Datasheet LSM330DL Datasheet (ST)

3D accelerometer sensor and 3D gyroscope sensor
Analog supply voltage 2.4 V to 3.6 V
Digital supply voltage I/Os, 1.8V
Low-power mode
Power-down mode
3 independent acceleration channels and 3
angular rate channels
±2g/±4g/±8g/±16g dynamic, selectable full-
scale acceleration range
±250/±500/±2000 dps dynamic, selectable full-
scale angular rate
SPI/I
Programmable interrupt generator for free-fall
ECOPACK
Applications
GPS navigation systems
Impact recognition and logging
Gaming and virtual reality input devices
Motion-activated functions
Intelligent power saving for handheld devices
Vibration monitoring and compensation
Free-fall detection
6D-orientation detection
2
C serial interface (16-bit data output)
and motion detection
®
, RoHS, and “Green” compliant
LSM330DL
Linear sensor module
Preliminary data
LLGA 28L 7.5 x 4.4 x 1.1 mm
ST’s family of modules leverages a robust and mature manufacturing process already used for the production of micromachined accelerometers.
The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are based on CMOS technology that allows designing a dedicated circuit which is trimmed to better match the sensing element characteristics.
The LSM330DL has a dynamic, user-selectable full-scale acceleration range of ±2g/±4g/±8g/±16g and an angular rate of ±250/±500/±2000 deg/sec.
The accelerometer and gyroscope sensors can be either activated or put in low-power / power­down mode separately for power-saving optimized applications. The LSM330DL is available in a plastic land grid array (LGA) package.
Several years ago ST successfully pioneered the use of this package for accelerometers. Today, ST has the broadest manufacturing capability in the world and unrivalled expertise for the production of sensors in a plastic LGA package.
Description
The LSM330DL is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope.

Table 1. Device summary

Part number Temperature range [°C] Package Packing
LSM330DL -40 to +85 LGA-28 Tray
LSM330DLTR -40 to +85 LGA-28 Tape & reel
July 2011 Doc ID 022018 Rev 1 1/54
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
www.st.com
54
Contents LSM330DL
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 I2C - inter-IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.2 Zero level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 External capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.1 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2/54 Doc ID 022018 Rev 1
LSM330DL Contents
7 Registers description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1 CTRL_REG1_A (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 CTRL_REG2_A (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3 CTRL_REG3_A (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.4 CTRL_REG4_A (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.5 CTRL_REG5_A (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.6 CTRL_REG6_A (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.7 REFERENCE/DATACAPTURE_A (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.8 STATUS_REG_A (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.9 OUT_X_L_A (28h), OUT_X_H_A (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.10 OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.11 OUT_Z_L _A(2Ch), OUT_Z_H_A (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.12 FIFO_CTRL_REG_A (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.13 FIFO_SRC_REG_A (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.14 INT1_CFG_A (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.15 INT1_SRC_A (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.16 INT1_THS_A (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.17 INT1_DURATION_A (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.18 CLICK_CFG _A (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.19 CLICK_SRC_A (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.20 CLICK_THS_A (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.21 TIME_LIMIT_A (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.22 TIME_LATENCY_A (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.23 TIME WINDOW_A (3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.24 CTRL_REG1_G (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.25 CTRL_REG2_G (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.26 CTRL_REG3_G (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.27 CTRL_REG4_G (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.28 CTRL_REG5_G (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.29 REFERENCE/DATACAPTURE_G (25h) . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.30 OUT_TEMP_G (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.31 STATUS_REG_G (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.32 OUT_X_L_G (28h), OUT_X_H_G (29h) . . . . . . . . . . . . . . . . . . . . . . . . . 44
Doc ID 022018 Rev 1 3/54
Contents LSM330DL
7.33 OUT_Y_L_G (2Ah), OUT_Y_H_G (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.34 OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.35 FIFO_CTRL_REG_G (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.36 FIFO_SRC_REG_G (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.37 INT1_CFG_G (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.38 INT1_SRC_G (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.39 INT1_THS_XH_G (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.40 INT1_THS_XL_G (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.41 INT1_THS_YH_G (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.42 INT1_THS_YL_G (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.43 INT1_THS_ZH_G (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.44 INT1_THS_ZL_G (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.45 INT1_DURATION_G (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4/54 Doc ID 022018 Rev 1
LSM330DL List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 3. Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 5. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 6. SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 7. I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 8. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 9. Part list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 10. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 11. Serial interface terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 12. Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 13. Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 14. Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 22
Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 22
Table 16. Linear acceleration SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 17. Angular rate SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 18. Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 19. CTRL_REG1_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 20. CTRL_REG1_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 21. Data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 22. Operating mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 23. CTRL_REG2_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 24. CTRL_REG2_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 25. High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 26. CTRL_REG3_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 27. CTRL_REG3_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 28. CTRL_REG4_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 29. CTRL_REG4_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 30. CTRL_REG5_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 31. CTRL_REG5_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 32. CTRL_REG6_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 33. CTRL_REG6 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 34. REFERENCE/DATACAPTURE_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 35. REFERENCE/DATACAPTURE_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 36. STATUS_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 37. STATUS_REG_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 38. FIFO_CTRL_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 39. FIFO_CTRL_REG_A register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 40. FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 41. FIFO_SRC_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 42. INT1_CFG_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 43. INT1_CFG_REG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 44. Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 45. INT1_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 46. INT1_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 47. INT1_THS_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 48. INT1_THS_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Doc ID 022018 Rev 1 5/54
List of tables LSM330DL
Table 49. INT1_DURATION_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 50. INT1_DURATION_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 51. CLICK_CFG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 52. CLICK_CFG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 53. CLICK_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 54. CLICK_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 55. CLICK_THS_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 56. CLICK_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 57. TIME_LIMIT_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 58. TIME_LIMIT_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 59. TIME_LATENCY_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 60. TIME_LATENCY_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 61. TIME_WINDOW_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 62. TIME_WINDOW_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 63. CTRL_REG1_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 64. CTRL_REG1_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 65. DR and BW configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 66. Power mode selection configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 67. CTRL_REG2_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 68. CTRL_REG2_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 69. High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 70. High-pass filter cutoff frequency configuration [Hz] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 71. CTRL_REG3_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 72. CTRL_REG3_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 73. CTRL_REG4_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 74. CTRL_REG4_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 75. CTRL_REG5_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 76. CTRL_REG5_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 77. Out_Sel configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 78. INT_SEL configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 79. REFERENCE/DATACAPTURE_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 80. REFERENCE/DATACAPTURE_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 81. OUT_TEMP_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 82. OUT_TEMP_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 83. STATUS_REG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 84. STATUS_REG_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 85. FIFO_CTRL_REG_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 86. FIFO_CTRL_REG_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 87. FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 88. FIFO_SRC_REG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 89. FIFO_SRC_REG_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 90. INT1_CFG_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 91. INT1_CFG_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 92. INT1_SRC_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 93. INT1_SRC_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 94. INT1_THS_XH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 95. INT1_THS_XH_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 96. INT1_THS_XL_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 97. INT1_THS_XL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 98. INT1_THS_YH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 99. INT1_THS_YH_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 100. INT1_THS_YL_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6/54 Doc ID 022018 Rev 1
LSM330DL List of tables
Table 101. INT1_THS_YL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 102. INT1_THS_ZH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 103. INT1_THS_ZH_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 104. INT1_THS_ZL_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 105. INT1_THS_ZL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 106. INT1_DURATION_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 107. INT1_DURATION_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 108. LLGA 7.5 x 4.4 x 1.1 28L mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 109. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Doc ID 022018 Rev 1 7/54
List of figures LSM330DL
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2. Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 3. SPI slave timing diagram (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 4. I2C slave timing diagram (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 5. LSM330DL electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 6. Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 7. SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 8. Multiple bytes SPI read protocol (2 bytes example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 9. SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 10. Multiple bytes SPI write protocol (2 bytes example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 11. SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 12. INT1_Sel and Out_Sel configuration block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 13. Wait disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 14. Wait enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 15. LLGA 7.5 x 4.4 x 1.1 28L package drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8/54 Doc ID 022018 Rev 1
LSM330DL Block diagram and pin description

1 Block diagram and pin description

1.1 Block diagram

Figure 1. Block diagram

I (a)
I (
Ω)
Sensing Block
Feedback+
Feedback-
Drive-
Drive+
X+
Sensing Interface
Y+
Z+
Z-
Y-
X-
X+
Y+
Z+
Z-
Y-
X-
MUX
MUX
VOLTAGE
GAIN
AMPLIFIER
CHARGE AMPLIFIER
+
-
CHARGE AMPLIFIER
+
-
DEMODULATOR
ANALOG CONDITIONING
A/D Control
LOW-PASS
FILTER
AUTOMATIC
GAIN
CONTROL
Logicconverter
I2C/SPI
CS_A/G
SDA/SDI_A/G
SDO_A/G
INT1_A
INT2_A
INT1_G
DRDY_G/INT2_G
SCL_A/G
REFERENCE
CONTROL LOGIC
&
INTERRUPT GEN.
TRIMMING
CIRCUITS
SET/RESET
CIRCUITS
CLOCK
PHASE
GENERATOR
AM09285V1
Doc ID 022018 Rev 1 9/54
Block diagram and pin description LSM330DL

1.2 Pin description

Figure 2. Pin connections

Z
1
Z
+Ω
Y
DIRECTION OF DETECTABLE
+Ω
Y
+Ω
Y
X
ACCELERATIONS
Vdd_IO_A
Res
VCONT
GND
DIRECTION OF DETECTABLE
X
z
1
ANGULAR RATE
X
SDA/SDI_A
1
28
25
24
Res

Table 2. Pin description

Pin# Name Function
Accelerometer:
2
I
1SDA/SDI_A
2 Res Reserved, connect to GND
3SDO_A
C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)
Accelerometer: SPI serial data output (SDO)
2
I
C least significant bit of the device address (SA0)
SDO_A
SCL_A
DRDY_G/INT2_G
Res
LSM330DL
(BOTTOM VIEW)
Res
Vdd
Res
Res
INT1_G
INT1_A
SDO_G
FILTVDD
FILTIN Y
Res
INT2_A
CS_A
CS_G
SDA/SDI_G
10
Res
11
Vdd_IO_G
SCL_G
Res
14
15
Vdd
Res
AM09256V1
Accelerometer:
4SCL_A
2
I
C serial clock (SCL) SPI serial port clock (SPC)
5 DRDY_G/INT2_G Gyroscope data ready/interrupt signal 2
6 INT1_A Accelerometer interrupt signal
Gyroscope:
7SDO_G
SPI serial data output (SDO) I2C least significant bit of the device address (SA0)
8 INT2_A Accelerometer interrupt signal
Gyroscope:
2
I
9SDA/SDI_G
C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)
10/54 Doc ID 022018 Rev 1
LSM330DL Block diagram and pin description
Table 2. Pin description (continued)
Pin# Name Function
Gyroscope:
10 CS_G
11 Res Reserved, connect to GND
12 Vdd_IO_G Gyroscope power supply for I/O pins
13 SCL_G
14 Res Reserved connect to GND
15 Vdd Power supply
16 Res Reserved, connect to GND
17 CS_A
18 Res Reserved, connect to GND
SPI enable
2
I
C/SPI mode selection (1: SPI idle mode / I2C communication enabled; 0: SPI communication mode / I
2
C disabled)
Gyroscope:
2
C serial clock (SCL)
I SPI serial port clock (SPC)
Accelerometer:
SPI enable
2
C/SPI mode selection (1: SPI idle mode / I2C communication
I enabled; 0: SPI communication mode / I
2
C disabled)
19 Res Reserved, connect to GND
20 Res Reserved, connect to GND
21 INT1_G Gyroscope interrupt signal 1
22 Vdd Power supply
23 Res Reserved, connect to GND
24 Res Reserved, connect to GND
25 GND 0 V power supply
26 VCONT PLL filter connection
27 Res Reserved, connect to GND
28 Vdd_IO_A Accelerometer power supply for I/O pins
Doc ID 022018 Rev 1 11/54
Module specifications LSM330DL
zHz

2 Module specifications

2.1 Mechanical characteristics

The values given in the following table are for the conditions Vdd = 3 V, T = 25 °C unless otherwise noted.

Table 3. Mechanical characteristics

Symbol Parameter Test conditions Min. Typ.
LA_FS
G_FS Angular rate measurement range
LA_So Linear acceleration sensitivity
G_So Angular rate sensitivity
LA_So
G_So Angular rate sensitivity change vs. temp. from -40 to +85°C ±2 %
LA_TyOff Typical zero-
G_TyOff Typical zero-rate level
LA_TCOff Zero-
G_TCOff Zero-rate level change vs. temperature
An Acceleration noise density
Rn Rate noise density FS bit set to 00, BW = 50 Hz 0.03 dps/
Top Operating temperature range -40 +85 °C
1. Typical specifications are not guaranteed.
2. Verified by wafer level test and measurement of initial offset and sensitivity.
3. Typical zero-g level offset value after MSL3 preconditioning.
4. Offset can be eliminated by enabling the built-in high-pass filter.
Linear acceleration measurement range
Linear acceleration Sensitivity change vs. temperature
g level change vs. temperature Max delta from 25 °C ±0.5 mg/°C
(a)
(2)
g level offset accuracy
(4)
(2)
(1)
FS bit set to 00 ±2
FS bit set to 01 ±4
FS bit set to 10 ±8
FS bit set to 11 ±16
FS bit set to 00 ±250
FS bit set to 10 ±2000
FS bit set to 00 1
FS bit set to 01 2
FS bit set to 10 4
FS bit set to 11 12
FS bit set to 00 8.75
FS bit set to 01 17.5
FS bit set to 10 70
FS bit set to 00 ±0.05 %/°C
(3)
FS bit set to 00 ±60 mg
FS bit set to 00 10 LSb
FS bit set to 00 from -40 to +85°C
FS bit set to 00, normal mode, ODR bit set to 1001
±0.03 dps/°C
220 µ
Max. Unit
mg/digit
mdps/
g/
g
dpsFS bit set to 01 ±500
digit
H
a. The product is factory calibrated at 3 V. The operational power supply range is from 2.4 V to 3.6 V.
12/54 Doc ID 022018 Rev 1
LSM330DL Module specifications

2.2 Electrical characteristics

The values given in the following table are for the conditions Vdd = 3 V, T = 25 °C unless otherwise noted.

Table 4. Electrical characteristics

Symbol Parameter Test conditions Min. Typ.
Vdd Supply voltage 2.4 3.6 V
Vdd_IO Power supply for I/O 1.71 Vdd+0.1 V
LA_Idd
LA_IddLowP
LA current consumption in normal mode
LA current consumption in low-power mode
ODR = 50 Hz 11
ODR = 1 Hz 2
ODR = 50 Hz 6 µA
(1)
Max. Unit
µA
LA_IddPdn
G_Idd
G_IddLowP
G_IddPdn
VIH Digital high-level input voltage 0.8*Vdd_IO V
VIL Digital low-level input voltage 0.2*Vdd_IO V
VOH High-level output voltage 0.9*Vdd_IO V
VOL Low-level output voltage 0.1*Vdd_IO V
Top Operating temperature range -40 +85 °C
1. Typical specifications are not guaranteed.
2. Sleep mode introduces a faster turn-on time compared to power-down mode.
LA current consumption in power-down mode
AR current consumption in normal mode
AR supply current in sleep mode
AR current consumption in power-down mode
T = 25 °C 0.5 µA
6.1 mA
(2)
T = 25 °C 5 µA
1.5 mA

2.3 Temperature sensor characteristics

The values given in the following table are for the conditions Vdd = 3.0 V, T=25 °C, unless otherwise noted.

Table 5. Temperature sensor characteristics

Symbol Parameter Test condition Min. Typ.
TSDr
TODR Temperature refresh rate 1 Hz
Top Operating temperature range -40 +85 °C
1. The product is factory calibrated at 3.0 V.
2. Typical specifications are not guaranteed.
Temperature sensor output change vs. temperature
Doc ID 022018 Rev 1 13/54
(1)
-
(2)
-1 °C/digit
Max. Unit
Module specifications LSM330DL
t
t
t
t
t
t
t
t

2.4 Communication interface characteristics

2.4.1 SPI - serial peripheral interface

The values given in the following table are subject to the general operating conditions for Vdd and T
Table 6. SPI slave timing values
Symbol Parameter
OP
.
(1)
Val ue
Unit
Min Max
t
c(SPC)
f
c(SPC)
t
su(CS)
t
h(CS)
t
su(SI)
t
h(SI)
t
v(SO)
t
h(SO)
t
dis(SO)
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production.
Figure 3. SPI slave timing diagram
CS
(3)
SPC
(3)
SPI clock cycle 100 ns
SPI clock frequency 10 MHz
CS setup time 6
CS hold time 8
SDI input setup time 5
SDI input hold time 15
SDO valid output time 50
SDO output hold time 9
SDO output disable time 50
(b)
su(CS)
c(SPC)
h(CS)
ns
(3)
(3)
MSB IN
MSB OUT
h(SI)
v(SO)
LSB IN
h(SO)
LSB OUT
su(SI)
(3)
SDI
(3)
SDO
3. Data on CS, SPC, SDI and SDO concern the following pins: CS_A/G, SCL_A/G, SDA/SDI_A/G, SDO_A/G
b. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports.
14/54 Doc ID 022018 Rev 1
(3)
dis(SO)
(3)
LSM330DL Module specifications
t
t
t
t
t
t
t
t
t
t
t
t

2.4.2 I2C - inter-IC control interface

The values given in the following table are subject to the general operating conditions for Vdd and T
Table 7. I2C slave timing values
Symbol Parameter
OP
.
(1)
I2C standard mode
I2C fast mode
Min Max Min Max
(1)
Unit
f
(SCL)
t
w(SCLL)
t
w(SCLH)
t
su(SDA)
t
h(SDA)
t
r(SDA) tr(SCL)
t
f(SDA) tf(SCL)
t
h(ST)
t
su(SR)
t
su(SP)
t
w(SP:SR)
SCL clock frequency 0 100 0 400 kHz
SCL clock low time 4.7 1.3
SCL clock high time 4.0 0.6
SDA setup time 250 100 ns
SDA data hold time 0.01 3.45 0 0.9 µs
SDA and SCL rise time 1000
SDA and SCL fall time 300
START condition hold time 4 0.6
Repeated START condition setup time 4.7 0.6
STOP condition setup time 4 0.6
Bus free time between STOP and START condition
1. SCL (SCL_A/G pin), SDA (SDA_A/G pin)
Figure 4. I2C slave timing diagram
START
(3)
20 + 0.1C
20 + 0.1C
4.7 1.3
µs
(2)
b
(2)
b
300
ns
300
µs
REPEATED
START
SDA
f(SDA)
r(SDA)
su(SDA)
h(SDA)
SCL
w(SCLL)
h(ST)
1. Data based on standard I
w(SCLH)
2
C protocol requirement, not tested in production.
r(SCL)
f(SCL)
2 Cb = total capacitance of one bus line, in pF
3. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
Doc ID 022018 Rev 1 15/54
su(SR)
su(SP)
w(SP:SR)
START
STOP
AM09238V1
Module specifications LSM330DL

2.5 Absolute maximum ratings

Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 8. Absolute maximum ratings

Symbol Ratings Maximum value Unit
Vdd Supply voltage -0.3 to 4.8 V
Vdd_IO I/O pins supply voltage -0.3 to 4.8 V
Input voltage on any control pin (SCL_A/G, SDA/SDI_A/G, SDO_A/G, CS_A/G)
Acceleration (any axis, powered, Vdd = 3 V)
-0.3 to Vdd_IO +0.3 V
3000 g for 0.5 ms
10000 g for 0.1 ms
A
Vin
POW
A
T
T
UNP
STG
Acceleration (any axis, unpowered)
Operating temperature range -40 to +85 °C
OP
Storage temperature range -40 to +125 °C
ESD Electrostatic discharge protection 2 (HBM) kV
Note: Supply voltage on any pin should never exceed 4.8 V
This is a device sensitive to mechanical shock, improper handling can cause permanent damage to the part
This is an ESD-sensitive device, improper handling can cause permanent damage to the part
3000 g for 0.5 ms
10000 g for 0.1 ms
16/54 Doc ID 022018 Rev 1
LSM330DL Module specifications

2.6 Terminology

2.6.1 Sensitivity

Linear acceleration sensitivity can be determined by applying 1 g acceleration to the device. As the sensor can measure DC accelerations, this can be done easily by pointing the axis of interest towards the center of the Earth, noting the output value, rotating the sensor by 180 degrees (point to the sky) and then noting the output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and also very little over time. The sensitivity tolerance describes the range of sensitivities of a large population of sensors.
Angular rate sensitivity describes the angular rate gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and also very little over time.

2.6.2 Zero level

Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on the X-axis and 0 g on the Y-axis whereas the Z-axis will measure 1 g. The output is ideally in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2’s complement number). A deviation from the ideal value in this case is called zero-g offset. Offset is to some extent a result of stress to the MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see “Zero-g level change vs. temperature” (refer toTable 3). The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a population of sensors.
The angular rate zero-rate level describes the actual output value if there is no angular rate present. Zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and also very little over time.
Doc ID 022018 Rev 1 17/54
Functionality LSM330DL

3 Functionality

The LSM330DL is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope.
The complete device includes specific sensing elements and two IC interfaces able to measure both the acceleration and angular rate applied to the module and to provide a signal to the external world through an SPI/I
The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are based on CMOS technology that allows designing a dedicated circuit which is trimmed to better match the sensing element characteristics.
The LSM330DL may also be configured to generate an inertial wake-up and free-fall interrupt signal according to a programmed acceleration event along the enabled axes.

3.1 Factory calibration

The IC interface is factory calibrated for sensitivity and zero level. The trimming values are stored inside the device in non-volatile memory. Any time the device is turned on, the trimming parameters are downloaded into the registers to be used during normal operation. This allows using the device without further calibration.
2
C serial interface.
18/54 Doc ID 022018 Rev 1
LSM330DL Application hints

4 Application hints

Figure 5. LSM330DL electrical connections

Vdd_IO
C5
GND
CS_G
10
Res
11
Vdd_IO_G
SCL_G
Res
14
15
Vdd
Vdd
Digital signal from/to signal controller.Signals levels are defined by proper selection of Vdd

Table 9. Part list

Component Typical value
Reserved pins have to be connected to GND
SDA/SDI_G
INT2_A
LSM330DL
(TOP VIEW)
FILTVDD
FILTIN Y
CS_A
Res
DRDY_G
SDO_G
INT1_A
SCL_A
Res
Res
Res
INT1_G
SDO_A
Vdd
SDA/SDI_A
Res
1
28
25
24
Res
Res
Vdd_IO_A
Res
VCONT
GND
C4
C3
Vdd_IO
GND
Z
DIRECTION OF DETECTABLE ACCELERATIONS
Z
DIRECTION OF
C1
R2C2
DETECTABLE ANGULAR RATE
Y
1
X
+Ω
+Ω
Y
z
1
Y
+Ω
X
X
GND
AM09287v1
C1 10 nF
C2 470 nF
C3 10 µF
C4
C5
R2 10 kOhm

4.1 External capacitors

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C4=100 nF ceramic, C3=10 µF Al) should be placed as near as possible to the supply pin of the device (common design practice).
All the voltage and ground supplies must be present at the same time to have proper behavior of the IC (refer to Figure 5).
The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I
2
C interface.
100 nF
Doc ID 022018 Rev 1 19/54
Application hints LSM330DL
The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user though the SPI/I

4.2 Soldering information

The LGA package is compliant with the ECOPACK®, RoHS and “Green” standards. It is qualified for soldering heat resistance according to JEDEC J-STD-020D.
Leave “Pin 1 Indicator” unconnected during soldering.
The landing pattern and soldering recommendations are available at www.st.com/mems
2
C interface.
.
20/54 Doc ID 022018 Rev 1
LSM330DL Digital interfaces

5 Digital interfaces

The registers embedded inside the LSM330DL may be accessed through both the I2C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode.
To select/exploit the I

Table 10. Serial interface pin description

Pin name Pin description
2
C interface, the CS line must be tied high (i.e. connected to Vdd_IO).
CS_A
CS_G
SCL_A SCL_G
SDA/SDI_A
SDA/SDI_G
SDO_A SDO_G
Linear acceleration SPI enable Linear acceleration I
Angular rate SPI enable Angular rate I
2
I
C serial clock (SCL)
SPI serial port clock (SPC)
2
C serial data (SDA)
I SPI serial data input (SDI) 3-wire interface serial data output (SDO)
I2C least significant bit of the device address (SA0) SPI serial data output (SDO)

5.1 I2C serial interface

The LSM330DL I2C is a bus slave. The I2C is employed to write data into the registers whose content can also be read back.
The relevant I

Table 11. Serial interface terminology

2
C terminology is given in the table below.
Term Description
2
C/SPI mode selection (1: I2C mode; 0: SPI enabled)
2
C/SPI mode selection (1: I2C mode; 0: SPI enabled)
Transmitter The device which sends data to the bus
Receiver The device which receives data from the bus
Master
Slave The device addressed by the master
There are two signals associated with the I
The device which initiates a transfer, generates clock signals and terminates a transfer
2
C bus: the serial clock line (SCL) and the serial data line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface.
Doc ID 022018 Rev 1 21/54
Digital interfaces LSM330DL

5.1.1 I2C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the Master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the Master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its own address. If they match, the device considers itself addressed by the Master.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.
2
The I
C embedded inside the LSM330DL behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) will be transmitted: the 7 LSb represents the actual register address while the MSB enables the address auto increment. If the MSb of the SUB field is ‘1’, the SUB (register address) will be automatically increased to allow multiple data read/writes.
Table 12. Transfer when master is writing one byte to slave
Master ST SAD + W SUB DATA SP
Slave SAK SAK SAK
Table 13. Transfer when master is writing multiple bytes to slave
Master ST SAD + W SUB DATA DATA SP
Slave SAK SAK SAK SAK
Table 14. Transfer when master is receiving (reading) one byte of data from slave
Master ST SAD + W SUB SR SAD + R NMAK SP
Slave SAK SAK SAK DATA
Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave
Master ST SAD+W SUB SR SAD+R MAK MAK NMAK SP
Slave SAK SAK SAK DATA DATA DATA
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can’t receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait
22/54 Doc ID 022018 Rev 1
LSM330DL Digital interfaces
state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function), the data line must be left HIGH by the slave. The Master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the sub­address field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the address of first register to be read.
In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge.
Default address
The SDO/SA0 pad can be used to modify the least significant bit of the device address. If the SA0 pad is connected to a voltage supply, LSb is ‘1’ (ex. address 0011001b), else if the SA0 pad is connected to ground, the LSb value is ‘0’ (ex address 0011000b).
The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated START (SR) condition will have to be issued after the two sub-address bytes. If the bit is ‘0’ (Write), the Master will transmit to the slave with the direction unchanged. Table 16 and
Table 17 explain how the SAD+Read/Write bit pattern is composed, listing all the possible
configurations.
Linear acceleration address: the default (factory) 7-bit slave address is 001100xb
Table 16. Linear acceleration SAD+Read/Write patterns
Command SAD[6:1] SAD[0] = SA0 R/W SAD+R/W
Read 001100 0 1 00110001 (31h)
Write 001100 0 0 00110000 (30h)
Read 001100 1 1 00110011 (33h)
Write 001100 1 0 00110010 (32h)
Angular rate sensor: the default (factory) 7-bit slave address is 110100xb
Table 17. Angular rate SAD+Read/Write patterns
Command SAD[6:1] SAD[0] = SA0 R/W SAD+R/W
Read 110100 0 1 11010001 (D1h)
Write 110100 0 0 11010000 (D0h)
Read 110100 1 1 11010011 (D3h)
Write 110100 1 0 11010010 (D2h)
Doc ID 022018 Rev 1 23/54
Digital interfaces LSM330DL

5.2 SPI bus interface

The LSM330DL SPI is a bus slave. The SPI allows to write and read the registers of the device.
The Serial Interface interacts with the outside world with 4 wires: CS, SPC, SDI and SDO (SPC, SDI, SD0 are common).

Figure 6. Read and write protocol

CS
SPC
SDI
RW
MS
AD5 AD4 AD3 AD2 AD1 AD0
SDO
CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. SPC is the serial port clock and it is controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are, respectively, the serial port data input and output. These lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC.
DI7DI6DI5DI4DI3DI2DI1DI0
DO7DO6DO5DO4DO3DO2DO1DO0
Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS, while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS.
bit 0: RW
bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)
from the device is read. In the latter case, the chip will drive SDO at the start of bit 8.
bit 1: MS
bit. When 0, the address will remain unchanged in multiple read/write commands.
When 1, the address will be auto-incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that will be written into the device (MSb
first).
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).
In multiple read/write commands, further blocks of 8 clock periods will be added. When the MS
bit is ‘0’, the address used to read/write data remains the same for every block. When
the MS
bit is ‘1’, the address used to read/write data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.
24/54 Doc ID 022018 Rev 1
LSM330DL Digital interfaces

5.2.1 SPI read

Figure 7. SPI read protocol
CS
SPC
SDI
RW
MS
AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5DO4 DO3 DO2 DO1DO0
The SPI Read command is performed with 16 clock pulses. The multiple byte read command is performed, adding blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS
bit. When 0, this bit does not increment the address. When 1, it increments the
address in multiple reads.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
bit 16-... : data DO(...-8). Further data in multiple byte reads.
Figure 8. Multiple bytes SPI read protocol (2 bytes example)
CS
SPC
SDI
SDO

5.2.2 SPI write

Figure 9. SPI write protocol
RW
AD5 AD4 AD3 AD2 AD1 AD0
MS
DO7DO6DO5DO4DO3DO2DO1DO0
DO15 DO14 DO13 DO12 DO11 DO10 DO9 DO8
CS
SPC
SDI
RW
AD5 AD4 AD3 AD2 AD1 AD0MS
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
Doc ID 022018 Rev 1 25/54
Digital interfaces LSM330DL
The SPI Write command is performed with 16 clock pulses. The multiple byte write command is performed adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1: MS
bit. When 0, this bit does not increment the address, when 1, it increments the
address in multiple writes.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that will be written inside the device
(MSb first).
bit 16-... : data DI(...-8). Further data in multiple byte writes.
Figure 10. Multiple bytes SPI write protocol (2 bytes example)
CS
SPC
SDI
RW
MS
AD5 AD4 AD3 AD2 AD1 AD0

5.2.3 SPI read in 3-wire mode

The 3-wire mode is entered by setting to ‘1’ bit SIM (SPI serial interface mode selection) in CTRL_REG4.
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8
Figure 11. SPI read protocol in 3-wire mode
CS
SPC
SDI/O
RW
MS
AD5 AD4 AD3 AD2 AD1 AD0
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1: MS
bit. When 0, this bit does not increment the address, when 1, it increments the
address in multiple reads.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
The multiple read command is also available in 3-wire mode.
26/54 Doc ID 022018 Rev 1
LSM330DL Register mapping

6 Register mapping

The table given below provides a listing of the 8-bit registers embedded in the device and their respective addresses.

Table 18. Register address map

Name
Reserved (do not modify) 001100xb 00 - 1F Reserved
CTRL_REG1_A 001100xb rw 20 010 0000 00000111
CTRL_REG2_A 001100xb rw 21 010 0001 00000000
CTRL_REG3_A 001100xb rw 22 010 0010 00000000
CTRL_REG4_A 001100xb rw 23 010 0011 00000000
CTRL_REG5_A 001100xb rw 24 010 0100 00000000
CTRL_REG6_A 001100xb rw 25 010 0101 00000000
REFERENCE/DATACAPTURE_A 001100xb rw 26 010 0110 00000000
STATUS_REG_A 001100xb r 27 010 0111 00000000
OUT_X_L_A 001100xb r 28 010 1000 output
OUT_X_H_A 001100xb r 29 010 1001 output
OUT_Y_L_A 001100xb r 2A 010 1010 output
OUT_Y_H_A 001100xb r 2B 010 1011 output
OUT_Z_L_A 001100xb r 2C 010 1100 output
OUT_Z_H_A 001100xb r 2D 010 1101 output
FIFO_CTRL_REG_A 001100xb rw 2E 010 1110 00000000
Slave
address
Type
Register address
Default Comment
Hex Binary
FIFO_SRC_REG_A 001100xb r 2F 010 1111
INT1_CFG_A 001100xb rw 30 011 0000 00000000
INT1_SRC_A 001100xb r 31 011 0001 00000000
INT1_THS_A 001100xb rw 32 011 0010 00000000
INT1_DURATION_A 001100xb rw 33 011 0011 00000000
INT2_CFG_A 001100xb rw 34 011 0100 00000000
INT2_SOURCE_A 001100xb r 35 011 0101 00000000
INT2_THS_A 001100xb rw 36 011 0110 00000000
INT2_DURATION_A 001100xb rw 37 011 0111 00000000
CLICK_CFG_A 001100xb rw 38 011 1000 00000000
CLICK_SRC_A 001100xb rw 39 011 1001 00000000
CLICK_THS_A 001100xb rw 3A 011 1010 00000000
TIME_LIMIT_A 001100xb rw 3B 011 1011 00000000
Doc ID 022018 Rev 1 27/54
Register mapping LSM330DL
Table 18. Register address map (continued)
Name
TIME_LATENCY_A 001100xb rw 3C 011 1100 00000000
TIME_WINDOW_A 001100xb rw 3D 011 1101 00000000
Reserved (do not modify) 001100xb 3E-3F Reserved
Reserved 110100xb - 00-1E - - Reserved
CTRL_REG1_G 110100xb rw 20 010 0000 00000111
CTRL_REG2_G 110100xb rw 21 010 0001 00000000
CTRL_REG3_G 110100xb rw 22 010 0010 00000000
CTRL_REG4_G 110100xb rw 23 010 0011 00000000
CTRL_REG5_G 110100xb rw 24 010 0100 00000000
REFERENCE/DATACAPTURE_G 110100xb rw 25 010 0101 00000000
OUT_TEMP_G 110100xb r 26 010 0110 output
STATUS_REG_G 110100xb r 27 010 0111 output
OUT_X_L_G 110100xb r 28 010 1000 output
OUT_X_H_G 110100xb r 29 010 1001 output
OUT_Y_L_G 110100xb r 2A 010 1010 output
Slave
address
Type
Register address
Default Comment
Hex Binary
OUT_Y_H_G 110100xb r 2B 010 1011 output
OUT_Z_L_G 110100xb r 2C 010 1100 output
OUT_Z_H_G 110100xb r 2D 010 1101 output
FIFO_CTRL_REG_G 110100xb rw 2E 010 1110 00000000
FIFO_SRC_REG_G 110100xb r 2F 010 1111 output
INT1_CFG_G 110100xb rw 30 011 0000 00000000
INT1_SRC_G 110100xb r 31 011 0001 output
INT1_THS_XH_G 110100xb rw 32 011 0010 00000000
INT1_THS_XL_G 110100xb rw 33 011 0011 00000000
INT1_THS_YH_G 110100xb rw 34 011 0100 00000000
INT1_THS_YL_G 110100xb rw 35 011 0101 00000000
INT1_THS_ZH_G 110100xb rw 36 011 0110 00000000
INT1_THS_ZL_G 110100xb rw 37 011 0111 00000000
INT1_DURATION_G 110100xb rw 38 011 1000 00000000
Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device.
The content of the registers that are loaded at boot should not be changed. They contain the factory-calibrated values. Their content is automatically restored when the device is powered up.
28/54 Doc ID 022018 Rev 1
LSM330DL Registers description

7 Registers description

The device contains a set of registers which are used to control its behavior and to retrieve acceleration, angular rate and temperature data. The register addresses, composed of 7 bits, are used to identify them and to write the data through the serial interface.

7.1 CTRL_REG1_A (20h)

Table 19. CTRL_REG1_A register

ODR3 ODR2 ODR1 ODR0 LPen Zen Yen Xen

Table 20. CTRL_REG1_A description

ODR3-0
LPen
Zen
Ye n
Xen
Data rate selection. Default value: 0 (0000: power-down; Others: Refer to Table 21: Data rate configuration
Low-power mode enable. Default value: 0 (0: normal mode, 1: low-power mode)
Z-axis enable. Default value: 1 (0: Z-axis disabled; 1: Z-axis enabled)
Y-axis enable. Default value: 1 (0: Y-axis disabled; 1: Y-axis enabled)
X-axis enable. Default value: 1 (0: X-axis disabled; 1: X-axis enabled)
ODR<3:0> is used to set power mode and ODR selection. The following table gives the frequency for all combinations of ODR<3:0>.

Table 21. Data rate configuration

ODR3 ODR2 ODR1 ODR0 Power mode selection
0000Power-down mode
0 0 0 1 Normal / low-power mode (1 Hz)
0 0 1 0 Normal / low-power mode (10 Hz)
0 0 1 1 Normal / low-power mode (25 Hz)
0 1 0 0 Normal / low-power mode (50 Hz)
0 1 0 1 Normal / low-power mode (100 Hz)
0 1 1 0 Normal / low-power mode (200 Hz)
0 1 1 1 Normal / low-power mode (400 Hz)
1000Low-power mode (1.620 kHz)
1 0 0 1 Normal (1.344 kHz) / low-power mode (5.376 kHz)
Doc ID 022018 Rev 1 29/54
Registers description LSM330DL

Table 22. Operating mode selection

Operating mode
Low-power mode 1 0 ODR/2 1
Normal mode 0 1 ODR/9 7/ODR
CTRL_REG1[3]
(LPen bit)

7.2 CTRL_REG2_A (21h)

Table 23. CTRL_REG2_A register

HPM1 HPM0 HPCF2 HPCF1 FDS HPCLICK HPIS2 HPIS1

Table 24. CTRL_REG2_A description

HPM1 -HPM0 High-pass filter mode selection. Default value: 00
Refer to Table 25: High-pass filter mode configuration
HPCF2 ­HPCF1
FDS
High-pass filter cutoff frequency selection
Filtered data selection. Default value: 0 (0: internal filter bypassed; 1: data from internal filter sent to output register and FIFO)
CTRL_REG4[3]
(HR bit)
BW [Hz]
Turn-on time
[ms]
HPCLICK
HPIS2 High-pass filter enabled for AOI function on interrupt 2,
HPIS1 High-pass filter enabled for AOI function on interrupt 1,
High-pass filter enabled for CLICK function (0: filter bypassed; 1: filter enabled)
(0: filter bypassed; 1: filter enabled)
(0: filter bypassed; 1: filter enabled)

Table 25. High-pass filter mode configuration

HPM1 HPM0 High-pass filter mode
0 0 Normal mode (reset reading HP_RESET_FILTER)
0 1 Reference signal for filtering
1 0 Normal mode
1 1 Autoreset on interrupt event
30/54 Doc ID 022018 Rev 1
LSM330DL Registers description

7.3 CTRL_REG3_A (22h)

Table 26. CTRL_REG3_A register

I1_CLICK I1_AOI1 0
1. This bit has to be set ‘0’ for correct operation.

Table 27. CTRL_REG3_A description

I1_CLICK CLICK interrupt on INT1_A. Default value 0.
I1_AOI1 AOI1 interrupt on INT1_A. Default value 0.
I1_DRDY1 DRDY1 interrupt on INT1_A. Default value 0.
I1_DRDY2 DRDY2 interrupt on INT1_A. Default value 0.
I1_WTM FIFO watermark interrupt on INT1_A. Default value 0.
(1)
(0: Disable; 1: Enable)
(0: Disable; 1: Enable)
(0: Disable; 1: Enable)
(0: Disable; 1: Enable)
(0: Disable; 1: Enable)
I1_DRDY1 I1_DRDY2 I1_WTM I1_OVERRUN --
I1_OVERRUN FIFO overrun interrupt on INT1_A. Default value 0.
(0: Disable; 1: Enable)

7.4 CTRL_REG4_A (23h)

Table 28. CTRL_REG4_A register

BDU BLE FS1 FS0 HR 0

Table 29. CTRL_REG4_A description

BDU Block data update. Default value: 0(0: continuous update; 1: output registers
not updated until MSB and LSB reading)
BLE Big/little endian data selection. Default value 0.
(0: Data LSB at lower address; 1: Data MSB at lower address)
FS1-FS0 Full-scale selection. default value: 00
(00: +/- 2G; 01: +/- 4G; 10: +/- 8G; 11: +/- 16G)
HR Normal mode: default value: 0
(0: normal mode disable; 1: normal mode enable
SIM SPI serial interface mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface)
(1)
(1)
0
SIM
Doc ID 022018 Rev 1 31/54
Registers description LSM330DL

7.5 CTRL_REG5_A (24h)

Table 30. CTRL_REG5_A register

BOOT FIFO_EN -- -- LIR_INT1 D4D_INT1 0
1. This bit has to be set ‘0’ for correct operation.
(1)

Table 31. CTRL_REG5_A description

BOOT Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
FIFO_EN FIFO enable. Default value: 0
(0: FIFO disable; 1: FIFO enable)
LIR_INT1 Latch interrupt request on INT1_SRC_A register, with INT1_SRC_A register
cleared by reading INT1_SRC_A itself. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched)
D4D_INT1 4D enable: 4D detection is enabled on INT1_A when 6D bit on INT1_CFG_A
is set to 1.
(1)
0

7.6 CTRL_REG6_A (25h)

Table 32. CTRL_REG6_A register

I2_CLICKen I2_INT1 0
1. This bit has to be set to ‘0’ for correct operation.
(1)
BOOT_I2 0
(1)

Table 33. CTRL_REG6 description

I2_CLICKen Click interrupt on INT2_A. Default value 0.
I2_INT1 Interrupt 1 function enabled on INT2_A. Default 0.
BOOT_I2 Boot on INT2_A.
H_LACTIVE 0: interrupt active high; 1: interrupt active low.

7.7 REFERENCE/DATACAPTURE_A (26h)

Table 34. REFERENCE/DATACAPTURE_A register

Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0
-- H_LACTIVE --

Table 35. REFERENCE/DATACAPTURE_A register description

Ref 7-Ref0 Reference value for interrupt generation. Default value: 0
32/54 Doc ID 022018 Rev 1
LSM330DL Registers description

7.8 STATUS_REG_A (27h)

Table 36. STATUS_REG_A register

ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA

Table 37. STATUS_REG_A register description

ZYXOR X-, Y- and Z-axis data overwrite. Default value: 0
(0: no overwrite has occurred; 1: a new set of data has overwritten the previous ones)
ZOR Z-axis data overwrite. Default value: 0
(0: no overrun has occurred; 1: a new data for the Z-axis has overwritten the previous one)
YOR Y-axis data overwrite. Default value: 0
(0: no overwrite has occurred; 1: new data for the Y-axis has overwritten the previous data)
XOR X-axis data overwrite. Default value: 0
(0: no overwrite has occurred; 1: new data for the X-axis has overwritten the previous data)
ZYXDA X-, Y- and Z-axis new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
ZDA Z-axis new data available. Default value: 0
(0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available)
YDA Y-axis new data available. Default value: 0
(0: new data for the Y-axis is not yet available; 1: new data for the Y-axis is available)

7.9 OUT_X_L_A (28h), OUT_X_H_A (29h)

This register contains X-axis acceleration data. Values are expressed in two’s complement.

7.10 OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh)

This register containsY-axis acceleration data. Values are expressed in two’s complement.

7.11 OUT_Z_L _A(2Ch), OUT_Z_H_A (2Dh)

This register contains Z-axis acceleration data. Values are expressed in two’s complement.

7.12 FIFO_CTRL_REG_A (2Eh)

Table 38. FIFO_CTRL_REG_A register

FM1 FM0 TR FTH4 FTH3 FTH2 FTH1 FTH0
Doc ID 022018 Rev 1 33/54
Registers description LSM330DL

Table 39. FIFO_CTRL_REG_A register description

FM1-FM0
TR Trigger selection. Default value: 0
FTH4:0 Default value: 0
FIFO mode selection. Default value: 00 (see Table 40: FIFO mode configuration
0: Trigger event linked to trigger signal on INT1_A 1: Trigger event linked to trigger signal on INT2_A
)

Table 40. FIFO mode configuration

FM1 FM0 FIFO mode
0 0 Bypass mode
0 1 FIFO mode
1 0 Stream mode
1 1 Trigger mode

7.13 FIFO_SRC_REG_A (2Fh)

Table 41. FIFO_SRC_REG_A register

WTM OVRN_FIFO EMPTY FSS4 FSS3 FSS2 FSS1 FSS0

7.14 INT1_CFG_A (30h)

Table 42. INT1_CFG_REG_A register

AOI 6D ZHIE/
ZUPE

Table 43. INT1_CFG_REG_A description

AOI And/Or combination of Interrupt events. Default value: 0. Refer to Table 44: Interrupt
mode
6D 6-direction detection function enabled. Default value: 0. Refer to Table 44: Interrupt
mode
ZHIE/ ZUPE
ZLIE/ ZDOWNE
YHIE/ YUPE
YLIE/ YDOWNE
Enable interrupt generation on Z high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request)
Enable interrupt generation on Z low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request)
Enable interrupt generation on Y high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.)
Enable interrupt generation on Y low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.)
ZLIE/ ZDOWNE
YHIE/ YUPE
YLIE/ YDOWNE
XHIE/ XUPE
XLIE/ XDOWNE
34/54 Doc ID 022018 Rev 1
LSM330DL Registers description
Table 43. INT1_CFG_REG_A description (continued)
XHIE/ XUPE
XLIE/XDO WNE
Enable interrupt generation on X high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.)
Enable interrupt generation on X low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.)
The contents of the INT1_CFG_REG_A register are loaded at boot.
A write operation at this address is possible only after system boot.

Table 44. Interrupt mode

AOI 6D Interrupt mode
0 0 OR combination of interrupt events
0 1 6-direction movement recognition
1 0 AND combination of interrupt events
116-direction position recognition
The difference between AOI-6D = ‘01’ and AOI-6D = ‘11’ is defined as follows:
AOI-6D = ‘01’ is movement recognition. An interrupt is generated when the orientation moves from an unknown zone to a known zone. The interrupt signal stays for a duration determined by ODR.
AOI-6D = ‘11’ is direction recognition. An interrupt is generated when the orientation is inside a known zone. The interrupt signal stays until orientation is inside the zone.

7.15 INT1_SRC_A (31h)

Table 45. INT1_SRC_A register

(1)
0
1. This bit has to be set to ‘0’ for correct operation.

Table 46. INT1_SRC_A description

IA
ZH
ZL
IA ZH ZL YH YL XH XL
Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated)
Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred)
Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred)
YH
YL
Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred)
Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred)
Doc ID 022018 Rev 1 35/54
Registers description LSM330DL
Table 46. INT1_SRC_A description
XH
X high. Default value: 0 (0: no interrupt, 1: X high event has occurred)
X low. Default value: 0
XL
(0: no interrupt, 1: X low event has occurred)
The Interrupt 1 source register is a read-only register.
Reading at this address clears the INT1_SRC_A IA bit (and the interrupt signal on the INT1_A pin) and allows the refreshment of data in the INT1_SRC_A register if the latched option was chosen.

7.16 INT1_THS_A (32h)

Table 47. INT1_THS_A register

(1)
0
1. This bit has to be set to ‘0’ for correct operation.
THS6 THS5 THS4 THS3 THS2 THS1 THS0

Table 48. INT1_THS_A description

THS6 - THS0 Interrupt 1 threshold. Default value: 000 0000

7.17 INT1_DURATION_A (33h)

Table 49. INT1_DURATION_A register

(1)
0
1. This bit has to be set to ‘0’ for correct operation.
D6 D5 D4 D3 D2 D1 D0

Table 50. INT1_DURATION_A description

D6 - D0 Duration value. Default value: 000 0000
The D6 - D0 bits set the minimum duration of the Interrupt 1 event to be recognized. The duration of the steps and maximum values depend on the ODR chosen.

7.18 CLICK_CFG _A (38h)

Table 51. CLICK_CFG_A register

-- -- ZD ZS YD YS XD XS
36/54 Doc ID 022018 Rev 1
LSM330DL Registers description

Table 52. CLICK_CFG_A description

ZD Enable interrupt double CLICK on Z-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold)
ZS Enable interrupt single CLICK on Z-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold)
YD Enable interrupt double CLICK on Y-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold)
YS Enable interrupt single CLICK on Y-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold)
XD Enable interrupt double CLICK on X-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold)
XS Enable interrupt single CLICK on X-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold)

7.19 CLICK_SRC_A (39h)

Table 53. CLICK_SRC_A register

-- IA DCLICK SCLICK Sign Z Y X

Table 54. CLICK_SRC_A description

IA Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
DCLICK Double CLICK-CLICK enable. Default value: 0 (0: double CLICK-CLICK detection dis-
able, 1: double CLICK-CLICK detection enable)
SCLICK Single CLICK-CLICK enable. Default value: 0 (0: single CLICK-CLICK detection disable,
1: single CLICK-CLICK detection enable)
Sign CLICK-CLICK Sign. 0: positive detection, 1: negative detection
Z Z CLICK-CLICK detection. Default value: 0 (0: no interrupt, 1: Z high event has occurred)
Y Y CLICK-CLICK detection. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
X X CLICK-CLICK detection. Default value: 0
(0: no interrupt, 1: X high event has occurred)
Doc ID 022018 Rev 1 37/54
Registers description LSM330DL

7.20 CLICK_THS_A (3Ah)

Table 55. CLICK_THS_A register

LIR Ths6 Ths5 Ths4 Ths3 Ths2 Ths1 Ths0

Table 56. CLICK_SRC_A description

Ths6-Ths0 CLICK-CLICK threshold. Default value: 000 0000
LIR Latch interrupt request for CLICK-CLICK function enable. 0 disable, 1 enable

7.21 TIME_LIMIT_A (3Bh)

Table 57. TIME_LIMIT_A register

-- TLI6 TLI5 TLI4 TLI3 TLI2 TLI1 TLI0

Table 58. TIME_LIMIT_A description

TLI7-TLI0 CLICK-CLICK time limit. Default value: 000 0000

7.22 TIME_LATENCY_A (3Ch)

Table 59. TIME_LATENCY_A register

TLA7 TLA6 TLA5 TLA4 TLA3 TLA2 TLA1 TLA0

Table 60. TIME_LATENCY_A description

TLA7-TLA0 CLICK-CLICK time latency. Default value: 000 0000

7.23 TIME WINDOW_A (3Dh)

Table 61. TIME_WINDOW_A register

TW7 TW6 TW5 TW4 TW3 TW2 TW1 TW0

Table 62. TIME_WINDOW_A description

TW7-TW0 CLICK-CLICK time window
38/54 Doc ID 022018 Rev 1
LSM330DL Registers description

7.24 CTRL_REG1_G (20h)

Table 63. CTRL_REG1_G register

DR1 DR0 BW1 BW0 PD Zen Yen Xen

Table 64. CTRL_REG1_G description

DR1-DR0 Output data rate selection. Refer to Table 65: DR and BW configuration setting
BW1-BW0 Bandwidth selection. Refer to Table 65: DR and BW configuration setting
PD
Zen Z-axis enable. Default value: 1
Yen Y-axis enable. Default value: 1
Xen X-axis enable. Default value: 1
Power-down mode enable. Default value: 0 (0: power-down mode, 1: normal mode or sleep mode)
(0: Z-axis disabled; 1: Z-axis enabled)
(0: Y-axis disabled; 1: Y-axis enabled)
(0: X-axis disabled; 1: X-axis enabled)
DR<1:0> is used to set the ODR selection. BW <1:0> is used to set bandwidth selection.
The following table gives the frequencies for all combinations of the DR / BW bits.

Table 65. DR and BW configuration setting

DR <1:0> BW <1:0> ODR [Hz] cutoff [Hz]
00 00 100 12.5
00 01 100 25
00 10 100 25
00 11 100 25
01 00 200 12.5
01 01 200 25
01 10 200 50
01 11 200 70
10 00 400 20
10 01 400 25
10 10 400 50
10 11 400 110
11 00 800 30
11 01 800 35
11 10 800 50
11 11 800 110
Doc ID 022018 Rev 1 39/54
Registers description LSM330DL
Combination of PD, Zen, Yen, Xen are used to set device in different modes (power-down / normal / sleep mode) according to the following table.

Table 66. Power mode selection configuration

Mode PD Zen Yen Xen
Power-down 0 - - -
Sleep 1 0 0 0
Normal 1 - - -

7.25 CTRL_REG2_G (21h)

Table 67. CTRL_REG2_G register

(1)
0
1. This bit has to be set to ‘0’ for correct operation.

Table 68. CTRL_REG2_G description

HPM1­HPM0
HPCF3­HPCF0
(1)
0
High-pass filter mode selection. Default value: 00 Refer to Table 69: High-pass filter mode configuration
High-pass filter cutoff frequency selection Refer to Table 70: High-pass filter cutoff frequency configuration [Hz]
HPM1 HPM1 HPCF3 HPCF2 HPCF1 HPCF0

Table 69. High-pass filter mode configuration

HPM1 HPM0 High-pass filter mode
0 0 Normal mode (reset reading HP_RESET_FILTER)
0 1 Reference signal for filtering
1 0 Normal mode
1 1 Autoreset on interrupt event

Table 70. High-pass filter cutoff frequency configuration [Hz]

HPCF3-0 ODR = 100 Hz ODR = 200 Hz ODR = 400 Hz ODR = 800 Hz
0000 8 15 30 56
0001 4 8 15 30
0010 2 4 8 15
0011 1 2 4 8
0100 0.5 1 2 4
0101 0.2 0.5 1 2
40/54 Doc ID 022018 Rev 1
LSM330DL Registers description
Table 70. High-pass filter cutoff frequency configuration [Hz] (continued)
HPCF3-0 ODR = 100 Hz ODR = 200 Hz ODR = 400 Hz ODR = 800 Hz
0110 0.1 0.2 0.5 1
0111 0.05 0.1 0.2 0.5
1000 0.02 0.05 0.1 0.2
1001 0.01 0.02 0.05 0.1

7.26 CTRL_REG3_G (22h)

Table 71. CTRL_REG3_G register

I1_Int1 I1_Boot H_Lactive PP_OD I2_DRDY I2_WTM I2_ORun I2_Empty

Table 72. CTRL_REG3_G description

I1_Int1 Interrupt enable on INT1_G pin. Default value 0. (0: Disable; 1: Enable)
I1_Boot Boot status available on INT1_G. Default value 0. (0: Disable; 1: Enable)
H_Lactive Interrupt active configuration on INT1_G. Default value 0. (0: High; 1:Low)
PP_OD Push-Pull / Open drain. Default value: 0. (0: Push-Pull; 1: Open drain)
I2_DRDY Date Ready on DRDY_G/INT2_G. Default value 0. (0: Disable; 1: Enable)
I2_WTM FIFO watermark interrupt on DRDY_G/INT2_G. Default value: 0. (0: Disable; 1: Enable)
I2_ORun FIFO overrun interrupt on DRDY_G/INT2_G Default value: 0. (0: Disable; 1: Enable)
I2_Empty FIFO empty interrupt on DRDY_G/INT2_G. Default value: 0. (0: Disable; 1: Enable)

7.27 CTRL_REG4_G (23h)

Table 73. CTRL_REG4_G register

BDU BLE FS1 FS0 -- 0
1. This bit has to be set to ‘0’ for correct operation.

Table 74. CTRL_REG4_G description

BDU Block data update. Default value: 0
(0: continuous update; 1: output registers not updated until MSB and LSB have been read)
BLE Big/little endian data selection. Default value 0.
(0: Data LSB at lower address; 1: Data MSB at lower address)
(1)
(1)
0
SIM
Doc ID 022018 Rev 1 41/54
Registers description LSM330DL
Table 74. CTRL_REG4_G description (continued)
FS1-FS0 Full-scale selection. Default value: 00
(00: 250 dps; 01: 500 dps; 10: 2000 dps; 11: 2000 dps)
SIM SPI serial interface mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).

7.28 CTRL_REG5_G (24h)

Table 75. CTRL_REG5_G register

BOOT FIFO_EN -- HPen INT1_Sel1 INT1_Sel0 Out_Sel1 Out_Sel0

Table 76. CTRL_REG5_G description

BOOT Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
FIFO_EN FIFO enable. Default value: 0
(0: FIFO disable; 1: FIFO Enable)
HPen High-pass filter enable. Default value: 0
(0: HPF disabled; 1: HPF enabled See Figure 12: INT1_Sel and Out_Sel config-
uration block diagram)
INT1_Sel1­INT1_Sel0
Out_Sel1­Out_Sel1

Figure 12. INT1_Sel and Out_Sel configuration block diagram

INT1 selection configuration. Default value: 0 (See Figure 12: INT1_Sel and Out_Sel configuration block diagram)
Out selection configuration. Default value: 0 (See Figure 12: INT1_Sel and Out_Sel configuration block diagram)
0
LPF2
ADC
LPF1
HPF
1
HPen
Out_Sel <1:0>
00 01
10
DataReg
32x16x3
11
INT1_Sel <1:0>
10 11
Interrupt
01
generator
00
FIFO
42/54 Doc ID 022018 Rev 1
AM09276V1
LSM330DL Registers description

Table 77. Out_Sel configuration setting

Hpen OUT_SEL1 OUT_SEL0 Description
x00
x01
01x
11x
Data in DataReg and FIFO are non-high­pass-filtered
Data in DataReg and FIFO are high-pass­filtered
Data in DataReg and FIFO are low-pass­filtered by LPF2
Data in DataReg and FIFO are high-pass and low-pass-filtered by LPF2

Table 78. INT_SEL configuration setting

Hpen INT_SEL1 INT_SEL2 Description
x00
x01
01x
11x
Non-high-pass-filtered data are used for interrupt generation
High-pass-filtered data are used for interrupt generation
Low-pass-filtered data are used for interrupt generation
High-pass and low-pass-filtered data are used for interrupt generation

7.29 REFERENCE/DATACAPTURE_G (25h)

Table 79. REFERENCE/DATACAPTURE_G register

Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0

Table 80. REFERENCE/DATACAPTURE_G register description

Ref 7-Ref0 Reference value for interrupt generation. Default value: 0

7.30 OUT_TEMP_G (26h)

Table 81. OUT_TEMP_G register

Temp7 Temp6 Temp5 Temp4 Temp3 Temp2 Temp1 Temp0
Doc ID 022018 Rev 1 43/54
Registers description LSM330DL

Table 82. OUT_TEMP_G register description

Temp7-Temp0 Temperature data (1LSB/deg - 8-bit resolution). The value is expressed as
two’s complement.

7.31 STATUS_REG_G (27h)

Table 83. STATUS_REG_G register

ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA

Table 84. STATUS_REG_G description

X-, Y-, Z-axis data overwrite. Default value: 0
ZYXOR
(0: no overwrite has occurred; 1: new data has overwritten the previous data before it was read)
ZOR
YOR
XOR
ZYXDA X-, Y-, Z-axis new data available. Default value: 0
ZDA Z-axis new data available. Default value: 0
YDA Y-axis new data available. Default value: 0
XDA X-axis new data available. Default value: 0
Z-axis data overwrite. Default value: 0 (0: no overwrite has occurred; 1: new data for the Z-axis has overwritten the previous data)
Y-axis data overwrite. Default value: 0 (0: no overwrite has occurred; 1: new data for the Y-axis has overwritten the previous data)
X-axis data overwrite. Default value: 0 (0: no overwrite has occurred; 1: new data for the X-axis has overwritten the previous data)
(0: a new set of data is not yet available; 1: a new set of data is available)
(0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available)
(0: new data for the Y-axis is not yet available; 1: new data for the Y-axis is available)
(0: new data for the X-axis is not yet available; 1: new data for the X-axis is available)

7.32 OUT_X_L_G (28h), OUT_X_H_G (29h)

This register contains X-axis angular rate data. Values are expressed as two’s complement.

7.33 OUT_Y_L_G (2Ah), OUT_Y_H_G (2Bh)

This register contains Y-axis angular rate data. Values are expressed as two’s complement.

7.34 OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh)

This register contains Z-axis angular rate data. Values are expressed as two’s complement.
44/54 Doc ID 022018 Rev 1
LSM330DL Registers description

7.35 FIFO_CTRL_REG_G (2Eh)

Table 85. FIFO_CTRL_REG_G register

FM2 FM1 FM0 WTM4 WTM3 WTM2 WTM1 WTM0

Table 86. FIFO_CTRL_REG_G register description

FM2-FM0 FIFO mode selection. Default value: 00 (see Table 40: FIFO mode configuration
WTM4-WTM0 FIFO threshold. Watermark level setting

Table 87. FIFO mode configuration

FM2 FM1 FM0 FIFO mode
000Bypass mode
001FIFO mode
010Stream mode
011Stream-to-FIFO mode
100Bypass-to-Stream mode

7.36 FIFO_SRC_REG_G (2Fh)

Table 88. FIFO_SRC_REG_G register

WTM OVRN EMPTY FSS4 FSS3 FSS2 FSS1 FSS0

Table 89. FIFO_SRC_REG_G register description

WTM Watermark status. (0: FIFO filling is lower than WTM level; 1: FIFO filling is equal
or higher than WTM level)
OVRN Overrun bit status.
(0: FIFO is not completely filled; 1:FIFO is completely filled)
EMPTY FIFO empty bit.
( 0: FIFO not empty; 1: FIFO empty)
FSS4-FSS1 FIFO stored data level
Doc ID 022018 Rev 1 45/54
Registers description LSM330DL

7.37 INT1_CFG_G (30h)

This is the configuration register for the interrupt source.

Table 90. INT1_CFG_G register

AND/OR LIR ZHIE ZLIE YHIE YLIE XHIE XLIE

Table 91. INT1_CFG_G description

AND/OR
AND/OR combination of interrupt events. Default value: 0 (0: OR combination of interrupt events 1: AND combination of interrupt events
LIR
ZHIE
ZLIE
YHIE
YLIE
XHIE
XLIE
Latch Interrupt Request. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched) Cleared by reading INT1_SRC_G reg.
Enable interrupt generation on Z high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
Enable interrupt generation on Z low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value
lower than preset threshold)
Enable interrupt generation on Y high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
Enable interrupt generation on Y low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value
lower than preset threshold)
Enable interrupt generation on X high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
Enable interrupt generation on X low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value
lower than preset threshold)
46/54 Doc ID 022018 Rev 1
LSM330DL Registers description

7.38 INT1_SRC_G (31h)

The interrupt source register is a read-only register.
Reading at this address clears the INT1_SRC_G IA bit (and eventually the interrupt signal on the INT1_G pin) and allows the refreshment of data in the INT1_SRC_G register if the latched option was chosen.

Table 92. INT1_SRC_G register

(1)
0
1. This bit has to be set to ‘0’ for correct operation.

Table 93. INT1_SRC_G description

IA
ZH Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred)
ZL Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred)
YH Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred)
YL Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred)
XH X high. Default value: 0 (0: no interrupt, 1: X high event has occurred)
XL X low. Default value: 0 (0: no interrupt, 1: X low event has occurred)
IA ZH ZL YH YL XH XL
Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated)

7.39 INT1_THS_XH_G (32h)

Table 94. INT1_THS_XH_G register

-- THSX14 THSX13 THSX12 THSX11 THSX10 THSX9 THSX8

Table 95. INT1_THS_XH_G description

THSX14 - THSX9 Interrupt threshold. Default value: 0000 0000

7.40 INT1_THS_XL_G (33h)

Table 96. INT1_THS_XL_G register

THSX7 THSX6 THSX5 THSX4 THSX3 THSX2 THSX1 THSX0

Table 97. INT1_THS_XL_G description

THSX7 - THSX0 Interrupt threshold. Default value: 0000 0000
Doc ID 022018 Rev 1 47/54
Registers description LSM330DL

7.41 INT1_THS_YH_G (34h)

Table 98. INT1_THS_YH_G register

-- THSY14 THSY13 THSY12 THSY11 THSY10 THSY9 THSY8

Table 99. INT1_THS_YH_G description

THSY14 - THSY9 Interrupt threshold. Default value: 0000 0000

7.42 INT1_THS_YL_G (35h)

Table 100. INT1_THS_YL_G register

THSR7 THSY6 THSY5 THSY4 THSY3 THSY2 THSY1 THSY0

Table 101. INT1_THS_YL_G description

THSY7 - THSY0 Interrupt threshold. Default value: 0000 0000

7.43 INT1_THS_ZH_G (36h)

Table 102. INT1_THS_ZH_G register

-- THSZ14 THSZ13 THSZ12 THSZ11 THSZ10 THSZ9 THSZ8

Table 103. INT1_THS_ZH_G description

THSZ14 - THSZ9 Interrupt threshold. Default value: 0000 0000

7.44 INT1_THS_ZL_G (37h)

Table 104. INT1_THS_ZL_G register

THSZ7 THSZ6 THSZ5 THSZ4 THSZ3 THSZ2 THSZ1 THSZ0

Table 105. INT1_THS_ZL_G description

THSZ7 - THSZ0 Interrupt threshold. Default value: 0000 0000
48/54 Doc ID 022018 Rev 1
LSM330DL Registers description

7.45 INT1_DURATION_G (38h)

Table 106. INT1_DURATION_G register

WAIT D6 D5 D4 D3 D2 D1 D0

Table 107. INT1_DURATION_G description

WAIT WAIT enable. Default value: 0 (0: disable; 1: enable)
D6 - D0 Duration value. Default value: 000 0000
The D6 - D0 bits set the minimum duration of the interrupt event to be recognized. The duration of the steps and maximum values depend on the ODR chosen.
The WAIT bit has the following meaning:
Wait =’0’: the interrupt falls immediately if the signal crosses the selected threshold
Wait =’1’: if the signal crosses the selected threshold, the interrupt falls only after the duration has counted the number of samples at the selected data rate, written into the duration counter register.

Figure 13. Wait disabled

Doc ID 022018 Rev 1 49/54
Registers description LSM330DL

Figure 14. Wait enabled

50/54 Doc ID 022018 Rev 1
LSM330DL Package information

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.
ECOPACK
®
specifications are available at: www.st.com.
®
Doc ID 022018 Rev 1 51/54
Package information LSM330DL

Table 108. LLGA 7.5 x 4.4 x 1.1 28L mechanical data

mm
Dim.
Min. Typ. Max.
A1 1.100
A2 0.855
A3 0.200
D1 4.250 4.400 4.550
E1 7.350 7.500 7.650
N1 0.300
L1 5.400
L2 1.800
P2 1.200
T1 0.600
T2 0.400
M 0.100
d 0.3
k 0.050
h 0.100

Figure 15. LLGA 7.5 x 4.4 x 1.1 28L package drawing

Pin 1 Indicator
A
k
1 D
TOP VIEW
E1
E
B
k
C
A3
D
E
k
A2
D
k
Seating Plane
A1
K
C
h
==
L1
d
2 P
2 L
M
N1
T1
T2
8190050_B
52/54 Doc ID 022018 Rev 1
LSM330DL Revision history

9 Revision history

Table 109. Document revision history

Date Revision Changes
19-Jul-2011 1 First release.
Doc ID 022018 Rev 1 53/54
LSM330DL
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
54/54 Doc ID 022018 Rev 1
Loading...