO_SRC_REG_A (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.30 INT_GEN_1_REG_A (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.31 INT_GEN_1_SRC_A (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.32 INT_GEN_1_THS_A (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.33 INT_GEN_1_DURATION_A (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.34 INT_GEN_2_REG_A (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.35 INT_GEN_2_SRC_A (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.36 INT_GEN_2_THS_A (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.37 INT_GEN_2_DURATION_A (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.38 CLICK_CFG_A (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4/75 Doc ID 022907 Rev 1
LSM333D Contents
8.39 CLICK_SRC_A (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.40 CLICK_THS_A (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.41 TIME_LIMIT_A (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.42 TIME_LATENCY_A (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.43 TIME_WINDOW_A (3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.44 Act_THS_A (3Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.45 Act_DUR_A (3Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9 Gyroscope register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.1 WHO_AM_I_G (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.2 CNTRL1_G (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.3 CNTRL2_G (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.4 CNTRL3_G (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.5 CNTRL4_G (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.6 CNTRL5_G (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.7 REFERENCE_G (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.8 OUT_TEMP_G (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.9 STATUS_REG_G (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.10 OUT_X_L_G (28h), OUT_X_H_G (29h) . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.11 OUT_Y_L_G (2Ah), OUT_Y_H_G (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.12 OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.13 FIFO_CTRL_REG_G (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.14 FIFO_SRC_REG_G (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.15 INT1_CFG_G (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.16 INT1_SRC_G (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.17 INT1_THS_XH_G (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.18 INT1_THS_XL_G (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.19 INT1_THS_YH_G (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.20 INT1_THS_YL_G (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.21 INT1_THS_ZH_G (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.22 INT1_THS_ZL _G(37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.23 INT1_DURATION_G (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Doc ID 022907 Rev 1 5/75
Contents LSM333D
10 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6/75 Doc ID 022907 Rev 1
LSM333D List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3. Sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 5. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 6. SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 7. I2C slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 8. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 9. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 10. I2C terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 11. eCompass SAD+read/write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 12. Angular rate SAD+read/write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 13. Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 14. Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 15. Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 34
Table 16. Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 34
Table 17. Accelerometer and Magnetometer sensing register address map . . . . . . . . . . . . . . . . . . . 39
Table 18. Gyroscope sensing register address map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 19. STATUS_REG_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 20. STATUS_REG_M description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 21. WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 22. INT_CTRL_REG_M register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 23. INT_CTRL_REG_M description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 24. INT_SRC_REG_M register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 25. INT_SRC_REG_M description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 26. CNTRL0_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 27. CNTRL0_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 28. CNTRL1_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 29. CNTRL0_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 30. Acceleration data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 31. CNTRL2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 32. CNTRL2_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 33. Acceleration anti-alias filter bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 34. Acceleration full-scale selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 35. CNTRL3_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 36. CNTRL3_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 37. CNTRL4_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 38. CNTRL4_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 39. CNTRL5_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 40. CNTRL5_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 41. Magnetic data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 42. CNTRL6_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 43. CNTRL6_A_ description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 44. Magnetic full-scale selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 45. CNTRL7_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 46. CNTRL7_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 47. High-pass filter mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 48. Magnetic sensor mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 49. STATUS_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Doc ID 022907 Rev 1 7/75
List of tables LSM333D
Table 50. STATUS_REG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 51. FIFO_CTRL_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 52. FIFO_CTRL_REG_A register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 53. FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 54. FIFO_SRC_REG_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 55. FIFO_SRC_REG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 56. INT_GEN_1_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 57. INT_GEN_1_REG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 58. Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 59. INT_GEN_1_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 60. INT_GEN_1_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 61. INT1_THS register_A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 62. INT1_THS description_A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 63. INT1_DURATION_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 64. INT1_DURATION_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 65. INT_GEN_2_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 66. INT_GEN_2_REG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 67. Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 68. INT_GEN_2_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 69. INT_GEN_2_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 70. INT_GEN_2_THS_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 71. INT_GEN_2_THS_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 72. INT_GEN_2_DURATION_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 73. INT_GEN_2_DURATION_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 74. CLICK_CFG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 75. CLICK_CFG_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 76. CLICK_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 77. CLICK_SRC_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 78. CLICK_THS_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 79. CLICK_SRC_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 80. TIME_LIMIT_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 81. TIME_LIMIT_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 82. TIME_LATENCY_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 83. TIME_LATENCY_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 84. TIME_WINDOW_ register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 85. TIME_WINDOW_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 86. Act_THS_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 87. Act_THS_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 88. Act_DUR_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 89. Act_DUR_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 90. WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 91. CNTRL1_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 92. CNTRL1_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 93. DR and BW configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 94. Power mode selection configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 95. CNTRL2_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 96. CNTRL2_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 97. High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 98. High-pass filter cutoff frequency configuration [Hz] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 99. CNTRL3_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 100. CNTRL3_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 101. CNTRL4_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8/75 Doc ID 022907 Rev 1
LSM333D List of tables
Table 102. CNTRL4_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 103. CNTRL5_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 104. CNTRL5_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 105. REFERENCE_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 106. REFERENCE_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 107. OUT_TEMP_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 108. OUT_TEMP_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 109. STATUS_REG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 110. STATUS_REG_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 111. FIFO_CTRL_REG_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 112. FIFO_CTRL_REG_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 113. FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 114. FIFO_SRC_REG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 115. FIFO_SRC_REG_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 116. INT1_CFG_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 117. INT1_CFG_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 118. INT1_SRC_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 119. INT1_SRC_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 120. INT1_THS_XH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 121. INT1_THS_XH_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 122. INT1_THS_XL_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 123. INT1_THS_XL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 124. INT1_THS_YH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 125. INT1_THS_YH_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 126. INT1_THS_YL_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 127. INT1_THS_YL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 128. INT1_THS_ZH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 129. INT1_THS_ZH_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 130. INT1_THS_ZL_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 131. INT1_THS_ZL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 132. INT1_DURATION_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 133. INT1_DURATION_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 134. TFLGA 6x3.5x1 28L mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 135. TFLGA 6x3.5x1 28L drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 136. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Doc ID 022907 Rev 1 9/75
List of figures LSM333D
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2. Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 3. SPI slave timing diagram (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 4. I2C slave timing diagram (3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 5. Gyroscope block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 6. Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 7. FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 8. Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 9. Bypass-to-stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 10. Trigger stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 11. Level-sensitive trigger stamping (LVLen = 1; EXTRen = 0) . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 12. Edge-sensitive trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 13. LSM333D electrical connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 14. Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 15. SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 16. Multiple byte SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 17. SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 18. Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 19. SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 20. INT1_Sel and Out_Sel configuration block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 21. Wait disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 22. Wait enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
10/75 Doc ID 022907 Rev 1
LSM333D Block diagram and pin description
Y+
Z+
Y-
Z-
X+
X-
MUX
I (a)
+
-
CHARGE
AMPLIFIER
Sensing Block Sensing Interface
A/D Control
Logic
converter
MUX
I (M)
+
-
CHARGE AMPLIFIER
Y+
Z+
Y-
Z-
X+
X-
INTERRUPT GEN.
CLOCK
TRIMMING
CIRCUITS
REFERENCE
OFFSET
CIRCUITS
BUILT-IN
CIRCUITS
SET/RESET
TEMPERATURE
FIFO
SENSOR
I (
Ω)
Drive+
Drive-
Feedback+
Feedback-
DEMODULATOR
VOLTAGE
AUTO MATIC
GAIN
CONTROL
LOW-PASS
FILTER
GAIN
AMPLIFIER
ANALOG CONDITIONING
+
-
CHARGE
AMPLIFIER
Y+
Z+
Y-
Z-
X+
X-
MUX
CONTROL LOGIC
GENERATOR
PHASE
A/D Control
Logicconverter
CS_G
SDA/SDI_A/G
SDO_A
I2C/SPI
INT1_A
INT2_A
INT1_G
DRDY_G/
CS_A
SDO_G
SCL_A/G
INT2_G
AM12605V1

1 Block diagram and pin description

1.1 Block diagram

Figure 1. Block diagram

Doc ID 022907 Rev 1 11/75
Block diagram and pin description LSM333D
DIRECTION OF DETECTABLE MAGNETIC FIELDS
Y
1
X
Z
DIRECTION OF DETECTABLE ACCELERATIONS
Z
DIRECTION OF DETECTABLE ANGULAR RATE
1
X
z
Y
Y
X
FILTVDD
FILTIN Y
(BOTTOM VIEW)
19
INT1_A/M
CS_G
Vdd_IO
SDO_G
INT2_A/M
RES
GND
LSM333D
RES
18
SDA
SCL
28
5
1
4
15
SDO_A/M
CS_A/M
Vdd_IO
RES
INT1_G
DRDY_G/INT2_G
GND
SETP
VDD
DEN_G
SETC
VDD
VDD
GND
VDD
RES
VDD
C1
14
Y
1
X
Z
AM12606V1

1.2 Pin description

Figure 2. Pin connection

Table 2. Pin description

Pin# Name Function
1 Res Reserved to be connected to GND
2 Res Reserved to be connected to GND
3 Res Reserved to be connected to GND
4GND0 V supply
5 C1 Capacitor connection (C1)
6GND0 V supply
7GND0 V supply
8 Vdd Power supply
9 Vdd Power supply
10 Vdd Power supply
12/75 Doc ID 022907 Rev 1
11 Vdd Power supply
12 Vdd Power supply
13 SETC S/R capacitor connection (C2)
14 SETP S/R capacitor connection (C2)
15 Res Leave unconnected
16 DEN_G Gyroscope data enable
LSM333D Block diagram and pin description
Table 2. Pin description (continued)
Pin# Name Function
17 INT1_G Gyroscope interrupt signal 1
18
DRDY_G/
INT2_G
Gyroscope data ready/interrupt signal 2
19 INT2_A/M Accelerometer/Magnetometer interrupt2 signal
20 INT1_A/M Accelerometer/Magnetometer interrupt1 signal
21 Vdd_IO Power supply for I/O pins
Gyroscope: SPI enable
22 CS_G
2
I
C/SPI mode selection (1: SPI idle mode / I2C communication
enabled; 0: SPI communication mode / I2C disabled)
Accelerometer/Magnetometer: SPI enable
23 CS_A/M
24
SCL SPC
2
I
C/SPI mode selection (1: SPI idle mode / I2C communication
enabled; 0: SPI communication mode / I
2
C serial clock (SCL)
I
2
C disabled)
SPI serial port clock (SPC)
25 Vdd_IO Power supply for I/O pins
26 SDO_G
27 SDO_A
28 SDA
Gyroscope: SPI serial data output (SDO) /
2
I
C least significant bit of the device address (SA0)
Accelerometer/Magnetometer:SPI serial data output (SDO) /
2
I
C least significant bit of the device address (SA0)
2
I
C serial data (SDA) / SPI serial data input (SDI)
3-wire interface serial data output (SDO)
Doc ID 022907 Rev 1 13/75
Module specifications LSM333D

2 Module specifications

2.1 Sensor characteristics

@ Vdd = 3.0 V, T = 25 °C unless otherwise noted

Table 3. Sensor characteristics

Symbol Parameter Test conditions Min. Typ.
LA_FS
M_FS
G_FS
LA_So Linear acceleration sensitivity
M_GN Magnetic sensitivity
G_So Angular rate sensitivity
LA_TCSo
M_TCSo
G_SoDr
Linear acceleration measurement range
Magnetic measurement range
Angular rate measurement range
Linear acceleration sensitivity change vs. temperature
Magnetic sensitivity change vs. temperature
Angular rate sensitivity change vs. temperature
(2)
Linear acceleration FS=±2g 0.06
Linear acceleration FS=±4g 0.12
Linear acceleration FS=±8g 0.24
Linear acceleration FS=±16g 0.73
Magnetic FS=±2 gauss 0.08
Magnetic FS=±4 gauss 0.16
Magnetic FS=±8 gauss 0.32
Magnetic FS=±12 gauss 0.48
Angular rate FS=±250 dps 8.75
Angular rate FS=±500 dps 17.50
Angular rate FS=±2000 dps 70
From -40 °C to +85 °C ±2 %
(a)
.
(1)
Max. Unit
±2
±4
±8
±16
±2
±4
±8
±12
±250
±2000
±0.01 %/°C
±0.05 %/°C
g
gauss
dps±500
mg/LSB
mgauss/
LSB
mdps/
digit
a. The product is factory calibrated at 3.0 V. The operational power supply range is from 2.4 V to 3.6 V.
14/75 Doc ID 022907 Rev 1
LSM333D Module specifications
Table 3. Sensor characteristics
Symbol Parameter Test conditions Min. Typ.
Linear acceleration
LA_TyOff
Typ i c a l zer o - g level offset accuracy
(3) (4)
FS = 250 dps ±10
G_TyOff
Angular rate Typical zero-rate level
FS = 2000 dps ±25
LA_TCOff
G_TCOff
An
Linear acceleration zero­level change vs. temperature
Zero-rate level change vs. temperature
Linear acceleration noise density
Mn Magnetic noise density
g
Max. delta from 25 °C ±0.5 mg/°C
Linear acceleration FS=2g;
ODR = 100Hz
Magnetic FS=2gauss; ODR = 100Hz
Rn Rate noise density FS = ±250 dps, BW = 50 Hz 0.03
M_EF Maximum exposed field
No permitting effect on zero reading
Sensitivity starts to degrade.
M_DF Magnetic disturbing field
Automatic S/R pulse restores the sensitivity
(5)
Top Operating temperature range -40 +85 °C
1. Typical specifications are not guaranteed.
2. Verified by wafer level test and measurement of initial offset and sensitivity.
3. Typical zero-g level offset value after MSL3 preconditioning.
4. Offset can be eliminated by enabling the built-in high-pass filter.
5. Set / reset pulse is automatically applied at each conversion cycle.
(1)
Max. Unit
±60 mg
dpsFS = 500 dps ±15
±0.05 dps/°C
150
210
ug/
sqrt(Hz)
ugauss/ sqrt(Hz)
dps/
sqrt(Hz)
10000 gauss
20 gauss

2.2 Temperature sensor characteristics

@ Vdd =3.0 V, T=25 °C unless otherwise noted.

Table 4. Electrical characteristics

Symbol Parameter Test condition Min. Typ.
Temperature sensor
TSDr
TODR Temperature refresh rate 1 Hz
To p
1. The product is factory calibrated at 3.0 V.
output change vs. temperature
Operating temperature range
(1)
(2)
Max. Unit
-1 °C/digit
-
-40 +85 °C
Doc ID 022907 Rev 1 15/75
Module specifications LSM333D
2. Typical specifications are not guaranteed.

2.3 Electrical characteristics

@ Vdd = 3.0 V, T = 25 °C unless otherwise noted

Table 5. Electrical characteristics

(b)
.
Symbol Parameter
Tes t
conditions
Min. Typ.
(1)
Max. Unit
Vdd Supply voltage 2.4 3.6 V
Vdd_IO Module power supply for I/O 1.71 1.8 Vdd+0.1
Idd_A/M
Idd_A/M_SL
G_Idd
G_IddLowP
G_IddPdn
eCompass in Normal mode
eCompass current consumption in Power-down mode
Gyroscope current consumption in Normal mode
Gyroscope supply current in Sleep mode
Gyroscope current consumption in Power-down mode
VIH Digital high level input voltage
VIL Digital low level input voltage
VOH High level output voltage
(2)
current consumption
(3)
(4)
(5)
350 µA
A
6.1 mA
2mA
A
0.8*Vdd_I O
0.2*Vdd_I O
0.9*Vdd_I O
V
V
V
VOL Low level output voltage
Top Operating temperature range -40 +85
1. Typical specifications are not guaranteed.
2. eCompass
3. Magnetic sensor setting ODR =6.25 Hz, accelerometer sensor ODR = 50 Hz.
4. Linear accelerometer and magnetic sensor in Power-down mode.
5. Sleep mode introduces a faster turn-on time compared to Power-down mode.
: accelerometer - magnetic sensor.
b. Gyroscope is factory calibrated at 3.0 V.
16/75 Doc ID 022907 Rev 1
0.1*Vdd_I O
V
°C
LSM333D Module specifications
SPC
CS
SDI
SDO
t
su(CS)
t
v(SO)
t
h(SO)
t
h(SI)
t
su(SI)
t
h(CS)
t
dis(SO)
t
c(SPC)
MSB IN
MSB OUT
LSB OUT
LSB IN
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)

2.4 Communication interface characteristics

2.4.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and Top.
Table 6. SPI slave timing values
(1)
Val ue
Symbol Parameter
Unit
Min. Max.
tc(SPC) SPI clock cycle 100 ns
fc(SPC) SPI clock frequency 10 MHz
tsu(CS) CS setup time 5
th(CS) CS hold time 20
tsu(SI) SDI input setup time 5
th(SI) SDI input hold time 15
ns
tv(SO) SDO valid output time 50
th(SO) SDO output hold time 5
tdis(SO) SDO output disable time 50
(2)
Figure 3. SPI slave timing diagram
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production.
2. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both Input and output ports.
Doc ID 022907 Rev 1 17/75
Module specifications LSM333D
6'$
6&/
W
I6'$
W
VX63
W
Z6&//
W
VX6'$
W
U6'$
W
VX65
W
K67
W
Z6&/+
W
K6'$
W
U6&/
W
I6&/
W
Z6365
67$57
5(3($7('
67$57
6723
67$57
!-V

2.4.2 Sensor I2C - inter IC control interface

Subject to general operating conditions for Vdd and Top.
Table 7. I2C slave timing values
Symbol Parameter
I2C standard mode
(1)
I2C fast mode
Min. Max. Min. Max.
(1)
Unit
f
(SCL)
t
w(SCLL)
t
w(SCLH)
t
su(SDA)
t
h(SDA)
t
r(SDA) tr(SCL)
t
f(SDA) tf(SCL)
t
h(ST)
t
su(SR)
t
su(SP)
t
w(SP:SR)
Figure 4. I
SCL clock frequency 0 100 0 400 kHz
SCL clock low time 4.7 1.3
SCL clock high time 4.0 0.6
SDA setup time 250 100 ns
SDA data hold time 0 3.45 0 0.9 µs
SDA and SCL rise time 1000 20 + 0.1C
SDA and SCL fall time 300 20 + 0.1C
(2)
b
(2)
b
300
300
START condition hold time 4 0.6
Repeated START condition setup time
4.7 0.6
STOP condition setup time 4 0.6
Bus free time between STOP and START condition
2
C slave timing diagram
(3)
4.7 1.3
µs
ns
µs
2
1. Data based on standard I
2. Cb = total capacitance of one bus line, in pF.
3. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
C protocol requirement, not tested in production.
18/75 Doc ID 022907 Rev 1
LSM333D Module specifications
This is a mechanical shock sensitive device, improper handling can cause permanent damage to the part
This is an ESD sensitive device, improper handling can cause permanent damage to the part

2.5 Absolute maximum ratings

Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 8. Absolute maximum ratings

Symbol Ratings Maximum value Unit
Vdd Supply voltage -0.3 to 4.8 V
Vdd_IO I/O pins supply voltage -0.3 to 4.8 V
Vin
Input voltage on any control pin (SCL, SDA, SDO_A/M, SDO_G, CS_G, CS_A/M, DEN_G)
-0.3 to Vdd_IO +0.3 V
A
POW
A
UNP
T
OP
T
STG
ESD Electrostatic discharge protection 2 (HBM) kV
Acceleration (any axis, powered, Vdd = 2.5 V)
Acceleration (any axis, unpowered)
Operating temperature range -40 to +85 °C
Storage temperature range -40 to +125 °C
Note: Supply voltage on any pin should never exceed 4.8 V.
3,000 for 0.5 ms g
10,000 for 0.1 ms g
3,000 for 0.5 ms g
10,000 for 0.1 ms g
Doc ID 022907 Rev 1 19/75
Terminology LSM333D

3 Terminology

3.1 Set/Reset pulse

The set/reset pulse is an automatic operation performed before each magnetic acquisition cycle to de-gauss the sensor and to ensure alignment of the magnetic dipoles and therefore the linearity of the sensor itself.

3.2 Sensitivity

3.2.1 Linear acceleration sensor sensitivity

Linear acceleration sensitivity describes the gain of the sensor and can be determined e.g. by applying 1 g acceleration to it. As the sensor can measure DC accelerations, this can be done easily by pointing the axis of interest towards the center of the earth, noting the output value, rotating the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and also time. The sensitivity tolerance describes the range of sensitivities of a large population of sensors.

3.2.2 Angular rate sensor sensitivity

An angular rate gyroscope is a device that produces a positive-going digital output for counter-clockwise rotation around the sensitive axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time.

3.2.3 Magnetic sensor sensitivity

Sensitivity describes the gain of the sensor and can be determined e.g. by applying a magnetic field of 1 gauss to it.

3.3 Zero-g level

Zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady-state on a horizontal surface measures 0 g in the X-axis and 0 g in the Y-axis, whereas the Z-axis measures 1 g. The output is ideally in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2’s complement number). A deviation from the ideal value in this case is called zero-g offset. Offset is to some extent a result of stress to the MEMS sensor and therefore can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see “Zero-g level change vs. temperature”. The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a population of sensors.
20/75 Doc ID 022907 Rev 1
LSM333D Terminology

3.4 Zero-rate level

Zero-rate level describes the actual output signal if there is no angular rate present. Zero­rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time.

3.5 Zero-gauss level

Zero-gauss level offset describes the deviation of an actual output signal from the ideal output if no magnetic field is present. Thanks to the set/reset pulse and to the magnetic sensor readout chain, the offset is dynamically cancelled. The zero-gauss level does not show any dependencies from temperature and power supply.
Doc ID 022907 Rev 1 21/75
Functionality LSM333D

4 Functionality

The LSM333D is a system-in-package featuring a 3D digital accelerometer, a 3D digital Magnetometer, and a 3D digital gyroscope.
The device includes specific sensing elements and two IC interfaces capable of measuring both the acceleration/Magnetometer and angular rate applied to the module and to provide a signal to external applications through an SPI/I
The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using a CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the sensing element characteristics.
The LSM333D may also be configured to generate an inertial wake-up and free-fall interrupt signal according to a programmed acceleration event along the enabled axes.

4.1 Accelerometer / Gyroscope self-test

Self-test allows the linear acceleration sensor functionality to be tested without moving it. The self-test function is off when the self-test bit (ST) is programmed to ‘0’. When the self­test bit is programmed to ‘1’ an actuation force is applied to the sensor, simulating a definite input acceleration. In this case the sensor outputs exhibit a change in their DC levels which are related to the selected full-scale through the device sensitivity. When self-test is activated, the device output level is given by the algebraic sum of the signals produced by the acceleration acting on the sensor and by the electrostatic test-force. If the output signals change within the amplitude specified inside Section 2.1: Sensor characteristics, then the sensor is working properly and the parameters of the interface chip are within the defined specifications.
2
C serial interface.

4.2 Linear acceleration digital main blocks

4.2.1 FIFO

The LSM333D embeds 32 slots of data FIFO for each of the three output channels: X, Y and Z. This allows a consistent power saving for the system, since the host processor does not need to continuously poll data from the sensor, but it can wake up only when needed and burst the significant data out from the FIFO. This buffer can work accordingly in four different modes: Bypass mode, FIFO mode, Stream mode and Stream-to-FIFO mode. Each mode is selected by the FIFO_MODE bits in FIFO_SRC_REG_A (2Fh). Programmable watermark level, FIFO_Empty or FIFO_Full events can be enabled to generate dedicated interrupts on the INT1_A/INT2_A pin (configured through FIFO_SRC_REG_A (2Fh)).

4.2.2 Bypass mode

In Bypass mode, the FIFO is not operational and for this reason it remains empty. For each channel only the first address is used. The remaining FIFO slots are empty.
22/75 Doc ID 022907 Rev 1
LSM333D Functionality

4.2.3 FIFO mode

In FIFO mode, data from the X, Y and Z channels are stored in the FIFO. A watermark interrupt can be enabled (FIFO_WTMK_EN bit in FIFO_CNTRL_REG_A (2Eh)) in order to be raised when the FIFO is filled to the level specified in the FIFO_WTMK_LEVEL bits of
FIFO_CNTRL_REG_A (2Eh). The FIFO continues filling until it is full (32 slots of data for X,
Y and Z). When full, the FIFO stops collecting data from the input channels.

4.2.4 Stream mode

In Stream mode, data from the X, Y and Z measurement are stored in the FIFO. A watermark interrupt can be enabled and set as in FIFO mode. The FIFO continues filling until it is full (32 slots of data for X, Y and Z). When full, the FIFO discards the older data as the new data arrives.

4.2.5 Stream-to-FIFO mode

In Stream-to-FIFO mode, data from the X, Y and Z measurement is stored in the FIFO. A watermark interrupt can be enabled (FIFO_WTMK_EN bit in FIFO_CNTRL_REG_A (2Eh)) in order to be raised when the FIFO is filled to the level specified in the FIFO_WTMK_LEVEL bits of FIFO_CNTRL_REG_A (2Eh). The FIFO continues filling until it is full (32 slots of 8-bit data for X, Y and Z). When full, the FIFO discards the older data as the data new arrives. Once a trigger event occurs, the FIFO starts operating in FIFO mode.

4.2.6 Retrieve data from FIFO

FIFO data is read through OUT_X_L_A (28h), OUT_X_H_A (29h), OUT_Y_L_A (2Ah),
OUT_X_H_A (2Bh) and OUT_X_L_A (2Ch), OUT_X_H_A (2Dh). When the FIFO is in
Stream, Trigger or FIFO mode, a read operation to the OUT_X_L_A (28h), OUT_X_H_A
(29h), OUT_Y_L_A (2Ah), OUT_X_H_A (2Bh) or OUT_X_L_A (2Ch), OUT_X_H_A (2Dh)
registers provides the data stored in the FIFO. Each time data is read from the FIFO, the oldest X, Y and Z data are placed in the OUT_X_L_A (28h), OUT_X_H_A (29h),
OUT_Y_L_A (2Ah), OUT_X_H_A (2Bh) and OUT_X_L_A (2Ch), OUT_X_H_A (2Dh)
registers and both single read and read_burst operations can be used.
Doc ID 022907 Rev 1 23/75
Functionality LSM333D
ADC
LPF1
HPF
0
1
HPen
LPF2
10 11
01
00
Out_Sel
DataReg
00
11
10
01
Interrupt
generator
INT_Sel
I2C SPI
INT1
SCR REG
CONF REG
FIFO
32x16x3
AM07230v1

4.3 Gyroscope digital main blocks

Figure 5. Gyroscope block diagram

4.3.1 FIFO

The LSM333D embeds 32 slots of 16-bit data FIFO for each of the three output channels: yaw, pitch and roll. This allows consistent power saving for the system, since the host processor does not need to continuously poll data from the sensor, but can wake up only when needed and burst the significant data out from the FIFO. This buffer can work accordingly in five different modes: Bypass mode, FIFO mode, Stream mode, Bypass-to­Stream mode and Stream-to-FIFO mode. Each mode is selected by the FIFO_MODE bits in
FIFO_CTRL_REG_G (2Eh). Programmable watermark level, FIFO_Empty or FIFO_Full
events can be enabled to generate dedicated interrupts on the DRDY_G/INT2_G pin (configured through CNTRL3_G (22h) and event detection information is available in
FIFO_SRC_REG_G (2Fh). Watermark level can be configured to WTM4:0 in FIFO_CTRL_REG_G (2Eh).

4.3.2 Bypass mode

24/75 Doc ID 022907 Rev 1
In Bypass mode, the FIFO is not operational and for this reason it remains empty. As described in Figure 6 below, for each channel only the first address is used. The remaining FIFO slots are empty. When new data is available the old data is overwritten.
LSM333D Functionality
l
x
0
y
i
z
0
y
0
x
1
y
1
z
1
x
2
y
2
z
2
x
31
y
31
z
31
xi,yi,z
i
empty
AM07231v1
x
0
y
i
z
0
y
0
x
1
y
1
z
1
x
2
y
2
z
2
x
31
y
31
z
31
xi,yi,z
i
AM07232v1
Figure 6. Bypass mode

4.3.3 FIFO mode

In FIFO mode, data from the yaw, pitch and roll channels is stored in the FIFO. A watermark interrupt can be enabled (I2_WMK bit in CNTRL3_G (22h)) in order to be raised when the FIFO is filled to the level specified in the WTM 4:0 bits of FIFO_CTRL_REG_G (2Eh). The FIFO continues filling until it is full (32 slots of 16-bit data for yaw, pitch and roll). When full, the FIFO stops collecting data from the input channels. To restart data collection,
FIFO_CTRL_REG_G (2Eh) must be written back to Bypass mode.
FIFO mode is represented in Figure 7.
Figure 7. FIFO mode
Doc ID 022907 Rev 1 25/75
Functionality LSM333D

4.3.4 Stream mode

In Stream mode, data from the yaw, pitch and roll measurement is stored in the FIFO. A watermark interrupt can be enabled and set as in FIFO mode. The FIFO continues filling until it is full (32 slots of 16-bit data for yaw, pitch and roll). When full, the FIFO discards the older data as the new data arrives. Programmable watermark level events can be enabled to generate dedicated interrupts on the DRDY_G/INT2_G pin (configured through CNTRL3_G
(22h).
Stream mode is represented in Figure 8.
Figure 8. Stream mode
xi,yi,z
i
x
0
x
1
x
2
x
30
x
31
y
0
y
1
y
2
y
30
y
31
z
0
z
1
z
2
z
30
z
31
26/75 Doc ID 022907 Rev 1
AM07234v1
LSM333D Functionality
x
0
y
i
z
0
y
0
x
1
y
1
z
1
x
2
y
2
z
2
x
31
y
31
z
31
xi,yi,z
i
Empty
Bypass mode
Stream mode
Trig g er eve n t
x
0
y
0
z
0
x
1
y
1
z
1
x
2
y
2
z
2
x
31
y
31
z
31
xi,yi,z
i
x
30
y
30
z
30
AM07235v1
x
0
y
i
z
0
y
0
x
1
y
1
z
1
x
2
y
2
z
2
x
31
y
31
z
31
xi,yi,z
i
Stream Mode
FIFO Mode
Trigger event
x
0
y
0
z
0
x
1
y
1
z
1
x
2
y
2
z
2
x
31
y
31
z
31
xi,yi,z
i
x
30
y
30
z
30
AM07236v1

4.3.5 Bypass-to-stream mode

In Bypass-to-stream mode, the FIFO starts operating in Bypass mode and once a trigger event occurs (related to INT1_CFG_G (30h) events) the FIFO starts operating in Stream mode. Refer to Figure 9 below.
Figure 9. Bypass-to-stream mode

4.3.6 Stream-to-FIFO mode

In Stream-to-FIFO mode, data from the yaw, pitch and roll measurement is stored in the FIFO. A watermark interrupt can be enabled on pin DRDY/INT2 by setting the I2_WTM bit in
CNTRL3_G (22h) to be raised when the FIFO is filled to the level specified in the WTM4:0
bits of FIFO_CTRL_REG_G (2Eh). The FIFO continues filling until it is full (32 slots of 16-bit data for yaw, pitch and roll). When full, the FIFO discards the older data as the new data arrives. Once a trigger event occurs (related to INT1_CFG_G (30h) events), the FIFO starts operating in FIFO mode. Refer to Figure 10.
Figure 10. Trigger stream mode
Doc ID 022907 Rev 1 27/75
Functionality LSM333D
xi(15-1)
xi,yi,z
i
D E N
y
i
(15-0)
Z
i
(15-0)
x
i-N+1
D E N
(15-1)
y
i-N+1
(15-0)
z
i-N+1
(15-0)
xi(15-0)
xi,yi,z
i
D E N
y
i
(15-1)
Z
i
(15-0)
xi(15-0)
xi,yi,z
i
D E N
y
i
(15-0)
Z
i
(15-1)
x
i-N+1
D E N
(15-0)
y
i-N+1
(15-0)
z
i-N+1
(15-1)
x
i-N+1
D E N
y
i-N+1
Z
i-N+1
(15-0)
(15-1)
(15-0)
Level-sensitive Trigger enabled on X-Axis
Level-sensitive Trigger enabled on Y-axis
Level-sensitive Trigger enabled on Z-axis
Xen=1,Yen=Zen=0
Yen=1, Xen=Zen=0
Zen=1,
Xen=Yen=0
AM10162V1

4.3.7 Retrieve data from FIFO

FIFO data is read through OUT_X_L_G (28h), OUT_X_H_G (29h), OUT_Y_L_G (2Ah),
OUT_Y_H_G (2Bh) and OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh). When the FIFO is in
Stream, Trigger or FIFO mode, a read operation to the OUT_X_L_G (28h), OUT_X_H_G
(29h), OUT_Y_L_G (2Ah), OUT_Y_H_G (2Bh) or OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh)
registers provides the data stored in the FIFO. Each time data is read from the FIFO, the oldest pitch, roll and yaw data are placed in the OUT_X_L_G (28h), OUT_X_H_G (29h),
OUT_Y_L_G (2Ah), OUT_Y_H_G (2Bh) and OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh)
registers and both single read and read_burst (X,Y & Z with auto-incremental address) operations can be used. When data included in OUT_Z_H_G is read, the system again starts to read information from addr OUT_X_L_G.

4.4 Level-sensitive / edge-sensitive data enable

The LSM333D allows external trigger level recognition through the enabling of the EXTRen and LVLen bits in CNTRL2_G (21h). Two different modes can be used: Level-sensitive or Edge-sensitive trigger.

Figure 11. Level-sensitive trigger stamping (LVLen = 1; EXTRen = 0)

4.4.1 Level-sensitive trigger stamping

28/75 Doc ID 022907 Rev 1
Once enabled, the DEN level replaces the LSb of the X, Y or Z axes, configurable through the Xen, Yen, and Zen bits in CNTRL1_G (20h). Data is stored in the FIFO with the internally-selected ODR.
LSM333D Functionality

4.4.2 Edge-sensitive trigger

Once enabled by setting EXTRen = 1, FIFO is filled with the pitch, roll and yaw data on the rising edge of the DEN input signal. When the selected ODR is 800 Hz, the maximum DEN sample frequency is f
Figure 12. Edge-sensitive trigger
DEN
= 1/T
DEN
= 400 Hz.

4.5 Temperature sensor

The LSM333D features an internal temperature sensor. Temperature data can be enabled by setting the TEMP_EN bit on the CNTRL7_A (26h) register to 1.
Both OUT_TEMP_H and OUT_TEMP_L registers must be read.
Temperature data is stored inside STATUS_REG_M (07h) as 2’s complement data in 12-bit format, right justified. The output data rate of the temperature sensor is set by M_ODR in
CNTRL5_A (24h) and is equal the magnetic sensor output data rate.

4.6 Factory calibration

The IC interface is factory calibrated. The trimming values are stored inside the device by a non-volatile memory. Any time the device is turned on, the trimming parameters are downloaded into the registers to be used during normal operation. This allows the user to use the device without further calibration.
Doc ID 022907 Rev 1 29/75
Application hints LSM333D
T
Digital signal from/to signal controller.Signals levels are defined by proper selection of Vdd
FILTVDD
FILTIN Y
(BOTTOM VIEW)
19
INT1_A/M
CS_G
Vdd_IO
SDO_G
INT2_A/M
RES
GND
LSM333D
RES
18
SDA
SCL
28
5
1
4
15
SDO_A/M
CS_A/M
Vdd_IO
RES
INT1_G
DRDY_G/INT2_G
GND
SETP
VDD
DEN_G
SETC
VDD
VDD
GND
VDD
RES
VDD
C1
14
GND
Vdd_IO
GND
100 nF
C5
Vdd
GND
GND
C3
100 nF 10 µF
C4
C1= 4.7µF
C2= 0.22µF
AM12607V1

5 Application hints

Figure 13. LSM333D electrical connection

5.1 External capacitors

The C1 and C2 external capacitors should be of a low SR value ceramic type construction (typ. suggested value 200 mOhm). Reservoir capacitor C1 is nominally 4.7 μF in capacitance, with the set/reset capacitor C2 nominally 0.22 μF in capacitance.
The device core is supplied through the Vdd line. Power supply decoupling capacitors (C5=C4=100 nF ceramic, C3=10 µF Al) should be placed as near as possible to the supply pin of the device (common design practice). All the voltage and ground supplies must be present at the same time to achieve proper behavior of the IC (refer to Figure 13).
The functionality of the device and the measured acceleration/magnetic field data is selectable and accessible through the I
30/75 Doc ID 022907 Rev 1
2
C/SPI interfaces.
LSM333D Application hints
The functions, the threshold and the timing of the two interrupt pins (INT1_A/M, INT2_A/M and INT1_G, DRDY_G/INT2_G) can be completely programmed by the user through the
2
I
C/SPI interfaces.

5.2 Pull-up resistors

If an I2C interface is used, pull-up resistors (suggested value 10 kOhm) must be placed on the two I
2
C bus lines.

5.3 Digital interface power supply

This digital interface dedicated to the linear acceleration and to the magnetic field signal is capable of operating with a standard power supply (Vdd) or using a dedicated power supply (Vdd_IO).

5.4 Soldering information

The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com/mems

5.5 High current wiring effects

High current in the wiring and printed circuit trace may cause errors in magnetic field measurements for compassing.
.
Conductor generated magnetic fields add to the earth’s magnetic field making errors in the compass heading computation.
Keep currents higher than 10 mA a few millimeters further away from the sensor IC.
Doc ID 022907 Rev 1 31/75
Digital interfaces LSM333D

6 Digital interfaces

The registers embedded in the LSM333D may be accessed through both the I2C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode.
To select/exploit the I

Table 9. Serial interface pin description

Pin name Pin description
2
C interface, the CS line must be tied HIGH (i.e. connected to Vdd_IO).
CS_A/M
CS_G
SCL
SDA
SDO_A/M
SDO_G
Linear acceleration SPI enable Linear acceleration I2C/SPI mode selection (1: I2C mode; 0: SPI enabled)
Angular rate SPI enable Angular rate I
I2C serial clock (SCL) SPI serial port clock (SPC)
2
I
C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)
2
I
C least significant bit of the device address (SA0) SPI serial data output (SDO)

6.1 I2C serial interface

The LSM333D I2C is a bus slave. The I2C is employed to write data into registers whose content can also be read back.
The relevant I

Table 1 0 . I2C terminology

2
C terminology is given in the table below.
Term Description
2
C/SPI mode selection (1: I2C mode; 0: SPI enabled)
Transmitter The device which sends data to the bus
Receiver The device which receives data from the bus
Master
Slave The device addressed by the master
The device which initiates a transfer, generates clock signals and terminates a transfer
There are two signals associated with the I2C bus: the serial clock line (SCL) and the serial data line (SDA). The latter is a bi-directional line used for sending and receiving the data to/from the interface. Both lines must be connected to Vdd_IO through external pull-up resistors. When the bus is free, both lines are HIGH.
2
The I
C interface is compliant with Fast mode (400 kHz) I2C standards as well as with
Normal mode.
32/75 Doc ID 022907 Rev 1
LSM333D Digital interfaces

6.1.1 I2C Operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the START condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first 7 bits after a START condition with its address. If they match, the device considers itself addressed by the master.
The slave address (SAD) associated to the LSM333D is 00111xxb, whereas the xx bits are modified by the SDO/SA0 pin in order to modify the device address. If the SEL pin is connected to the voltage supply, the address is 0011101b, otherwise, if the SDO/SA0 pin is connected to ground, the address is 0011110b. This solution allows the connection and addressing of two different accelerometers to the same I
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.
2
The I
C embedded in the LSM333D behaves as a slave device and the following protocol must be adhered to. After the START condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address is transmitted: the 7 LSb represent the actual register address while the MSb enables address auto-increment. If the MSb of the SUB field is 1, the SUB (register address) is automatically incremented to allow multiple data read/write.
2
C lines.
The slave address is completed with a read/write bit. If the bit is ‘1’ (read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (write) the master transmits to the slave with direction unchanged. Ta b le 1 1 and Tabl e 12 explain how the SAD+read/write bit pattern is composed, listing all the possible configurations.
Table 1 1 .
Command SDO/SA0 pin SAD[6:2] SAD[1:0] R/W SAD+R/W
Read 0
Write 0
Read 1
Write 1
eCompass SAD+read/write patterns
00111
00111
00111
00111
10 1 3D
10 0 3C
01 1 3B
01 0 3A
Table 12. Angular rate SAD+read/write patterns
Command SAD[6:1] SAD[0] = SDO_G pin R/W SAD+R/W
Read 110101 0 1 D5
Write 110101 0 0 D4
Read 110101 1 1 D7
Write 110101 1 0 D6
Doc ID 022907 Rev 1 33/75
Digital interfaces LSM333D
Table 13. Transfer when master is writing one byte to slave
Master ST SAD + W SUB DATA SP
Slave SAK SAK SAK
Table 14. Transfer when master is writing multiple bytes to slave
Master ST SAD + W SUB DATA DATA SP
Slave SAK SAK SAK SAK
Table 15. Transfer when master is receiving (reading) one byte of data from slave
Master ST SAD + W SUB SR SAD + R NMAK SP
Slave SAK SAK SAK DATA
Table 16. Transfer when master is receiving (reading) multiple bytes of data from slave
Master ST SAD+W SUB SR SAD+R MAK MAK NMAK SP
Slave SAK SAK SAK DATA DATA DATA
Data is transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes sent per transfer is unlimited. Data is transferred with the most significant bit (MSb) first. If a receiver cannot receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL, LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver does not acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the sub­address field. In other words, SUB(7) must be equal to ‘1’ while SUB(6-0) represents the address of the first register to be read.
In the communication format presented, MAK is master acknowledge and NMAK is no master acknowledge.

6.2 SPI bus interface

The SPI is a bus slave. The SPI allows the writing and reading of the registers of the device.
The serial interface interacts with the outside world through 4 wires: CS, SPC, SDI and SDO.
34/75 Doc ID 022907 Rev 1
LSM333D Digital interfaces
CS
SPC
SDI
SDO
RW
AD5 AD4 AD3 AD2 AD1 AD0
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
MS
AM10129V1

Figure 14. Read and write protocol

CS is the serial port enable and is controlled by the SPI master. It goes LOW at the start of
the transmission and returns HIGH at the end. SPC is the serial port clock and is controlled by the SPI master. It is stopped HIGH when CS is HIGH (no transmission). SDI and SDO are respectively the serial port data input and output. Those lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in the case of multiple bytes read/write. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS.
bit 0: RW
bit. When 0, the data DI(7:0) is written to the device. When 1, the data DO(7:0)
from the device is read. In the latter case, the chip drives SDO at the start of bit 8.
bit 1: MS
bit. When 0, the address remains unchanged in multiple read/write commands.
When 1, the address is auto-incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (Write mode). This is the data that is written to the device (MSb first).
bit 8-15: data DO(7:0) (Read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands, further blocks of 8 clock periods are added. When the MS bit is 0, the address used to read/write data remains the same for every block. When the MS bit is 1, the address used to read/write data is incremented at every block.
The function and the behavior of SDI and SDO remain unchanged.
Doc ID 022907 Rev 1 35/75
Digital interfaces LSM333D
CS
SPC
SDI
SDO
RW
DO7 DO6 DO5DO4 DO3 DO2 DO1 DO0
AD5 AD4 AD3 AD2 AD1 AD0
MS
AM10130V1
C S
SPC
SDI
SDO
RW
DO7DO6DO5 DO4DO3 DO 2 DO 1 DO 0
AD5 AD4AD3 AD2 AD1 AD0
DO15 DO 14 DO 13 DO 12 DO11 DO 10 D O9 D O8
M S
AM10131V1

6.2.1 SPI read

Figure 15. SPI read protocol
The SPI read command is performed with 16 clock pulses. The multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS
bit. When 0, do not increment address; when 1, increment address in multiple
readings.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (Read mode). This is the data that is read from the device (MSb first).
bit 16-... : data DO(...-8). Further data in multiple byte readings.
Figure 16. Multiple byte SPI read protocol (2-byte example)
36/75 Doc ID 022907 Rev 1
LSM333D Digital interfaces
CS
SPC
SDI
RW
DI7 DI6 DI5 DI4 DI3 DI 2 DI1 DI 0
AD5 AD 4 AD 3 AD2 AD1 AD0MS
AM10132V1
CS
SPC
SDI
RW
AD5 AD4 AD3 AD2 AD1 AD 0
DI7 D I6 DI5 D I4 DI3 DI2 DI 1 DI 0 DI15 D I1 4 DI13 DI12 DI 11 DI10 DI 9 DI8
MS
AM10133V1

6.2.2 SPI write

Figure 17. SPI write protocol
The SPI write command is performed with 16 clock pulses. The multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1: MS
bit. When 0, do not increment address; when 1, increment address in multiple
writings.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (Write mode). This is the data that is written to the device (MSb first).
bit 16-... : data DI(...-8). Further data in multiple byte writings.
Figure 18. Multiple byte SPI write protocol (2-byte example)

6.2.3 SPI read in 3-wire mode

3-wire mode is entered by setting the bit SIM (SPI serial interface mode selection) to ‘1’ in
CNTRL2_A (21 h).
Doc ID 022907 Rev 1 37/75
Digital interfaces LSM333D
CS
SPC
SDI/O
RW
DO7 DO6 DO5 DO4 DO3 DO2 DO 1 DO 0
AD5 AD 4 AD3 AD2 AD1 AD 0MS
AM10134V1
Figure 19. SPI read protocol in 3-wire mode
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1: MS
bit. When 0, do not increment address; when 1, increment address in multiple
readings.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (Read mode). This is the data that is read from the device (MSb first).
Multiple read command is also available in 3-wire mode.
38/75 Doc ID 022907 Rev 1
LSM333D Output register mapping

7 Output register mapping

The table below provides a listing of the 8-bit registers embedded in the device, and the related addresses:

Table 17. Accelerometer and Magnetometer sensing register address map

Register address
Name Type
Hex Binary
Reserved -- 00-04 -- -- Reserved
Reserved -- 05 000 0101 -- Reserved
Reserved r-- 06 000 0110 -- Reserved
STATUS_REG_M r 07 000 0111 00000000
OUT_X_L_M r 08 000 1000 Output
OUT_X_H_M r 09 000 1001 Output
OUT_Y_L_M r 0A 000 1010 Output
OUT_Y_H_M r 0B 000 1011 Output
Default Comment
OUT_Z_L_M r 0C 000 1100 Output
OUT_Z_H_M r 0D 000 1101 Output
Reserved -- 0E 000 1110 -- Reserved
WHO_AM_I r 0F 000 1111 01001001
Reserved -- 10-11 -- -- Reserved
INT_CTRL_REG_M rw 12 001 0010 11101000
INT_SRC_REG_M r 13 001 0011 00000000
INT_THS_L_M rw 14 001 0100 00000000
INT_THS_H_M rw 15 001 0101 00000000
OFFSET_X_L_M rw 16 001 0110 00000000
OFFSET_X_H_M rw 17 001 0111 00000000
OFFSET_Y_L_M rw 18 001 01000 00000000
OFFSET_Y_H_M rw 19 001 01001 00000000
OFFSET_Z_L_M rw 1A 001 01010 00000000
OFFSET_Z_H_M rw 1B 001 01011 00000000
REFERENCE_X rw 1C 001 01100 00000000
REFERENCE_Y rw 1D 001 01101 00000000
REFERENCE_Z rw 1E 001 01110 00000000
CNTRL0_A rw 1F 001 1111 00000000
CNTRL1_A rw 20 010 0000 00000111
CNTRL2_A rw 21 010 0001 00000000
Doc ID 022907 Rev 1 39/75
Output register mapping LSM333D
Table 17. Accelerometer and Magnetometer sensing register address map
Register address
Name Type
Hex Binary
CNTRL3_A rw 22 010 0010 00000000
CNTRL4_A rw 23 010 0011 00000000
CNTRL5_A rw 24 010 0100 00011000
CNTRL6_A rw 25 010 0101 00100000
CNTRL7_A rw 26 010 0110 00000001
STATUS_REG_A r 27 010 0111 00000000
OUT_X_L_A r 28 010 1000 Output
OUT_X_H_A r 29 010 1001 Output
OUT_Y_L_A r 2A 010 1010 Output
OUT_Y_H_A r 2B 010 1011 Output
OUT_Z_L_A r 2C 010 1100 Output
OUT_Z_H_A r 2D 010 1101 Output
Default Comment
FIFO_CNTRL_REG_A rw 2E 010 1110 00000000
FIFO_SRC_REG_A r 2F 010 1111 00000000
INT_GEN_1_REG_A rw 30 011 0000 00000000
INT_GEN_1_SRC_A r 31 011 0001 00000000
INT_GEN_1_THS_A rw 32 011 0010 00000000
INT_GEN_1_DURATION_ A
INT_GEN_2_REG_A rw 34 011 0100 00000000
INT_GEN_2_SRC_A r 35 011 0101 00000000
INT_GEN_2_THS_A rw 36 011 0110 00000000
INT_GEN_2_DURATION_ A
CLICK_CFG_A rw 38 011 1000 00000000
CLICK_SRC_A r 39 011 1001 00000000
CLICK_THS_A rw 3A 011 1010 00000000
TIME_LIMIT_A rw 3B 011 1011 00000000
TIME _LATENCY_A rw 3C 011 1100 00000000
TIME_WINDOW_A rw 3D 011 1101 00000000
rw 33 011 0011 00000000
rw 37 011 0111 00000000
Act_THS_A rw 3E 011 1110 00000000
Act_DUR_A rw 3F 011 1111 00000000
40/75 Doc ID 022907 Rev 1
LSM333D Output register mapping

Table 18. Gyroscope sensing register address map

Register address
Name Type
Hex Binary
Reserved - 00-0E - -
WHO_AM_I r 0F 000 1111 11010100
Reserved - 10-1F - -
CNTRL1_G rw 20 010 0000 00000111
CNTRL2_G rw 21 010 0001 00000000
CNTRL3_G rw 22 010 0010 00000000
CNTRL4_G rw 23 010 0011 00000000
CNTRL5_G rw 24 010 0100 00000000
REFERENCE_G rw 25 010 0101 00000000
OUT_TEMP_G r 26 010 0110 Output
STATUS_REG_G r 27 010 0111 Output
OUT_X_L_G r 28 010 1000 Output
Default
OUT_X_H_G r 29 010 1001 Output
OUT_Y_L_G r 2A 010 1010 Output
OUT_Y_H_G r 2B 010 1011 Output
OUT_Z_L_G r 2C 010 1100 Output
OUT_Z_H_G r 2D 010 1101 Output
FIFO_CTRL_REG_G rw 2E 010 1110 00000000
FIFO_SRC_REG_G r 2F 010 1111 Output
INT1_CFG_G rw 30 011 0000 00000000
INT1_SRC_G r 31 011 0001 Output
INT1_TSH_XH_G rw 32 011 0010 00000000
INT1_TSH_XL_G rw 33 011 0011 00000000
INT1_TSH_YH_G rw 34 011 0100 00000000
INT1_TSH_YL_G rw 35 011 0101 00000000
INT1_TSH_ZH_G rw 36 011 0110 00000000
INT1_TSH_ZL_G rw 37 011 0111 00000000
INT1_DURATION_G rw 38 011 1000 00000000
Registers marked as Reserved must not be changed. Writing to these registers may cause permanent damage to the device.
The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.
Doc ID 022907 Rev 1 41/75
Register description LSM333D

8 Register description

The device contains a set of registers which are used to control its behavior and to retrieve acceleration and magnetic data. The register address, consisting of 7 bits, is used to identify them and to write the data through the serial interface.

8.1 Accelerometer and Magnetometer register description

8.2 STATUS_REG_M (07h)

Table 19. STATUS_REG_M register

ZYXMOR/ Tempor ZMOR YMOR XMOR ZYXMDA / Tempda ZMDA YMDA XMDA

Table 20. STATUS_REG_M description

ZYXMOR/ Te mp o r
ZMOR Z-axis data overrun. Default value: 0
YMOR Y-axis data overrun. Default value: 0
XMOR X-axis data overrun. Default value: 0
ZYXMDA / Te mp d a
Magnetic X, Y and Z-axis and temperature data overrun. Default value: 0 (0: no overrun has occurred; 1: a new set of data has overwritten the previous ones) Temperature data overrun if the TONLY bit in CNTRL7_A (26h) is set to ‘1’. Default value:0.
(0: no overrun has occurred; 1: a new data for the Z-axis has overwritten the previous one)
(0: no overrun has occurred; 1: a new data for the Y-axis has overwritten the previous one)
(0: no overrun has occurred; 1: a new data for the X-axis has overwritten the previous one)
X, Y and Z-axis and temperature new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) Temperature new data available if the TONLY bit in CNTRL7_A (26h) is set to ‘1’. Default value: 0.
ZMDA Z-axis new data available. Default value: 0
(0: a new data for the Z-axis is not yet available; 1: a new data for the Z-axis is avail­able)
YMDA Y-axis new data available. Default value: 0
(0: a new data for the Y-axis is not yet available; 1: a new data for the Y-axis is avail­able)
XMDA X-axis new data available. Default value: 0
(0: a new data for the X-axis is not yet available; 1: a new data for the X-axis is avail­able)
42/75 Doc ID 022907 Rev 1
LSM333D Register description

8.3 OUT_X_L_M (08h), OUT_X_H_M (09h)

X-axis magnetic data.
The value is expressed in 16 bits as 2’s complement left justified.

8.4 OUT_Y_L_M (0Ah), OUT_X_H_M (0Bh)

Y-axis magnetic data.
The value is expressed in 16 bits as 2’s complement left justified.

8.5 OUT_X_L_M (0Ch), OUT_X_H_M (0Dh)

Z-axis magnetic data.
The value is expressed in 16 bits as 2’s complement left justified.

8.6 WHO_AM_I (0Fh)

Table 21. WHO_AM_I register

0 1 0 01001
Device identification register.

8.7 INT_CTRL_REG_M (12h)

Table 22. INT_CTRL_REG_M register

XMIEN YMIEN ZMIEN PP_OD MIEA MIEL 4D MIEN

Table 23. INT_CTRL_REG_M description

XMIEN Enable interrupt recognition on X-axis for magnetic data. Default value: 0.
(0: disable interrupt recognition;1: enable interrupt recognition)
YMIEN Enable interrupt recognition on Y-axis for magnetic data. Default value: 0.
(0: disable interrupt recognition;1: enable interrupt recognition)
ZMIEN Enable interrupt recognition on Z-axis for magnetic data. Default value: 0.
(0: disable interrupt recognition;1: enable interrupt recognition)
PP_OD
Interrupt pin configuration. Default value: 0. (0: push-pull; 1: open drain)
MIEA
Interrupt polarity. Default value: 0. (0: interrupt active low; 1: interrupt active high)
Doc ID 022907 Rev 1 43/75
Register description LSM333D
Table 23. INT_CTRL_REG_M description (continued)
MIEL Latch interrupt request on the INT_SRC_REG_M (13h) register. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched) Once the MIEL is set to ‘1’ the interrupt is cleared by reading the INT_SRC_REG_M
(13h) register.
4D 4D enable: 4D detection on acceleration data is enabled when 6D bit in
INT_GEN_1_REG_A (2Fh) is set to 1.
MIEN Enable interrupt generation for magnetic data. Default value: 0.
(0: disable interrupt generation;1: enable interrupt generation)

8.8 INT_SRC_REG_M (13h)

Table 24. INT_SRC_REG_M register

M_PTH_X M_PTH_Y M_PTH_Z M_NTH_X M_NTH_Y M_NTH_Z MROI MINT

Table 25. INT_SRC_REG_M description

M_PTH_X Magnetic value on X-axis exceeds the threshold on the positive side. Default value: 0.
M_PTH_Y Magnetic value on Y-axis exceeds the threshold on the positive side. Default value: 0.
M_PTH_Z Magnetic value on Z-axis exceeds the threshold on the positive side. Default value: 0.
M_NTH_X Magnetic value on X-axis exceeds the threshold on the negative side. Default value: 0.
M_NTH_Y Magnetic value on Y-axis exceeds the threshold on the negative side. Default value: 0.
M_NTH_Z Magnetic value on Z-axis exceeds the threshold on the negative side. Default value: 0.
MROI Internal measurement range overflow on magnetic value. Default value: 0.
MINT Magnetic interrupt event. The magnetic field value exceeds the threshold. Default
value: 0.

8.9 INT_THS_L_M (14h), INT_THS_H_M (15h)

Magnetic interrupt threshold. Default value: 0.
The value is expressed in 16 bits unsigned.
Even if the threshold is expressed in an absolute value, the device detects both positive and negative threshold.

8.10 OFFSET_X_L_M (16h), OFFSET_X_H_M (17h)

Magnetic offset for X-axis. Default value: 0.
The value is expressed in 16 bits as 2’s complement left justified.
44/75 Doc ID 022907 Rev 1
LSM333D Register description

8.11 OFFSET_Y_L_M (18h), OFFSET_Y_H_M (19h)

Magnetic offset for Z-axis. Default value: 0.
The value is expressed in 16 bits as 2’s complement left justified.

8.12 OFFSET_Z_L_M (1Ah), OFFSET_Z_H_M (1Bh)

Magnetic offset for Y-axis. Default value: 0.
The value is expressed in 16 bits as 2’s complement left justified.

8.13 REFERENCE_X (1Ch)

Reference value for high-pass filter for X-axis acceleration data.

8.14 REFERENCE_Y (1Dh)

Reference value for high-pass filter for Y-axis acceleration data.

8.15 REFERENCE_Z (1Eh)

Reference value for high-pass filter for Z-axis acceleration data.

8.16 CNTRL0_A (1Fh)

Table 26. CNTRL0_A register

BOOT FIFO_EN WTM_EN 0
1. These bits must be set to ‘0’ for the correct working of the device

Table 27. CNTRL0_A description

BOOT Reboot memory content. Default value: 0
(0: Normal mode; 1: reboot memory content)
FIFO_EN FIFO enable. Default value: 0
(0: FIFO disable; 1: FIFO enable)
WTM_EN FIFO programmable watermark enable. Default value: 0
(0: disable; 1: enable)
HP_Click High-pass filter enabled for click function. Default value: 0
(0: filter bypassed; 1: filter enabled)
(1)
(1)
0
HP_Click HPIS1 HPIS2
HPIS1 High-pass filter enabled for interrupt generator 1. Default value: 0
(0: filter bypassed; 1: filter enabled)
HPIS2 High-pass filter enabled for interrupt generator 2. Default value: 0
(0: filter bypassed; 1: filter enabled)
Doc ID 022907 Rev 1 45/75
Register description LSM333D

8.17 CNTRL1_A (20h)

Table 28. CNTRL1_A register

AODR3 AODR2 AODR1 AODR0 BDU AZEN AYEN AXEN

Table 29. CNTRL0_A description

AODR3-0
BDU Block data update for acceleration and magnetic data. Default value: 0
AZEN Acceleration Z-axis enable. Default value: 1
AYEN Acceleration Y-axis enable. Default value: 1
AXEN Acceleration X-axis enable. Default value: 1
Acceleration data rate selection. Default value: 0000 (0000: Power-down mode; Others: refer to Table 30: Acceleration data rate configura-
tion)
(0: continuous update; 1: output registers not updated until MSB and LSB have been read)
(0: Z-axis disabled; 1: Z-axis enabled)
(0: Y-axis disabled; 1: Y-axis enabled)
(0: X-axis disabled; 1: X-axis enabled)
ODR_A<3:0> is used to set the Power mode and ODR selection. All frequencies resulting in a combination of ODR<3:0> are shown in Ta b le 3 0:

Table 30. Acceleration data rate configuration

AODR3 AODR2 AODR1 AODR0 Power mode selection
0000Power-down mode
00013.125 Hz
00106.25 Hz
001112.5 Hz
010025 Hz
010150 Hz
0110100 Hz
0111200 Hz
1000400 Hz
1001800 Hz
10101600 Hz
46/75 Doc ID 022907 Rev 1
LSM333D Register description

8.18 CNTRL2_A (21h)

Table 31. CNTRL2 register

ABW1 ABW0 ABW0 AFS1 AFS0 0
1. This bit must be set to ‘0’ for the correct working of the device

Table 32. CNTRL2_A description

ABW1-0 Accelerometer anti-alias filter bandwidth. Default value: 0
Refer to Table 33: Acceleration anti-alias filter bandwidth
AFS Acceleration full-scale selection. Default value: 00
Refer to Table 34: Acceleration full-scale selection
AST Acceleration self-test enable. Default value: 0
(0: self-test disabled; 1: self-test enabled)
SIM SPI serial interface mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).

Table 33. Acceleration anti-alias filter bandwidth

(1)
AST SIM
ABW1 ABW0 Anti-alias filter bandwidth
00773 Hz
01362 Hz
10194 Hz
1150 Hz

Table 34. Acceleration full-scale selection

AF1 AF0 Acceleration full-scale
00± 2 g
01± 4 g
10± 8 g
11± 16 g

8.19 CNTRL3_A (22h)

Table 35. CNTRL3_A register

P1_BOOT P1_TAP P1_INT1 P1_INT2 P1_INTM P1_DRDYA P1_DRDYM P1_EMPTY
Doc ID 022907 Rev 1 47/75
Register description LSM333D

Table 36. CNTRL3_A description

P1_BOOT
Boot on INT1 pin enable. Default value: 0 (0: disable; 1: enable)
P1_TAP
P1_INT1
P1_INT2
P1_INTM
P1_DRDYA
P1_DRDYM
P1_EMPTY
Tap generator interrupt on INT1 pin. Default value: 0 (0: disable; 1: enable)
Inertial interrupt generator 1 on INT1 pin. Default value: 0 (0: disable; 1: enable)
Inertial interrupt generator 2 on INT1 pin. Default value: 0 (0: disable; 1: enable)
Magnetic interrupt generator on INT1 pin. Default value: 0 (0: disable; 1: enable)
Accelerometer data-ready signal on INT1 pin. Default value: 0 (0: disable; 1: enable)
Magnetometer data-ready signal on INT1 pin. Default value: 0 (0: disable; 1: enable)
FIFO empty indication on INT1 pin. Default value: 0 (0: disable; 1: enable)

8.20 CNTRL4_A (23h)

Table 37. CNTRL4_A register

P2_TAP P2_INT1 P2_INT2 P2_INTM P2_DRDYA P2_DRDYM P2_Overrun P2_WTM

Table 38. CNTRL4_A description

P2_TAP
P2_INT1
P2_INT2
P2_INTM
P2_DRDYA
P2_DRDYM
48/75 Doc ID 022907 Rev 1
Tap generator interrupt on INT2 pin. Default value: 0 (0: disable; 1: enable)
Inertial interrupt generator 1 on INT2 pin. Default value: 0 (0: disable; 1: enable)
Inertial interrupt generator 2 on INT2 pin. Default value: 0 (0: disable; 1: enable)
Magnetic interrupt generator on INT2 pin. Default value: 0 (0: disable; 1: enable)
Accelerometer data-ready signal on INT2 pin. Default value: 0 (0: disable; 1: enable)
Magnetometer data-ready signal on INT2 pin. Default value: 0 (0: disable; 1: enable)
LSM333D Register description
Table 38. CNTRL4_A description (continued)
P2_Overrun
P2_WTM
FIFO overrun interrupt on INT2 pin. Default value: 0 (0: disable; 1: enable)
FIFO watermark interrupt on INT2 pin. Default value: 0 (0: disable; 1: enable)

8.21 CNTRL5_A (24h)

Table 39. CNTRL5_A register

(1)
1
1. These bits must be set to ‘1’ for the correct working of the device.

Table 40. CNTRL5_A description

M_ODR2-0 Magnetic data rate selection. Default value: 110
LIR2 Latch interrupt request on INT2_SRC register, with INT2_SRC register cleared by
LIR1 Latch interrupt request on INT1_SRC register, with INT1_SRC register cleared by
(1)
1
(1)
1
M_ODR2 M_ODR1 M_ODR0 LIR2 LIR1
Refer to Table 41: Magnetic data rate configuration
reading INT2_SRC itself. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched)
reading INT1_SRC itself. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched).

Table 41. Magnetic data rate configuration

MODR2 MODR1 MODR0 Power mode selection
0003.125 Hz
0016.25 Hz
01012.5 Hz
01125 Hz
10050 Hz
101100 Hz
110200 Hz
111Reserved

8.22 CNTRL6_A (25h)

Table 42. CNTRL6_A register

(1)
0
1. These bits must be set to ‘0’ for the correct working of the device.
MFS1 MFS0 0
(1)
(1)
0
(1)
0
(1)
0
(1)
0
Doc ID 022907 Rev 1 49/75
Register description LSM333D

Table 43. CNTRL6_A_ description

MFS1-0 Magnetic full-scale selection. Default value: 01
Refer to Table 44: Magnetic full-scale selection

Table 44. Magnetic full-scale selection

MFS1 MFS0 Magnetic full-scale
0 0 ± 2 gauss
0 1 ± 4 gauss
1 0 ± 8 gauss
1 1 ± 12 gauss

8.23 CNTRL7_A (26h)

Table 45. CNTRL7_A register

AHPM1 AHPM0 AFDS 0
(1)
(1)
0
MLP MD1 MD0
1. This bit must be set to ‘0’ for the correct working of the device.

Table 46. CNTRL7_A description

AHPM1-0 High-pass filter mode selection for acceleration data. Default value: 00
Refer to Table 47: High-pass filter mode selection
AFDS Filtered acceleration data selection. Default value: 0
(0: internal filter bypassed; 1: data from internal filter sent to output register and FIFO)
MLP Magnetic data low power mode. Default value: 0
If this bit is ‘1’, the MODR is set to 3.125 Hz independently from the MODR settings. Once the bit is set to ‘0’, the magnetic data rate is configured by MODR bits in the
CNTRL5_A (24h) register.
MD1-0 Magnetic sensor mode selection. Default 10
Refer to Table 48: Magnetic sensor mode selection

Table 47. High-pass filter mode selection

AHPM1 AHPM0 High pass filter mode
0 0 Normal mode (reset X, Y and Z-axis reading REFERENCE_X
(1Ch), REFERENCE_Y (1Dh) and REFERENCE_Y (1Dh) register
respectively)
0 1 Reference signal for filtering
1 0 Normal mode
1 1 Auto-reset on interrupt event
50/75 Doc ID 022907 Rev 1
LSM333D Register description

Table 48. Magnetic sensor mode selection

MD1-0 MD1-0 Magnetic sensor mode
0 0 Continuous-conversion mode
0 1 Single-conversion mode
1 0 Power-down mode
1 1 Power-down mode

8.24 STATUS_REG_A (27h)

Table 49. STATUS_REG_A register

ZYXAOR ZAOR YAOR XAOR ZYXADA ZADA YADA XADA

Table 50. STATUS_REG_A description

ZYXAOR/ Acceleration X, Y and Z-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new set of data has overwritten the previous ones)
ZAOR Acceleration Z-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new data for the Z-axis has overwritten the previous one)
YAOR Acceleration Y-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new data for the Y-axis has overwritten the previous one)
XAOR Acceleration X-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new data for the X-axis has overwritten the previous one)
ZYXADA Acceleration X, Y and Z-axis new value available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
ZADA Acceleration Z-axis new value available. Default value: 0
(0: a new data for the Z-axis is not yet available; 1: a new data for the Z-axis is avail­able)
YADA Acceleration Y-axis new value available. Default value: 0
(0: a new data for the Y-axis is not yet available; 1: a new data for the Y-axis is avail­able)
XADA Acceleration X-axis new value available. Default value: 0
(0: a new data for the X-axis is not yet available; 1: a new data for the X-axis is avail­able)

8.25 OUT_X_L_A (28h), OUT_X_H_A (29h)

X-axis acceleration data.
The value is expressed in 16 bits as 2’s complement left justified.
Doc ID 022907 Rev 1 51/75
Register description LSM333D

8.26 OUT_Y_L_A (2Ah), OUT_X_H_A (2Bh)

Y-axis acceleration data.
The value is expressed in 16 bits as 2’s complement left justified.

8.27 OUT_X_L_A (2Ch), OUT_X_H_A (2Dh)

Z-axis acceleration data.
The value is expressed in 16 bits as 2’s complement left justified.

8.28 FIFO_CNTRL_REG_A (2Eh)

Table 51. FIFO_CTRL_REG_A register

FM2 FM1 FM0 FTH4 FTH3 FTH2 FTH1 FTH0

Table 52. FIFO_CTRL_REG_A register description

FM1-FM0 FIFO mode selection. Default value: 000
Refer to Ta bl e :
FTH4:0 FIFO watermark level. Default value: 0000

Table 53. FIFO mode configuration

FM2 FM1 FM0 FIFO mode
000Bypass mode
001FIFO mode
010Stream mode
011Stream-to-FIFO mode
1 0 0 Bypass-to-stream mode
Interrupt generator 2 can change the FIFO mode.

8.29 FIFO_SRC_REG_A (2Fh)

Table 54. FIFO_SRC_REG_A register

WTM OVRN EMPTY FSS4 FSS3 FSS2 FSS1 FSS0
52/75 Doc ID 022907 Rev 1
LSM333D Register description

Table 55. FIFO_SRC_REG_A description

WTM Watermark status.
WTM bit is set to ‘1’ when FIFO content exceeds watermark level.
OVRN FIFO overrun status.
OVRN bit is set to ‘1’ when FIFO buffer is full.
EMPTY Empty status.
EMPTY bit is set to ‘1’ when all FIFO samples have been read and FIFO is empty.
FSS4-0 FIFO stored data level.
FSS4-0 bits contain the current number of unread FIFO levels.

8.30 INT_GEN_1_REG_A (2Fh)

This register contains the settings for the inertial interrupt generator 1.

Table 56. INT_GEN_1_REG_A register

AOI 6D ZHIE/
ZUPE
ZLIE/ ZDOWNE
YHIE/ YUPE
YLIE/ YDOWNE
XHIE/ XUPE
XLIE/ XDOWNE

Table 57. INT_GEN_1_REG_A description

AOI AND/OR combination of interrupt events. Default value: 0. Refer to Table 58, "Inter-
rupt mode"
6D 6-direction detection function enabled. Default value: 0. Refer to Table 58, "Interrupt
mode"
ZHIE/ ZUPE
ZLIE/ ZDOWNE
YHIE/ YUPE
YLIE/ YDOWNE
XHIE/ XUPE
XLIE/XDOWNEEnable interrupt generation on X low event or on direction recognition. Default
Enable interrupt generation on Z high event or on direction recognition. Default value: 0 (0: disable interrupt request;1: enable interrupt request)
Enable interrupt generation on Z low event or on direction recognition. Default value: 0 (0: disable interrupt request;1: enable interrupt request)
Enable interrupt generation on Y high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.)
Enable interrupt generation on Y low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.)
Enable interrupt generation on X high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.)
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
Content of this register is loaded at boot.
Write operation at this address is possible only after system boot.
Doc ID 022907 Rev 1 53/75
Register description LSM333D
.

Table 58. Interrupt mode

AOI 6D Interrupt mode
0 0 OR combination of interrupt events
0 1 6-direction movement recognition
1 0 AND combination of interrupt events
1 1 6-direction position recognition
Difference between AOI-6D = ‘01’ and AOI-6D = ‘11’.
AOI-6D = ‘01’ is movement recognition. An interrupt is generated when orientation moves from an unknown zone to a known zone. The interrupt signal stays for a duration ODR.
AOI-6D = ‘11’ is direction recognition. An interrupt is generated when orientation is inside a known zone. The interrupt signal stays until orientation is inside the zone.

8.31 INT_GEN_1_SRC_A (31h)

This register contains the status for the inertial interrupt generator 1.

Table 59. INT_GEN_1_SRC_A register

0 IA ZHZLYHYLXHXL

Table 60. INT_GEN_1_SRC_A description

IA
ZH
ZL
YH
YL
XH
XL
Interrupt status. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated)
Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred)
Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred)
Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred)
Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred)
X high. Default value: 0 (0: no interrupt, 1: X high event has occurred)
X low. Default value: 0 (0: no interrupt, 1: X low event has occurred)
Reading at this address clears the INT_GEN_1_SRC_A (31h) IA bit (and the interrupt signal on the corresponding interrupt pin) and allows the refreshment of data in the
INT_GEN_1_SRC_A (31h) register if the latched option was chosen.
54/75 Doc ID 022907 Rev 1
LSM333D Register description

8.32 INT_GEN_1_THS_A (32h)

Table 61. INT1_THS register_A

0 THS6 THS5 THS4 THS3 THS2 THS1 THS0

Table 62. INT1_THS description_A

THS6 - THS0 Interrupt 1 threshold. Default value: 000 0000

8.33 INT_GEN_1_DURATION_A (33h)

Table 63. INT1_DURATION_A register

0 D6D5D4D3D2D1D0

Table 64. INT1_DURATION_A description

D6 - D0 Duration value. Default value: 000 0000
D6 - D0 bits set the minimum duration of the interrupt 1 event to be recognized. Duration steps and maximum values depend on the ODR chosen.

8.34 INT_GEN_2_REG_A (34h)

This register contains the settings for the inertial interrupt generator 2.

Table 65. INT_GEN_2_REG_A register

AOI 6D ZHIE/
ZUPE

Table 66. INT_GEN_2_REG_A description

AOI AND/OR combination of interrupt events. Default value: 0. Refer to Table 66,
"INT_GEN_2_REG_A description"
6D 6-direction detection function enabled. Default value: 0. Refer to Table 66,
"INT_GEN_2_REG_A description"
ZHIE/ ZUPE
ZLIE/ ZDOWNE
Enable interrupt generation on Z high event or on direction recognition. Default value: 0 (0: disable interrupt request;1: enable interrupt request)
Enable interrupt generation on Z low event or on direction recognition. Default value: 0 (0: disable interrupt request;1: enable interrupt request)
ZLIE/ ZDOWNE
YHIE/ YUPE
YLIE/ YDOWNE
XHIE/ XUPE
XLIE/ XDOWNE
YHIE/ YUPE
YLIE/ YDOWNE
Enable interrupt generation on Y high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.)
Enable interrupt generation on Y low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.)
Doc ID 022907 Rev 1 55/75
Register description LSM333D
Table 66. INT_GEN_2_REG_A description (continued)
XHIE/ XUPE
XLIE/XDOWNEEnable interrupt generation on X low event or on direction recognition. Default
Enable interrupt generation on X high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.)
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
Content of this register is loaded at boot.
Write operation at this address is possible only after system boot.

Table 67. Interrupt mode

AOI 6D Interrupt mode
0 0 OR combination of interrupt events
0 1 6-direction movement recognition
1 0 AND combination of interrupt events
1 1 6-direction position recognition
Difference between AOI-6D = ‘01’ and AOI-6D = ‘11’.
AOI-6D = ‘01’ is movement recognition. An interrupt is generated when orientation moves from an unknown zone to a known zone. The interrupt signal stays for a duration ODR.
AOI-6D = ‘11’ is direction recognition. An interrupt is generated when orientation is inside a known zone. The interrupt signal stays until orientation is inside the zone.

8.35 INT_GEN_2_SRC_A (35h)

This register contains the status for the inertial interrupt generator 2.

Table 68. INT_GEN_2_SRC_A register

0 IA ZHZLYHYLXHXL

Table 69. INT_GEN_2_SRC_A description

IA
ZH
ZL
Interrupt status. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated)
Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred)
Z low. Default value: 0 (0: no interrupt, 1: Z low event has occurred)
YH
56/75 Doc ID 022907 Rev 1
Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred)
LSM333D Register description
Table 69. INT_GEN_2_SRC_A description (continued)
YL
Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred)
XH
XL
X high. Default value: 0 (0: no interrupt, 1: x high event has occurred)
X low. Default value: 0 (0: no interrupt, 1: X low event has occurred)
Reading at this address clears the INT_GEN_2_SRC_A (35h) IA bit (and the interrupt signal on the corresponding interrupt pin) and allows the refreshment of data in the
INT_GEN_2_SRC_A (35h) register if the latched option was chosen.

8.36 INT_GEN_2_THS_A (36h)

Table 70. INT_GEN_2_THS_A register

0 THS6 THS5 THS4 THS3 THS2 THS1 THS0

Table 71. INT_GEN_2_THS_A description

THS6 - THS0 Interrupt 1 threshold. Default value: 000 0000

8.37 INT_GEN_2_DURATION_A (37h)

Table 72. INT_GEN_2_DURATION_A register

0 D6D5D4D3D2D1D0

Table 73. INT_GEN_2_DURATION_A description

D6 - D0 Duration value. Default value: 000 0000
D6 - D0 bits set the minimum duration of the interrupt 2 event to be recognized. Duration steps and maximum values depend on the ODR chosen.

8.38 CLICK_CFG_A (38h)

Table 74. CLICK_CFG_A register

-- -- ZD ZS YD YS XD XS
Doc ID 022907 Rev 1 57/75
Register description LSM333D

Table 75. CLICK_CFG_A description

ZD Enable interrupt double tap-tap on Z-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold)
ZS Enable interrupt single tap-tap on Z-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold)
YD Enable interrupt double tap-tap on Y-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold)
YS Enable interrupt single tap-tap on Y-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold)
XD Enable interrupt double tap-tap on X-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold)
XS Enable interrupt single tap-tap on X-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold)

8.39 CLICK_SRC_A (39h)

Table 76. CLICK_SRC_A register

-- IA DClick SClick Sign Z Y X

Table 77. CLICK_SRC_A description

-- -
IA Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
DClick Double click-click enable. Default value: 0 (0: double click-click detection disable, 1:
double tap-tap detection enable)
Stap Single click-click enable. Default value: 0 (0: single click-click detection disable, 1: single
click-click detection enable)
Sign Click-click sign. 0: positive detection, 1: negative detection
Z Z click-click detection. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
Y Y click-click detection. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
X X click-click detection. Default value: 0
(0: no interrupt, 1: X high event has occurred)
58/75 Doc ID 022907 Rev 1
LSM333D Register description

8.40 CLICK_THS_A (3Ah)

Table 78. CLICK_THS_A register

- Ths6Ths5Ths4Ths3Ths2Ths1Ths0

Table 79. CLICK_SRC_A description

Ths6-Ths0 Click-click threshold. Default value: 000 0000

8.41 TIME_LIMIT_A (3Bh)

Table 80. TIME_LIMIT_A register

- TLI6TLI5TLI4TLI3TLI2TLI1TLI0

Table 81. TIME_LIMIT_A description

TLI7-TLI0 Click-click time limit. Default value: 000 0000

8.42 TIME_LATENCY_A (3Ch)

Table 82. TIME_LATENCY_A register

TLA7 TLA6 TLA5 TLA4 TLA3 TLA2 TLA1 TLA0

Table 83. TIME_LATENCY_A description

TLA7-TLA0 Click-click time latency. Default value: 000 0000

8.43 TIME_WINDOW_A (3Dh)

Table 84. TIME_WINDOW_ register

TW7 TW6 TW5 TW4 TW3 TW2 TW1 TW0

Table 85. TIME_WINDOW_A description

TW7-TW0 Click-click time window
Doc ID 022907 Rev 1 59/75
Register description LSM333D

8.44 Act_THS_A (3Eh)

Table 86. Act_THS_A register

-- Acth6 Acth5 Acth4 Acth3 Acth2 Acth1 Acth0

Table 87. Act_THS_A description

Acth[6-0] Sleep-to-Wake, Return to Sleep activation threshold
1LSb = 16mg

8.45 Act_DUR_A (3Fh)

Table 88. Act_DUR_A register

ActD7 ActD6 ActD5 ActD4 ActD3 ActD2 ActD1 ActD0

Table 89. Act_DUR_A description

ActD[7-0] Sleep-to-Wake, Return to Sleep duration DUR = (Act_DUR + 1)*8/ODR
60/75 Doc ID 022907 Rev 1
LSM333D Gyroscope register description

9 Gyroscope register description

The device contains a set of registers which are used to control its behavior and to retrieve angular rate data. The register address, consisting of 7 bits, is used to identify them and to write the data through the serial interface.

9.1 WHO_AM_I_G (0Fh)

Table 90. WHO_AM_I register

11010100
Device identification register.

9.2 CNTRL1_G (20h)

Table 91. CNTRL1_G register

DR1 DR0 BW1 BW0 PD Zen Xen Yen

Table 92. CNTRL1_G description

DR1-DR0 Output data rate selection. Refer to Table 93: DR and BW configuration setting
BW1-BW0 Bandwidth selection. Refer to Table 93: DR and BW configuration setting
PD
Zen Z-axis enable. Default value: 1
Yen Y-axis enable. Default value: 1
Xen X-axis enable. Default value: 1
DR<1:0> is used for ODR selection. BW <1:0> is used for bandwidth selection.
In Table 93: DR and BW configuration setting, all frequencies resulting in combinations of DR / BW bits are reported.
Power-down mode enable. Default value: 0 (0: Power-down mode, 1: Normal mode or Sleep mode)
(0: Z-axis disabled; 1: Z-axis enabled)
(0: Y-axis disabled; 1: Y-axis enabled)
(0: X-axis disabled; 1: X-axis enabled)
Doc ID 022907 Rev 1 61/75
Gyroscope register description LSM333D

Table 93. DR and BW configuration setting

DR <1:0> BW <1:0> ODR [Hz] Cut-Off
00 00 95 12.5
00 01 95 25
00 10 95 25
00 11 95 25
01 00 190 12.5
01 01 190 25
01 10 190 50
01 11 190 70
10 00 380 20
10 01 380 25
10 10 380 50
10 11 380 100
11 00 760 30
11 01 760 35
11 10 760 50
11 11 760 100
A combination of PD, Zen, Yen, Xen is used to set the device to different modes (Power- down / Normal / Sleep) in accordance with Table 94: Power mode selection configuration below.

Table 94. Power mode selection configuration

Mode PD Zen Yen Xen
Power-down 0 - - -
Sleep1000
Normal1---

9.3 CNTRL2_G (21h)

Table 95. CNTRL2_G register

(1)
0
(1)
0
HPM1 HPM1 HPCF3 HPCF2 HPCF1 HPCF0
1. These bits must be set to ‘0’ to ensure proper operation of the device.
62/75 Doc ID 022907 Rev 1
LSM333D Gyroscope register description

Table 96. CNTRL2_G description

HPM1­HPM0
High-pass filter mode selection. Default value: 00 Refer to Table 97: High-pass filter mode configuration
HPCF3­HPCF0
High-pass filter cutoff frequency selection Refer to Table 98: High-pass filter cutoff frequency configuration [Hz]

Table 97. High-pass filter mode configuration

HPM1 HPM0 High-pass filter mode
0 0 Normal mode (reset reading HP_RESET_FILTER)
0 1 Reference signal for filtering
1 0 Normal mode
1 1 Autoreset on interrupt event

Table 98. High-pass filter cutoff frequency configuration [Hz]

HPCF3-0 ODR=95 Hz ODR=190 Hz ODR=380 Hz ODR=760 Hz
0000 7.2 13.5 27 51.4
0001 3.5 7.2 13.5 27
0010 1.8 3.5 7.2 13.5
0011 0.9 1.8 3.5 7.2
0100 0.45 0.9 1.8 3.5
0101 0.18 0.45 0.9 1.8
0110 0.09 0.18 0.45 0.9
0111 0.045 0.09 0.18 0.45
1000 0.018 0.045 0.09 0.18
1001 0.009 0.018 0.045 0.09

9.4 CNTRL3_G (22h)

Table 99. CNTRL3_G register

I1_Int1 I1_Boot H_Lactive PP_OD I2_DRDY I2_WTM I2_ORun I2_Empty

Table 100. CNTRL3_G description

I1_Int1 Interrupt enable on INT1 pin. Default value 0. (0: disable; 1: enable)
I1_Boot Boot status available on INT1. Default value 0. (0: disable; 1: enable)
H_Lactive Interrupt active configuration on INT1. Default value 0. (0: high; 1:low)
Doc ID 022907 Rev 1 63/75
Gyroscope register description LSM333D
Table 100. CNTRL3_G description (continued)
PP_OD Push-pull / open drain. Default value: 0. (0: push- pull; 1: open drain)
I2_DRDY Date-ready on DRDY/INT2. Default value 0. (0: disable; 1: enable)
I2_WTM FIFO watermark interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable)
I2_ORun FIFO overrun interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable)
I2_Empty FIFO empty interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable)

9.5 CNTRL4_G (23h)

Table 101. CNTRL4_G register

BDU BLE FS1 FS0 - 0
1. This value must not be changed.

Table 102. CNTRL4_G description

BDU Block data update. Default value: 0
(0: continuous update; 1: output registers not updated until MSb and LSb reading)
(1)
(1)
0
SIM
BLE Big/little endian data selection. Default value 0.
(0: data LSb @ lower address; 1: data MSb @ lower address)
FS1-FS0 Full-scale selection. Default value: 00
(00: 250 dps; 01: 500 dps; 10: 2000 dps; 11: 2000 dps)
SIM SPI serial interface mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).

9.6 CNTRL5_G (24h)

Table 103. CNTRL5_G register

BOOT FIFO_EN -- HPen INT1_Sel1 INT1_Sel0 Out_Sel1 Out_Sel0

Table 104. CNTRL5_G description

BOOT Reboot memory content. Default value: 0
(0: Normal mode; 1: reboot memory content)
FIFO_EN FIFO enable. Default value: 0
(0: FIFO disable; 1: FIFO enable)
HPen High-pass filter enable. Default value: 0
(0: HPF disabled; 1: HPF enabled, see Figure 20)
64/75 Doc ID 022907 Rev 1
LSM333D Gyroscope register description
ADC
LPF1
HPF
0
1
HPen
LPF2
10 11
01
00
Out_Sel <1:0>
DataReg
FIFO
32x16x3
00
11
10
01
Interrupt
generator
INT1_Sel <1:0>
AM07949V2
Table 104. CNTRL5_G description (continued)
INT1_Sel1­INT1_Sel0
Out_Sel1­Out_Sel1
INT1 selection configuration. Default value: 0 (See Figure 20)
Out selection configuration. Default value: 0 (See Figure 20)

Figure 20. INT1_Sel and Out_Sel configuration block diagram

9.7 REFERENCE_G (25h)

Table 105. REFERENCE_G register

Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0

Table 106. REFERENCE_G register description

Ref 7-Ref0 Reference value for interrupt generation. Default value: 0

9.8 OUT_TEMP_G (26h)

Table 107. OUT_TEMP_G register

Temp7 Temp6 Temp5 Temp4 Temp3 Temp2 Temp1 Temp0

Table 108. OUT_TEMP_G register description

Temp7-Temp0 Temperature data
Doc ID 022907 Rev 1 65/75
Gyroscope register description LSM333D
Temperature data (1LSB/deg - 8-bit resolution). The value is expressed as 2's complement.

9.9 STATUS_REG_G (27h)

Table 109. STATUS_REG_G register

ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA

Table 110. STATUS_REG_G description

X, Y, Z-axis data overrun. Default value: 0
ZYXOR
(0: no overrun has occurred; 1: new data has overwritten the previous data before it was read)
ZOR
YOR
XOR
ZYXDA X, Y, Z-axis new data available. Default value: 0
ZDA Z-axis new data available. Default value: 0
YDA Y-axis new data available. Default value: 0
XDA X-axis new data available. Default value: 0
Z-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous data)
Y-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Y-axis has overwritten the previous data)
X-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the X-axis has overwritten the previous data)
(0: a new set of data is not yet available; 1: a new set of data is available)
(0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available)
(0: new data for the Y-axis is not yet available;1: new data for the Y-axis is available)
(0: new data for the X-axis is not yet available; 1: new data for the X-axis is available)

9.10 OUT_X_L_G (28h), OUT_X_H_G (29h)

X-axis angular rate data. The value is expressed as 2’s complement.

9.11 OUT_Y_L_G (2Ah), OUT_Y_H_G (2Bh)

Y-axis angular rate data. The value is expressed as 2’s complement.

9.12 OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh)

Z-axis angular rate data. The value is expressed as 2’s complement.
66/75 Doc ID 022907 Rev 1
LSM333D Gyroscope register description

9.13 FIFO_CTRL_REG_G (2Eh)

Table 111. FIFO_CTRL_REG_G register

FM2 FM1 FM0 WTM4 WTM3 WTM2 WTM1 WTM0

Table 112. FIFO_CTRL_REG_G register description

FM2-FM0 FIFO mode selection. Default value: 00 (see Table 113: FIFO mode configuration)
WTM4-WTM0 FIFO threshold. Watermark level setting

Table 113. FIFO mode configuration

FM2 FM1 FM0 FIFO mode
000Bypass mode
001FIFO mode
010Stream mode
011Stream-to-FIFO mode
100Bypass-to-Stream mode

9.14 FIFO_SRC_REG_G (2Fh)

Table 114. FIFO_SRC_REG_G register

WTM OVRN EMPTY FSS4 FSS3 FSS2 FSS1 FSS0

Table 115. FIFO_SRC_REG_G register description

WTM Watermark status. (0: FIFO filling is lower than WTM level; 1: FIFO filling is equal
or higher than WTM level)
OVRN Overrun bit status.
(0: FIFO is not completely filled; 1:FIFO is completely filled)
EMPTY FIFO empty bit.
(0: FIFO not empty; 1: FIFO empty)
FSS4-FSS1 FIFO stored data level

9.15 INT1_CFG_G (30h)

Table 116. INT1_CFG_G register

AND/OR LIR ZHIE ZLIE YHIE YLIE XHIE XLIE
Doc ID 022907 Rev 1 67/75
Gyroscope register description LSM333D

Table 117. INT1_CFG_G description

AND/OR
LIR
ZHIE
ZLIE
YHIE
YLIE
XHIE
AND/OR combination of interrupt events. Default value: 0 (0: OR combination of interrupt events 1: AND combination of interrupt events
Latch interrupt request. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched) Cleared by reading INT1_SRC reg.
Enable interrupt generation on Z high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value higher
than preset threshold)
Enable interrupt generation on Z low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value lower than
preset threshold)
Enable interrupt generation on Y high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value higher
than preset threshold)
Enable interrupt generation on Y low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value lower than
preset threshold)
Enable interrupt generation on X high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value higher
than preset threshold)
Enable interrupt generation on X low event. Default value: 0
XLIE
(0: disable interrupt request; 1: enable interrupt request on measured value lower than preset threshold)

9.16 INT1_SRC_G (31h)

Interrupt source register. Read only register.

Table 118. INT1_SRC_G register

0 IA ZHZLYHYLXHXL

Table 119. INT1_SRC_G description

IA
ZH Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred)
ZL Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred)
YH Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred)
YL Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred)
XH X high. Default value: 0 (0: no interrupt, 1: X high event has occurred)
XL X low. Default value: 0 (0: no interrupt, 1: X low event has occurred)
Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated)
68/75 Doc ID 022907 Rev 1
LSM333D Gyroscope register description
Reading at this address clears the INT1_SRC_G (31h) IA bit (and eventually the interrupt signal on the INT1 pin) and allows the refresh of data in the INT1_SRC_G (31h) register if the latched option was chosen.

9.17 INT1_THS_XH_G (32h)

Table 120. INT1_THS_XH_G register

- THSX14 THSX13 THSX12 THSX11 THSX10 THSX9 THSX8

Table 121. INT1_THS_XH_G description

THSX14 - THSX9 Interrupt threshold. Default value: 0000 0000

9.18 INT1_THS_XL_G (33h)

Table 122. INT1_THS_XL_G register

THSX7 THSX6 THSX5 THSX4 THSX3 THSX2 THSX1 THSX0

Table 123. INT1_THS_XL_G description

THSX7 - THSX0 Interrupt threshold. Default value: 0000 0000

9.19 INT1_THS_YH_G (34h)

Table 124. INT1_THS_YH_G register

- THSY14 THSY13 THSY12 THSY11 THSY10 THSY9 THSY8

Table 125. INT1_THS_YH_G description

THSY14 - THSY9 Interrupt threshold. Default value: 0000 0000

9.20 INT1_THS_YL_G (35h)

Table 126. INT1_THS_YL_G register

THSR7 THSY6 THSY5 THSY4 THSY3 THSY2 THSY1 THSY0

Table 127. INT1_THS_YL_G description

THSY7 - THSY0 Interrupt threshold. Default value: 0000 0000
Doc ID 022907 Rev 1 69/75
Gyroscope register description LSM333D

9.21 INT1_THS_ZH_G (36h)

Table 128. INT1_THS_ZH_G register

- THSZ14 THSZ13 THSZ12 THSZ11 THSZ10 THSZ9 THSZ8

Table 129. INT1_THS_ZH_G description

THSZ14 - THSZ9 Interrupt threshold. Default value: 0000 0000

9.22 INT1_THS_ZL _G(37h)

Table 130. INT1_THS_ZL_G register

THSZ7 THSZ6 THSZ5 THSZ4 THSZ3 THSZ2 THSZ1 THSZ0

Table 131. INT1_THS_ZL_G description

THSZ7 - THSZ0 Interrupt threshold. Default value: 0000 0000

9.23 INT1_DURATION_G (38h)

Table 132. INT1_DURATION_G register

WAIT D6 D5 D4 D3 D2 D1 D0

Table 133. INT1_DURATION_G description

WAIT WAIT enable. Default value: 0 (0: disable; 1: enable)
D6 - D0 Duration value. Default value: 000 0000
The D6 - D0 bits set the minimum duration of the interrupt event to be recognized. Duration steps and maximum values depend on the ODR chosen.
The WAIT bit has the following definitions:
Wait = ‘0’: the interrupt falls immediately if the signal crosses the selected threshold.
Wait = ‘1’: if the signal crosses the selected threshold, the interrupt falls only after the duration has counted the number of samples at the selected data rate, written into the duration counter register.
70/75 Doc ID 022907 Rev 1
LSM333D Gyroscope register description

Figure 21. Wait disabled

Figure 22. Wait enabled

Doc ID 022907 Rev 1 71/75
Package Information LSM333D

10 Package Information

In order to meet environmental requirements, ST offers these devices in different grades of
®
ECOPACK
packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 134. TFLGA 6x3.5x1 28L mechanical data

(mm)
Dim.
Min. Typ. Max.
A1 1.000 1.027
A2 0.800
A3 0.200
D1 3.350 3.500 3.650
E1 5.850 6.000 6.150
L1 2.250
L2 0.750
N1 0.500
M0.100
P1 2.800
P2 1.550
T1 0.300
T2 0.400
d0.200
k0.050
h0.100
72/75 Doc ID 022907 Rev 1
LSM333D Package Information
8356582_A

Table 135. TFLGA 6x3.5x1 28L drawing

Doc ID 022907 Rev 1 73/75
Revision history LSM333D

11 Revision history

Table 136. Document revision history

Date Revision Changes
13-Mar-2012 1 Initial release.
74/75 Doc ID 022907 Rev 1
LSM333D
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 022907 Rev 1 75/75
Loading...