ST LSM320HAY30 User Manual

LSM320HAY30
MEMS motion sensor module:
3D digital accelerometer and 2D pitch and yaw analog gyroscope
Features
2.7 V to 3.6 V power supply operation
Low voltage compatible digital IOs, 1.8 V
±300 dps absolute analog angular rate output
2
I
C/SPI digital linear acceleration interface (16
bit data output)
Two separated outputs for pitch and yaw axis
(1x and 4x amplified)
Integrated low-pass filters for angular rate
2 independent programmable interrupt
generators for free-fall and motion detection
Sleep-to-wakeup function
6D orientation detection
Extended operating temperature range (40 °C
to +85 °C)
High stability over temperature
High shock survivability
Embedded self-test
Embedded power-down
Embedded low-power mode
ECOPACK
®
RoHS and “Green” compliant
(see Section 9)
Applications
Motion control for smart user interface
Display orientation
Gaming and virtual reality input devices
Industrial and robotics
Vibration monitoring and compensation
Impact recognition and logging
Motion-activated functions
Intelligent power-saving for handheld devices
Free-fall detection
Description
The LSM320HAY30 is a low-power system-in­package featuring a 3D digital linear acceleration sensor and a 2D analog angular rate pitch and yaw sensor. It provides excellent temperature stability and high resolution over an extended operating temperature range (-40°C to +85°C). ST’s family of sensor modules leverages the robust and mature manufacturing process already used for the production of micromachined accelerometers. The LSM320HAY30 has a dynamically user-selectable full-scale acceleration range of ±2 g/±4 g/±8 g, and an angular rate of ±300 dps capable of detecting rates with a -3 dB bandwidth up to 140 Hz along pitch and yaw axes. The LSM320HAY30 is capable of measuring linear accelerations with output data rates from 0.5 Hz up to 1 kHz. The embedded self-test capability allows the user to check the functioning of each sensor in the final application. The device can be configured to generate an interrupt signal by inertial wakeup/free-fall events as well as by the position of the device itself. Several years ago ST successfully pioneered the use of this package for accelerometers. Today, ST has the widest manufacturing capability and strongest expertise in the world for production of sensors in plastic LGA packages.
LGA-28L (4.4x7.5x1.1mm)
December 2009 Doc ID 16917 Rev 1 1/42
www.st.com
42
Contents LSM320HAY30
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1 Pin connection and description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Functionality and terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Zero level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Advanced features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5.1 Linear acceleration sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5.2 Angular rate sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1 Linear acceleration sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Angular rate sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1.1 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.3 SPI read in 3-wires mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2/42 Doc ID 16917 Rev 1
LSM320HAY30 Contents
8.1 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.2 LA_CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.3 LA_CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.4 LA_CTRL_REG3 (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.5 LA_CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.6 LA_CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.7 LA_HP_FILTER_RESET (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.8 REFERENCE (26h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ) 32
8.9 LA_STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.10 LA_OUT_X_L (28h), LA_OUT_X_H (29h) . . . . . . . . . . . . . . . . . . . . . . . . 33
8.11 LA_OUT_Y_L (2Ah), LA_OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . 33
8.12 LA_OUT_Z_L (2Ch), LA_OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . 33
8.13 LA_INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.14 LA_INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.15 LA_INT1_THS (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.16 LA_INT1_DURATION (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.17 LA_INT2_CFG (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.18 LA_INT2_SRC (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.19 LA_INT2_THS (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.20 LA_INT2_DURATION (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Doc ID 16917 Rev 1 3/42
List of tables LSM320HAY30
List of tables
Table 1. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 3. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 4. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 5. Angular rate sleep mode and power-down mode configuration . . . . . . . . . . . . . . . . . . . . . 14
Table 6. External component values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 7. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 8. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 9. SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 10. Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 11. Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 12. Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 20
Table 13. Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 20
Table 14. Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 15. WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 16. LA_CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 17. LA_CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 18. Power mode and low-power output data rate configurations . . . . . . . . . . . . . . . . . . . . . . . 27
Table 19. Normal mode output data rate configurations and low-pass cut-off frequencies . . . . . . . . 27
Table 20. LA_CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 21. LA_CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 22. High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 23. High-pass filter cut-off frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 24. LA_CTRL_REG3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 25. LA_CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 26. Data signal on INT 1 and INT 2 pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 27. LA_CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 28. LA_CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 29. LA_CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 30. LA_CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 31. Sleep-to-wake configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 32. REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 33. REFERENCE description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 34. LA_STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 35. LA_STATUS_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 36. LA_INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 37. LA_INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 38. Interrupt 1 source configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 39. LA_INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 40. LA_INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 41. LA_INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 42. LA_INT1_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 43. LA_INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 44. LA_INT2_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 45. LA_INT2_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 46. LA_INT2_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 47. Interrupt mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 48. LA_INT2_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4/42 Doc ID 16917 Rev 1
LSM320HAY30 List of tables
Table 49. LA_INT2_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 50. LA_INT2_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 51. LA_INT2_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 52. LA_INT2_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 53. LA_INT2_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 54. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 55. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Doc ID 16917 Rev 1 5/42
List of figures LSM320HAY30
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. LSM320HAY30 electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 4. Angular rate output response vs. rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 5. Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 6. SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 7. Multiple byte SPI read protocol (2 byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 8. SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 9. Multiple byte SPI write protocol (2 byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 10. SPI read protocol in 3-wires mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 11. LGA-28: mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6/42 Doc ID 16917 Rev 1
LSM320HAY30 Block diagram and pin description

1 Block diagram and pin description

Figure 1. Block diagram

+C
+
:
3ENSING"LOCK
:
X
:
:
#/.42/,,/')#
).4%22504'%.
8
9
:
:
9
8
2%&%
'%.%2!4/2
3ENSING)NTERFACE
#(!2'% !-0,)&)%2
-58
#(!2'% !-0,)&)%2
#(!2'%
!-0
,)&)%2
2%.#%3%,&4%34
0(!3%
42)--).' #)2#5)43
!$
CONVERTER
$%-/$5,!4/2
8 :
$2)6).'-!33
$%-/$5,!4/2
&EED B AC K L O OP
#,/#+
#ONTROL
,OGI
C
$RIVING-ASS
$EMODUL
ATION
37)4#(%$ #!0!#)4/2 ,/70!33
&),4 %2
37)4#(%$
#!0!#)4/2
,/70!33
&),4%2
'!).
'!) .
$)
)#30)
X
X
#3
3#, 30#
3$!3$/3$)
3$/3!
).4
).4
/PTIONAL
,0(0
&IL T E R
/548NOTAMPLIFIED
X/548 AMPLIFIED
X/54: AM
PLIFIED
/54:NOTAMPLIFIED
/PTIONAL
,0(0
&IL T E R
!-V
Doc ID 16917 Rev 1 7/42
Block diagram and pin description LSM320HAY30

1.1 Pin connection and description

Figure 2. Pin connection

:
$)2%#4)/./&4(% $%4
%#4! ",% !##%,%2!4)/.3 $%4%#4!",% !.
'5,!22!4%3
:
Z
8
:
9
X
2%
2%
2%3
6$$
3

3

3#,30#
6DD?)/
#3
,3-(!9
"/44/-6)%7

X).:
/54:
X/54:

Table 1. Pin description

Pin# Name Function
1 Vdd_IO Power supply for I/O pins
2SCL/SPCI
3 CS SPI enable/I
4 SDA/SDI/SDO
5 SDO/SA0
2
C serial clock (SCL)/SPI serial port clock (SPC)
2
C/SPI mode selection (1: I2C mode; 0: SPI enabled)
2
C serial data (SDA)/SPI serial data input (SDI)
I 3-wire interface serial data output (SDO)
SPI serial data output (SDO)/ I
2
address (SA0)
3$!3$)3$/
62%&
X/548
3$/3!
).4
).4
&),4 6$$
&),4).9
X).8
/548
!2(0
!234
!20$

'.$

'.$
'.$
'.$


6#/.4
'.$
&),46$$
!-V
C less significant bit of the device
6 INT1 Inertial interrupt 1
7 INT2 Inertial interrupt 2
8 ARHP
Angular rate high-pass filter reset (logic 0: normal operation mode; logic1: external high-pass filter is reset)
9 ARPD Angular rate power-down (see Table 5
10 ARST Angular rate self-test (see Table 5)
11 GND 0 V supply
12 GND 0 V supply
13 RES 0 V supply
14 GND 0 V supply
15 GND 0 V supply
16 FILTVDD PLL filter connection pin 16
17 VCONT PLL filter connection pin 15
18 OUT X Not amplified Out X
8/42 Doc ID 16917 Rev 1
)
LSM320HAY30 Block diagram and pin description
Table 1. Pin description (continued)
Pin# Name Function
19 4xIN X Input of 4x amplifier
20 4xOUT X X rate signal output voltage (amplified)
21 Vref Reference voltage
22 4x OUTZ Z rate signal output voltage (amplified)
23 4xIN Z Input of 4x amplifier
24 OUT Z Not amplified Out Z
25 VDD Power supply
26 RES Connected to Vdd
27 RES Connected to Vdd
28 RES Connected to Vdd
Doc ID 16917 Rev 1 9/42
Mechanical and electrical specifications LSM320HAY30

2 Mechanical and electrical specifications

2.1 Mechanical characteristics

@ Vdd=3,0 V, T=25 °C unless otherwise noted.

Table 2. Mechanical characteristics

Symbol
LA_TCSo
AR_TCSo
LA_TyOff
LA_TCOff
AR_TCZrl
(1)
Parameter Test conditions Min. Typ.
FS bit set to 00 ±2.0
LA_FS
Linear acceleration measurement
(3)
range
FS bit set to 11 ±8.0
4x OUT (amplified) ±300
AR_FS Angular rate measurement range
OUT (not amplified) ±1200
FS bit set to 00 (12 bit) 0.9 1 1.1
LA_So Linear acceleration sensitivity
FS bit set to 11 (12 bit) 3.5 3.9 4.3
AR_So Angular rate sensitivity
(4)
4x OUT (amplified) 3.33 mV/dps
OUT (not amplified) 0.83 mV/dps
Linear acceleration sensitivity change vs. temperature
Angular rate sensitivity change vs temperature
Linear acceleration typical zero-g level offset accuracy
Linear acceleration zero-g level change vs. temperature
AR_Zrl Zero-rate level
(5),(6)
(6)
FS bit set to 00 ±0.01 %/°C
Delta from 25°C 0.07 %/°C
FS bit set to 00 ±20 mg
Max delta from 25°C ±0.1 mg/°C
AR_Vref Reference voltage 1.5 V
Angular rate zero-rate level change vs. temperature
Max delta from 25°C ±0.05 dps/°C
LA_An Linear acceleration noise density FS bit set to 00 218 µg/√ Hz
AR_Rn Angular rate noise density 0.02 dps/√ Hz
AR_NL Angular rate non linearity Best fit straight line ±1 % FS
LA_BW Linear acceleration bandwidth
AR_BW Angular rate bandwidth
(7)
(8)
FS bit set to 00 X axis +500 LSb
LA_ST
Linear acceleration self-test output change
(9),(10),(11)
FS bit set to 00 Y axis -500 LSb
FS bit set to 00 Z axis +600 LSb
(a)
(2)
Max. Unit
dps
mg/digitFS bit set to 01 (12 bit) 1.8 2 2.2
1.5 V
ODR/2 Hz
140 Hz
gFS bit set to 01 ±4.0
a. The product is factory calibrated at 3.0 V. The operational power supply range is from 2.7 V to 3.6 V.
10/42 Doc ID 16917 Rev 1
LSM320HAY30 Mechanical and electrical specifications
Table 2. Mechanical characteristics (continued)
Symbol
(1)
Parameter Test conditions Min. Typ.
(2)
Max. Unit
AR_ST
Angular rate self-test output change
250 mV
Top Operating temperature range -40 +85 °C
1. Linear acceleration (LA), Angular Rate (AR) parameter labeling
2. Typical specifications are not guaranteed
3. Verified by wafer level test and measurement of initial offset and sensitivity
4. Sensitivity and zero-rate offset are not ratiometric to supply voltage
5. Typical zero-g level offset value after MSL3 preconditioning
6. Offset can be eliminated by enabling the built-in high-pass filter
7. Refer to Table 23 for filter cut-off frequency.
8. The product is capable of measuring angular rates extending from DC to the selected BW.
9. The sign of “Self-test output change” is defined by LA_CTRL_REG4 STsign bit (Table 27), for all axes.
Linear acceleration sensing Self-Test output changes with the power supply. “Self-test output change” is defined as
10. OUTPUT[LSb] Full-scale
11. Output data reach 99% of final value after 1/ODR+1ms when enabling device filtering.
(LA_CTRL_REG4 ST bit=1)
- OUTPUT[LSb]
(LA_CTRL_REG4 ST bit=0)
linear acceleration sensing
. 1LSb=4g/4096 at 12bit representation, ±2 g
self-test mode, due to

2.2 Electrical characteristics

@ Vdd=3,0 V, T=25 °C unless otherwise noted.
(b)

Table 3. Electrical characteristics

Symbol Parameter Test condition Min. Typ.
Vdd Supply voltage 2.7 3.0 3.6 V
Vdd_IO I/O pins supply voltage
LA_Idd
AR_Idd
LA_IddLP
AR_IddSl
LA_IddPdn
AR_IddPdn
Linear acceleration current consumption in normal mode
Angular rate current consumption in normal mode
Linear acceleration current consumption in low-power mode
Angular rate current consumption in sleep mode
Linear acceleration current consumption in power-down mode
Angular rate current consumption in power-down mode
b. The product is factory calibrated at 3 V.
(2)
1.71 Vdd+0.1 V
ODR = 50 Hz 0.25 mA
ARPD pin connected to GND
= 0.5 Hz 10 µA
ODR
LP
ARPD, ARST pin connected to Vdd
ARPD pin connected to Vdd
(1)
Max. Unit
6.8 mA
2.1 5 mA
A
15µA
Doc ID 16917 Rev 1 11/42
Mechanical and electrical specifications LSM320HAY30
Table 3. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ.
(1)
Max. Unit
AR_VST Angular rate self-test input
AR_VPD Angular rate power-down input
LA_VIH
LA_VIL
LA_VOH
LA_VOL
LA_ODR
LA_ODR
Linear acceleration digital high level input voltage
Linear acceleration digital low level input voltage
Linear acceleration high level output voltage
Linear acceleration low level output voltage
Linear acceleration output data rate in normal mode
Linear acceleration output data
LP
rate in low-power mode
Logic 0 level 0 0.2*Vdd
Logic 1 level 0.8*Vdd Vdd
Logic 0 level 0 0.2*Vdd
Logic 1 level 0.8*Vdd Vdd
0.8*Vdd_IO V
0.2*Vdd_IO V
0.9*Vdd_IO V
0.1*Vdd_IO V
DR bit set to 00 50
DR bit set to 01 100
DR bit set to 10 400
DR bit set to 11 1000
PM bit set to 010 0.5
PM bit set to 011 1
PM bit set to 100 2
PM bit set to 101 5
PM bit set to 110 10
V
V
Hz
Hz
LA_Ton Linear acceleration turn-on time
AR_Ton Angular rate turn-on time
(4)
(3)
ODR = 100 Hz
1/ODR+1
ms
200 ms
Top Operating temperature range -40 +85
1. Typical specifications are not guaranteed
2. It is possible to remove Vdd, maintaining Vdd_IO without blocking the communication buses. In this condition the measurement chain is powered off.
3. Time to obtain valid data after exiting power-down mode
4. Time to obtain valid data after exiting power-down mode
12/42 Doc ID 16917 Rev 1
s
°C
LSM320HAY30 Absolute maximum ratings

3 Absolute maximum ratings

Stresses above those listed as “Absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 4. Absolute maximum ratings

Symbol Ratings Maximum value Unit
Vdd Supply voltage -0.3 to 4.8 V
Vin Input voltage on any control pin (PD, ST) -0.3 to Vdd +0.3 V
A Acceleration
Vdd_IO I/O pin supply voltage -0.3 to 6 V
3000 for 0.5 ms g
10000 for 0.1 ms g
Vin
A
A
T
T
ESD Electrostatic discharge protection 2 (HBM) kV
Input voltage on any control pin (CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)
Acceleration (any axis, powered, Vdd = 3 V)
POW
Acceleration (any axis, unpowered)
UNP
Operating temperature range -40 to +85 °C
OP
Storage temperature range -40 to +125 °C
STG
-0.3 to Vdd_IO +0.3 V
3000 for 0.5 ms g
10000 for 0.1 ms g
3000 for 0.5 ms g
10000 for 0.1 ms g
This is a mechanical shock sensitive device, improper handling can cause permanent damage to the part.
This is an ESD sensitive device, improper handling can cause permanent damage to the part.
Doc ID 16917 Rev 1 13/42
Functionality and terminology LSM320HAY30

4 Functionality and terminology

The LSM320HAY30 is an inertial module capable of detecting 3-axis linear acceleration and 2-axis angular rate. The system is housed in an LGA package.
The device includes an ASIC with a digital IC interface capable of providing linear acceleration information through an I angular rate.
The LSM320HAY30 may also be configured to generate an inertial wakeup and free-fall interrupt signal according to a programmed acceleration event along the enabled axes. Both free-fall and wakeup can be used simultaneously on two different pins (INT1/INT2).

4.1 Factory calibration

The system is factory calibrated for sensitivity and zero level. The trimming values are stored inside the device in non-volatile memory. When the device is turned on, the trimming parameters are downloaded into the registers to be used during active operation. This allows the use of the device without further calibration.

4.2 Sensitivity

Linear acceleration sensing
Liner Acceleration Sensitivity (LA_So) describes the gain of the sensor and can be determined e.g. by applying 1 g acceleration to it. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, a ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors.
2
C/SPI serial interface and analog output related to
Angular rate sensing
Angular rate detection produces a positive-going output voltage for counter-clockwise rotation around the sensitive axis considered. Angular Rate Sensitivity (AR_So) describes the gain of the sensor and can be determined by applying a defined angular rate to it. This value changes very little over temperature and over time.

4.3 Zero level

Zero-g level
Zero-g level Offset (LA_TyOff) describes the deviation of an actual output signal from the ideal output signal if no linear acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on both the X and Y axes, whereas the Z axis will measure 1 g. Ideally, the output is in the middle of the dynamic range of the sensor (content
14/42 Doc ID 16917 Rev 1
LSM320HAY30 Functionality and terminology
of OUT registers 00h, data expressed as 2’s complement number). A deviation from the ideal value in this case is called Zero-g offset.
Offset is to some extent a result of stress to the MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress.
Zero-g level offset changes little over temperature, see “Zero-g level change vs. temperature” (LA_TCOff) in Table 2. The Zero-g level tolerance (LA_TyOff) describes the standard deviation of the range of Zero-g levels of a group of sensors.
Zero-rate level
Angular rate zero-rate level (AR_Zrl) describes the actual angular rate output signal if there is no angular rate present. Zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time.

4.4 Self-test

Linear acceleration self-test
Self-test allows the checking of sensor functionality without moving it. The self-test function is off when the self-test bit (ST) of LA_CTRL_REG4 (control register 4) is programmed to ‘0‘. When the self-test bit of LA_CTRL_REG4 is programmed to ‘1‘ an actuation force is applied to the sensor, simulating a definite input acceleration. In this case, the sensor outputs will exhibit a change in their DC levels which are related to the selected full-scale through the device sensitivity. When self-test is activated, the device output level is given by the algebraic sum of the signals produced by the acceleration acting on the sensor and by the electrostatic test-force. If the output signals change within the amplitude specified in
Table 2, then the sensor is working properly and the parameters of the interface chip are
within the defined specifications.
Angular rate self-test
Self-test allows testing of the mechanical and electric parts of the sensor, permitting the seismic mass to be moved by means of an electrostatic test-force. The self-test function is off when the ARST pin is connected to GND. When the ARST pin is tied to Vdd and ARPD tied to GND Coriolis force. In this case the sensor output exhibits a voltage change in its DC level which is also dependent on the supply voltage. When ST is active, the device output level is given by the algebraic sum of the signals produced by the velocity acting on the sensor and by the electrostatic test-force. If the output signals change within the amplitude specified in
Table 2, then the mechanical element is working properly and the parameters of the
interface chip are within the defined specifications.
(see Table 5), an actuation force is applied to the sensor, emulating a definite
is
Doc ID 16917 Rev 1 15/42
Functionality and terminology LSM320HAY30

4.5 Advanced features

4.5.1 Linear acceleration sensing

The LSM320HAY30 linear acceleration sensor includes a low-power mode characterized by lower data rate refreshing. In this way the device, even when sleeping, continues sensing acceleration and generating interrupt requests.
The “sleep-to-wakeup” function, in conjunction with low-power mode, allows further reduction of system power consumption and the development of new smart applications.
When the sleep-to-wakeup function is activated,the LSM320HAY30 is able to automatically wake up the linear acceleration sensor as soon as an interrupt event has been detected.
With this feature the system is efficiently switched from low-power mode to normal mode based on user-selectable positioning and acceleration events, thus ensuring power-saving and flexibility.

4.5.2 Angular rate sensing

Sleep mode, self-test and power-down
The LSM320HAY30 has advanced power-saving features for angular rate sensing thanks to the availability of three different operating modes. When the device is set to sleep mode configuration, the reading chain is completely turned off, resuting in low power consumption. In this condition, the device turn-on time is significantly reduced, allowing simple external power cycling.
Based on the table below, the user can select the desired operating mode using two dedicated pins (ARST and ARPD).
Table 5. Angular rate sleep mode and power-down mode configuration
Operating mode ARST pin ARPD pin
Normal mode 0 0
Power-down 0 1
Self-test 1 0
Sleep mode 1 1
High-pass filter reset (ARHP)
The LSM320HAY30 provides the possibility to reset the optional external high-pass filter by applying a high logic value to the ARHP pad. This procedure ensures faster response, especially during overload conditions. Moreover, this operation is recommended each time the device is powered.
16/42 Doc ID 16917 Rev 1
LSM320HAY30 Application hints

5 Application hints

Figure 3. LSM320HAY30 electrical connections

+Ω
Z
Y
1
X
DIRECTION OF DETECTABLE ACCELERATIONS
Z
Vdd_IO
z
1
Y
X
+Ω
x
DIRECTION OF DETECTABLE ANGULAR RATE
Vdd
ARHP
ARST
R2
Recommended Low-pass filter
GND
GND
GND
RES
C1
R1C2
VrefGND
Optional High-pass filter
ARPD
10
11
14
15
GND
OUT X
4xIN X
INT2
LSM320HAY30
(TOP VIEW)
FILTVDD
FILTIN Y
VCONT
FILTVDD
C4
Digital signal from/to signal controller.Signal’s levels are defined by proper selection of Vdd_IO

Table 6. External component values

Component type Component Value
SDO/SA0
INT1
F
4xOUTX
R3C3
SDA/SDI/SDO
VREF
CS
SCL/SPC
1
RES
28
RES
RES
VDD
25
24
4xOUTY
OUT Z
4xIN Z
C1
Recommended Low-pass filter
C6
C5
R2
R1 C2
Vref GND
Optional High-pass filter
AM06041v1
Capacitor
Resistor
C1 4.7 µF
C2 2.2 nF to 2.2 µF
C3 470 nF
C4 10 nF
C5 100 nF
C6 10 µF
R1 1 M
R2 33 k
R3 10 k
Doc ID 16917 Rev 1 17/42
Application hints LSM320HAY30
The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1=100 nF ceramic, C2=10 µF aluminum) should be placed as near as possible to the supply pin of the device (common design practice).
All voltage and ground supplies must be present at the same time to obtain proper behavior of the IC (refer to Figure 3).

5.1 Linear acceleration sensing

The functionality of the device and the measured acceleration data is selectable and accessible through the SPI/I
2
C interface.
The functions, the threshold and the timing of the two interrupt pins (INT 1 and INT 2) can be completely programmed by the user though the SPI/I

5.2 Angular rate sensing

The LSM320HAY30 allows band limitation of the output rate response through the use of an external low-pass filter (recommended) and/or high-pass filter (optional) in addition to the embedded low-pass filter (f
4xOUTX and 4xOUTZ are, respectively, OUTX and OUTZ amplified outputs lines, internally buffered to ensure low output impedance.
If external filtering is not applied, it is mandatory to short-circuit pad 18 to pad 19 and pad 23 to pad 24, respectively, when amplified outputs are used.
When only a non-amplified output is used (OUTX/OUTZ), it is recommended to set pin 19 and 23 to a fixed reference voltage (Vref).
The LSM320HAY30 IC includes a PLL (phase locked loop) circuit to synchronize driving and sensing interfaces. Capacitors and resistors must be added at the FILTVDD and VCONT pins (as shown in Figure 3) to implement a second-order low-pass filter.

Figure 4. Angular rate output response vs. rotation

= 140 Hz).
t
2
C interface.
Z
1
Steady state position: 4xOUTX = 4xOUTZ = 1.5V OUTX = OUTZ = 1.5V
Positive rotations as indicated by the arrows increase output value over Zero rate level:
+300°/sec --> 4xOUTX, 4xOUTZ = 1.5V + SoA*300 = 2.5V +300°/sec --> OUTX, OUTZ = 1.5V + So*300 = 1.75V
18/42 Doc ID 16917 Rev 1
Z
+Ω
1
z
Y
X
+Ω
x
AM06042v1
LSM320HAY30 Application hints

5.3 Soldering information

The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Leave “pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com.
Doc ID 16917 Rev 1 19/42
Digital interfaces LSM320HAY30

6 Digital interfaces

The registers embedded in the LSM320HAY30 may be accessed through both the I2C and SPI serial interfaces. The latter may be software configured to operate either in 3-wire or 4­wire interface mode.
The serial interfaces are mapped onto the same pads. To select/exploit the I CS line must be tied high (i.e. connected to Vdd_IO).

Table 7. Serial interface pin description

Pin name Pin description
2
C interface, the
CS
SCL SPC
SDA
SDI
SDO
SA0
SDO
SPI enable I2C/SPI mode selection (1: I2C mode; 0: SPI enabled)
2
C serial clock (SCL)
I SPI serial port clock (SPC)
2
C serial data (SDA)
I SPI serial data input (SDI) 3-wire interface serial data output (SDO)
2
C less significant bit of the device address (SA0)
I SPI serial data output (SDO)

6.1 I2C serial interface

The LSM320HAY30 I2C is a bus slave. The I2C is employed to write data into registers whose content can also be read back.
The relevant I

Table 8. Serial interface pin description

Transmitter The device which sends data to the bus
Receiver The device which receives data from the bus
2
C terminology is given in the table below.
Term Description
Master
Slave The device addressed by the master
The device which initiates a transfer, generates clock signals and terminates a transfer
There are two signals associated with the I2C bus: the serial clock line (SCL) and the serial data line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines are connected to Vdd_IO through a pull-up resistor embedded inside the LSM320HAY30. When the bus is free, both the lines are high.
2
The I
C interface is compliant with fast mode (400 kHz) I2C standards as well as with normal
mode.
20/42 Doc ID 16917 Rev 1
LSM320HAY30 Digital interfaces

6.1.1 I2C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a high to low transition on the data line while the SCL line is held high. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the 8th bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.
The Slave ADdress (SAD) associated with the LSM320HAY30 is 001100xb. The SDO/SA0 pad can be used to modify the least significant bit of the device address. If the SA0 pad is connected to voltage supply, LSb is ‘1’ (address 0011001b), otherwise if the SA0 pad is connected to ground, the LSb value is ‘0’ (address 0011000b). This solution permits connecting and addressing two different accelerometers to the same I
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.
2
The I
C embedded in the LSM320HAY30 behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent. Once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the 7 LSb represent the actual register address while the MSB enables address auto-increment. If the MSb of the SUB field is ‘1’, the SUB (register address) is automatically incremented to allow multiple data read/write.
2
C lines.
The slave address is completed with a read/write bit. If the bit was ‘1’ (read), a repeated START (SR) condition will have to be issued after the two sub-address bytes; if the bit is ‘0’ (write) the master transmits to the slave with direction unchanged. Table 9 explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.
Table 9. SAD+Read/Write patterns
Command SAD[6:1] SAD[0] = SA0 R/W SAD+R/W
Read 001100 0 1 00110001 (31h)
Write 001100 0 0 00110000 (30h)
Read 001100 1 1 00110011 (33h)
Write 001100 1 0 00110010 (32h)
Table 10. Transfer when master is writing one byte to slave
Master ST SAD + W SUB DATA SP
Slave SAK SAK SAK
Doc ID 16917 Rev 1 21/42
Digital interfaces LSM320HAY30
Table 11. Transfer when master is writing multiple bytes to slave
Master ST SAD + W SUB DATA DATA SP
Slave SAK SAK SAK SAK
Table 12. Transfer when master is receiving (reading) one byte of data from slave
Master ST SAD + W SUB SR SAD + R NMAK SP
Slave SAK SAK SAK DATA
Table 13. Transfer when master is receiving (reading) multiple bytes of data from slave
Master ST SAD+W SUB SR SAD+R MAK MAK NMAK SP
Slave SAK SAK SAK DATA DATA DATA
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit (MSb) first. If a receiver cannot receive another complete byte of data until it has performed some other function, it can hold the clock line SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver does not acknowledge the slave address (i.e. it is not able to receive because it is performing a real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the sub­address field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the address of the first register to be read.
In the presented communication format MAK is Master Acknowledge and NMAK is No Master Acknowledge.

6.2 SPI bus interface

The LSM320HAY30 SPI is a bus slave. The SPI allows writing and reading of the registers of the device.
The serial interface interacts with the outside world with 4 wires: CS, SPC, SDI and SDO.
22/42 Doc ID 16917 Rev 1
LSM320HAY30 Digital interfaces

Figure 5. Read and write protocol

CS
SPC
SDI
DI7DI6DI5DI4DI3DI2DI1DI0
DO7DO6DO5DO4DO3DO2DO1DO0
SDO
RW
MS
AD5 AD4 AD3 AD2 AD1 AD0
CS is the serial port enable and is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. SPC is the serial port clock and is controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are respectively the serial port data input and output. These lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple bytes read/write. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS.
bit 0: RW from the device is read. In the latter case, the chip drives SDO at the start of bit 8.
bit 1: MS When 1, the address is auto incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands, further blocks of 8 clock periods are added. When the MS bit is ‘0’ the address used to read/write data remains the same for every block. When the MS bit is ‘1’ the address used to read/write data is incremented at every block.
The function and the behavior of SDI and SDO remain unchanged.

6.2.1 SPI read

Figure 6. SPI read protocol
bit. When 0, the data DI(7:0) is written to the device. When 1, the data DO(7:0)
bit. When 0, the address remains unchanged in multiple read/write commands.
CS
SPC
SDI
RW
MS
AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5DO4 DO3 DO2 DO1DO0
Doc ID 16917 Rev 1 23/42
Digital interfaces LSM320HAY30
The SPI Read command is performed with 16 clock pulses. A multiple byte read command is performed adding blocks of 8 clock pulses after the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS
multiple reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
bit 16-... : data DO(...-8). Further data in multiple byte reading.
Figure 7. Multiple byte SPI read protocol (2 byte example)
CS
SPC
SDI
SDO

6.2.2 SPI write

Figure 8. SPI write protocol
bit. When 0, do not increment the address. When 1, increment the address in
RW
AD5 AD4 AD3 AD2 AD1 AD0
MS
DO7DO6DO5DO4DO3DO2DO1DO0
DO15 DO14 DO13 DO12 DO11 DO10 DO9 DO8
CS
SPC
SDI
RW
AD5 AD4 AD3 AD2 AD1 AD0MS
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
The SPI Write command is performed with 16 clock pulses. A multiple byte write command is performed adding blocks of 8 clock pulses after the previous one.
bit 0: WRITE bit. The value is 0.
bit 1: MS
bit. When 0, do not increment the address. When 1, increment the address in
multiple writing.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written to the device (MSb first).
bit 16-... : data DI(...-8). Further data in multiple byte writing.
24/42 Doc ID 16917 Rev 1
LSM320HAY30 Digital interfaces
Figure 9. Multiple byte SPI write protocol (2 byte example)
CS
SPC
SDI
RW
MS
AD5 AD4 AD3 AD2 AD1 AD0
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15 DI14 DI13 DI1 2 DI11 DI10 DI9 DI8

6.2.3 SPI read in 3-wires mode

3-wires mode is entered by setting to ‘1’ bit SIM (SPI serial interface mode selection) in LA_CTRL_REG4.
Figure 10. SPI read protocol in 3-wires mode
CS
SPC
SDI/O
RW
MS
AD5 AD4 AD3 AD2 AD1 AD0
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
The SPI Read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1: MS
bit. When 0, do not increment the address. When 1, increment the address in
multiple reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
Multiple read command is also available in 3-wires mode.
Doc ID 16917 Rev 1 25/42
Register mapping LSM320HAY30

7 Register mapping

The table given below provides a listing of the 8-bit registers embedded in the device and the related addresses:

Table 14. Register address map

Register address
Name Type
Hex Binary
Reserved (do not modify) 00 - 0E Reserved
WHO_AM_I r 0F 000 1111 00110010 Dummy register
Reserved (do not modify) 10 - 1F Reserved
LA_CTRL_REG1 rw 20 010 0000 00000111
LA_CTRL_REG2 rw 21 010 0001 00000000
LA_CTRL_REG3 rw 22 010 0010 00000000
LA_CTRL_REG4 rw 23 010 0011 00000000
LA_CTRL_REG5 rw 24 010 0100 00000000
Default Comment
LA_HP_FILTER_RESET r 25 010 0101 Dummy register
LA_REFERENCE rw 26 010 0110 00000000
LA_STATUS_REG r 27 010 0111 00000000
LA_OUT_X_L r 28 010 1000 output
LA_OUT_X_H r 29 010 1001 output
LA_OUT_Y_L r 2A 010 1010 output
LA_OUT_Y_H r 2B 010 1011 output
LA_OUT_Z_L r 2C 010 1100 output
LA_OUT_Z_H r 2D 010 1101 output
Reserved (do not modify) 2E - 2F Reserved
LA_INT1_CFG rw 30 011 0000 00000000
LA_INT1_SOURCE r 31 011 0001 00000000
LA_INT1_THS rw 32 011 0010 00000000
LA_INT1_DURATION rw 33 011 0011 00000000
LA_INT2_CFG rw 34 011 0100 00000000
LA_INT2_SOURCE r 35 011 0101 00000000
LA_INT2_THS rw 36 011 0110 00000000
LA_INT2_DURATION rw 37 011 0111 00000000
Reserved (do not modify) 38 - 3F Reserved
26/42 Doc ID 16917 Rev 1
LSM320HAY30 Register mapping
Registers marked as Reserved must not be changed. Writing to these registers may cause permanent damage to the device.
The content of the registers that are loaded at boot should not be changed. They contain the factory calibrated values. Their content is automatically restored when the device is powered up.
Doc ID 16917 Rev 1 27/42
Register description LSM320HAY30

8 Register description

The device contains a set of registers which are used to control acceleration portion behavior and to retrieve acceleration data. The register address, composed of 7 bits, is used to identify them and to write the data through the serial interface.

8.1 WHO_AM_I (0Fh)

Table 15. WHO_AM_I register

00110010
This register is the device identification register, and contains the device identifier which, for the LSM320HAY30, is set to 32h.

8.2 LA_CTRL_REG1 (20h)

Table 16. LA_CTRL_REG1 register

PM2 PM1 PM0 DR1 DR0 Zen Yen Xen

Table 17. LA_CTRL_REG1 description

PM2 - PM0
DR1, DR0
Zen
Ye n
Xen
Power mode selection. Default value: 000 (000: Power-down; Others: refer to Table 18)
Data rate selection. Default value: 00 (00:50 Hz; others: refer to Table 19)
Z axis enable. Default value: 1 (0: Z axis disabled; 1: Z axis enabled)
Y axis enable. Default value: 1 (0: Y axis disabled; 1: Y axis enabled)
X axis enable. Default value: 1 (0: X axis disabled; 1: X axis enabled)
PM bits allow selection between power-down and two operating active modes. The device is in power-down mode when the PD bits are set to “000” (default value after boot). Table 18 shows all the possible power mode configurations and respective output data rates. Output data in the low-power modes are computed with a low-pass filter cut-off frequency defined by DR1, DR0 bits.
DR bits, in normal mode operation, select the data rate at which acceleration samples are produced. In low-power mode they define the output data resolution. Table 19 shows all the possible configurations for the DR1 and DR0 bits.
28/42 Doc ID 16917 Rev 1
LSM320HAY30 Register description

Table 18. Power mode and low-power output data rate configurations

PM2 PM1 PM0 Power mode selection
0 0 0 Power-down --
0 0 1 Normal mode ODR
010 Low power 0.5
011 Low power 1
100 Low power 2
101 Low power 5
110 Low power 10
Output data rate [Hz]
ODR
LP
Table 19. Normal mode output data rate configurations and low-pass cut-off
frequencies
DR1 DR0
00 50 37
01 100 74
1 0 400 292
1 1 1000 780
Output data rate [Hz]
ODR
Low-pass filter cut-off
frequency [Hz]

8.3 LA_CTRL_REG2 (21h)

Table 20. LA_CTRL_REG2 register

BOOT HPM1 HPM0 FDS HPen2 HPen1 HPCF1 HPCF0

Table 21. LA_CTRL_REG2 description

BOOT
HPM1, HPM0
FDS
HPen2
Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content)
High-pass filter mode selection. Default value: 00 (00: normal mode. Others: refer to Table 22)
Filtered data selection. Default value: 0 (0: internal filter bypassed; 1: data from internal filter sent to output register)
High-pass filter enabled for Interrupt 2 source. Default value: 0 (0: filter bypassed; 1: filter enabled)
Doc ID 16917 Rev 1 29/42
Register description LSM320HAY30
Table 21. LA_CTRL_REG2 description (continued)
HPen1
HPCF1, HPCF0
High-pass filter enabled for Interrupt 1 source. Default value: 0 (0: filter bypassed; 1: filter enabled)
High-pass filter cut-off frequency configuration. Default value: 00 (00: HPc=8; 01: HPc=16; 10: HPc=32; 11: HPc=64)
The BOOT bit is used to refresh the content of the internal registers stored in the Flash memory block. At device power-up, the content of the Flash memory block is transferred to the internal registers related to trimming functions to permit good device behavior. If, for any reason, the content of the trimming registers was changed, it is sufficient to use this bit to restore the correct values. When the BOOT bit is set to ‘1’, the content of internal Flash is copied to the corresponding internal registers and is used to calibrate the device. These values are factory-trimmed and are different for every accelerometer. They permit good device behavior and normally do not have to be modified. At the end of the boot process, the BOOT bit is again set to ‘0’.

Table 22. High-pass filter mode configuration

HPM1 HPM0 High-pass filter mode
0 0 Normal mode (reset reading HP_RESET_FILTER)
0 1 Reference signal for filtering
1 0 Normal mode (reset reading HP_RESET_FILTER)
HPCF[1:0]. These bits are used to configure the high-pass filter cut-off frequency f given by:
f
⎛⎞
f
1
t
⎝⎠
1
----------- -
HPc
s
------
ln=
2π
The equation can be simplified to the following approximated equation:
f
----------------------=
6HPc
s
f
t

Table 23. High-pass filter cut-off frequency configuration

[Hz]
f
HPcoeff2,1
00 1 2 8 20
01 0.5 1 4 10
10 0.25 0.5 2 5
11 0.125 0.25 1 2.5
t
Data rate = 50 Hz
ft [Hz]
Data rate = 100 Hz
ft [Hz]
Data rate = 400 Hz
ft [Hz]
Data rate = 1000 Hz
which is
t
30/42 Doc ID 16917 Rev 1
LSM320HAY30 Register description

8.4 LA_CTRL_REG3 (22h)

Table 24. LA_CTRL_REG3 register

IHL PP_OD LIR2 I2_CFG1 I2_CFG0 LIR1 I1_CFG1 I1_CFG0

Table 25. LA_CTRL_REG3 description

IHL
Interrupt active high, low. Default value: 0 (0: active high; 1: active low)
PP_OD
LIR2
I2_CFG1, I2_CFG0
LIR1
I1_CFG1, I1_CFG0
Push-pull/open drain selection on interrupt pad. Default value 0. (0: push-pull; 1: open drain)
Latch interrupt request on INT2_SRC register, with INT2_SRC register cleared by reading INT2_SRC itself. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
Data signal on INT 2 pad control bits. Default value: 00. (see table below)
Latch interrupt request on INT1_SRC register, with INT1_SRC register cleared by reading INT1_SRC register. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
Data signal on INT 1 pad control bits. Default value: 00. (see table below)

Table 26. Data signal on INT 1 and INT 2 pad

I1(2)_CFG1 I1(2)_CFG0 INT 1(2) Pad
0 0 Interrupt 1 (2) source
0 1 Interrupt 1 source OR Interrupt 2 source
1 0 Data ready
1 1 Boot running

8.5 LA_CTRL_REG4 (23h)

Table 27. LA_CTRL_REG4 register

BDU BLE FS1 FS0 STsign 0 ST SIM
Doc ID 16917 Rev 1 31/42
Register description LSM320HAY30

Table 28. LA_CTRL_REG4 description

Block data update. Default value: 0
BDU
BLE
FS1, FS0
STsign
ST
SIM
(0: continuous update; 1: output registers not updated between MSB and LSB reading)
Big/little endian data selection. Default value 0. (0: data LSB @ lower address; 1: data MSB @ lower address)
Full-scale selection. Default value: 00. (00: ±2 g; 01: ±4 g; 11: ±8 g)
Self-test sign. Default value: 00. (0: self-test plus; 1 self-test minus)
Self-test enable. Default value: 0. (0: self-test disabled; 1: self-test enabled)
SPI serial interface mode selection. Default value: 0. (0: 4-wire interface; 1: 3-wire interface)
The BDU bit is used to inhibit output register updates between the reading of the upper and lower register parts. In default mode (BDU = ‘0’), the lower and upper register parts are updated continuously. If it is not certain to read faster than the output data rate, it is recommended to set BDU bit to ‘1’. In this way, after the reading of the lower (upper) register part, the content of that output register is not updated until the upper (lower) part is read also. This feature avoids reading LSB and MSB related to different samples.

8.6 LA_CTRL_REG5 (24h)

Table 29. LA_CTRL_REG5 register

000000TurnOn1TurnOn0

Table 30. LA_CTRL_REG5 description

Tu r n On 1 , Tu r n On 0
Turn On bits are used for turning on the sleep-to-wake function.

Table 31. Sleep-to-wake configuration

TurnOn1 TurnOn0 Sleep-to-wake status
0 0 Sleep-to-wake function is disabled
11
Turn-on mode selection for sleep-to-wake function. Default value: 00.
Turned on: The device is in low-power mode (ODR is defined in LA_CTRL_REG1)
32/42 Doc ID 16917 Rev 1
LSM320HAY30 Register description
By setting the TurnOn[1:0] bits to 11, the “sleep-to-wake” function is enabled. When an interrupt event occurs, the device is goes into normal mode, increasing the ODR to the value defined in LA_CTRL_REG1. Although the device is in normal mode, LA_CTRL_REG1 content is not automatically changed to “normal mode” configuration.

8.7 LA_HP_FILTER_RESET (25h)

Dummy register. Reading at this address instantaneously zeroes the content of the internal high-pass filter. If the high-pass filter is enabled, all three axes are instantaneously set to 0 g. This makes it possible to surmount the settling time of the high-pass filter.

8.8 REFERENCE (26h)

Table 32. REFERENCE register

Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0

Table 33. REFERENCE description

Ref7 - Ref0 Reference value for high-pass filter. Default value: 00h.
This register sets the acceleration value taken as a reference for the high-pass filter output.
When the filter is turned on (at least one FDS, HPen2, or HPen1 bit is equal to ‘1’) and HPM bits are set to “01”, filter out is generated taking this value as a reference.

8.9 LA_STATUS_REG (27h)

Table 34. LA_STATUS_REG register

ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA

Table 35. LA_STATUS_REG description

X, Y and Z axis data overrun. Default value: 0
ZYXOR
ZOR
YOR
(0: no overrun has occurred; 1: new data has overwritten the previous one before it was read)
Z axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous one)
Y axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Y-axis has overwritten the previous one)
Doc ID 16917 Rev 1 33/42
Register description LSM320HAY30
Table 35. LA_STATUS_REG description (continued)
X axis data overrun. Default value: 0
XOR
ZYXDA X, Y and Z axis new data available. Default value: 0
ZDA Z axis new data available. Default value: 0
YDA Y axis new data available. Default value: 0
XDA X axis new data available. Default value: 0
(0: no overrun has occurred; 1: new data for the X-axis has overwritten the previous one)
(0: a new set of data is not yet available; 1: a new set of data is available)
(0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available)
(0: new data for the Y-axis is not yet available; 1: new data for the Y-axis is available)
(0: new data for the X-axis is not yet available; 1: new data for the X-axis is available)

8.10 LA_OUT_X_L (28h), LA_OUT_X_H (29h)

X-axis acceleration data. The value is expressed as two’s complement.

8.11 LA_OUT_Y_L (2Ah), LA_OUT_Y_H (2Bh)

Y-axis acceleration data. The value is expressed as two’s complement.

8.12 LA_OUT_Z_L (2Ch), LA_OUT_Z_H (2Dh)

Z-axis acceleration data. The value is expressed as two’s complement.

8.13 LA_INT1_CFG (30h)

Table 36. LA_INT1_CFG register

AOI 6D ZHIE ZLIE YHIE YLIE XHIE XLIE

Table 37. LA_INT1_CFG description

AOI
6D
ZHIE
AND/OR combination of interrupt events. Default value: 0. (See Table 38)
6 direction detection function enable. Default value: 0. (See Table 38)
Enable interrupt generation on Z high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold)
34/42 Doc ID 16917 Rev 1
LSM320HAY30 Register description
Table 37. LA_INT1_CFG description (continued)
Enable interrupt generation on Z Low event. Default value: 0
ZLIE
YHIE
YLIE
XHIE
XLIE
(0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold)
Enable interrupt generation on Y high event. Default value: 0 (0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
Enable interrupt generation on Y low event. Default value: 0 (0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
Enable interrupt generation on X high event. Default value: 0 (0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
Enable interrupt generation on X Low event. Default value: 0 (0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
Configuration register for Interrupt 1 source.

Table 38. Interrupt 1 source configurations

AOI 6D Interrupt mode
0 0 OR combination of interrupt events
0 1 6 direction movement recognition
1 0 AND combination of interrupt events
1 1 6 direction position recognition

8.14 LA_INT1_SRC (31h)

Table 39. LA_INT1_SRC register

0 IA ZHZLYHYLXHXL

Table 40. LA_INT1_SRC description

IA
ZH
ZL
YH
Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated)
Z High. Default value: 0 (0: no interrupt, 1: Z high event has occurred)
Z Low. Default value: 0 (0: no interrupt; 1: Z low event has occurred)
Y High. Default value: 0 (0: no interrupt, 1: Y high event has occurred)
Doc ID 16917 Rev 1 35/42
Register description LSM320HAY30
Table 40. LA_INT1_SRC description (continued)
YL
XH
XL
Y Low. Default value: 0 (0: no interrupt, 1: Y low event has occurred)
X High. Default value: 0 (0: no interrupt, 1: X High event has occurred)
X Low. Default value: 0 (0: no interrupt, 1: X Low event has occurred)
Interrupt 1 source register. Read-only register.
Reading at this address clears LA_INT1_SRC IA bit (and the interrupt signal on INT 1 pin) and allows the refreshing of data in the LA_INT1_SRC register if the latched option was chosen.

8.15 LA_INT1_THS (32h)

Table 41. LA_INT1_THS register

0 THS6 THS5 THS4 THS3 THS2 THS1 THS0

Table 42. LA_INT1_THS description

THS6 - THS0 Interrupt 1 threshold. Default value: 000 0000

8.16 LA_INT1_DURATION (33h)

Table 43. LA_INT1_DURATION register

0 D6D5D4D3D2D1D0

Table 44. LA_INT2_DURATION description

D6 - D0 Duration value. Default value: 000 0000
The D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized. Duration steps and maximum values depend on the ODR chosen.

8.17 LA_INT2_CFG (34h)

Table 45. LA_INT2_CFG register

AOI 6D ZHIE ZLIE YHIE YLIE XHIE XLIE
36/42 Doc ID 16917 Rev 1
LSM320HAY30 Register description

Table 46. LA_INT2_CFG description

AOI
6D
ZHIE
ZLIE
YHIE
YLIE
XHIE
XLIE
AND/OR combination of Interrupt events. Default value: 0. (See table below)
6 direction detection function enable. Default value: 0. (See table below)
Enable interrupt generation on Z High event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold)
Enable interrupt generation on Z Low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold)
Enable interrupt generation on Y High event. Default value: 0 (0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
Enable interrupt generation on Y Low event. Default value: 0 (0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
Enable interrupt generation on X High event. Default value: 0 (0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
Enable interrupt generation on X Low event. Default value: 0 (0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
Configuration register for Interrupt 2 source.

Table 47. Interrupt mode configuration

AOI 6D Interrupt mode
0 0 OR combination of interrupt events
0 1 6 direction movement recognition
1 0 AND combination of interrupt events
1 1 6 direction position recognition

8.18 LA_INT2_SRC (35h)

Table 48. LA_INT2_SRC register

0 IA ZHZLYHYLXHXL
Doc ID 16917 Rev 1 37/42
Register description LSM320HAY30

Table 49. LA_INT2_SRC description

IA
ZH
ZL
YH
YL
XH
XL
Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated)
Z High. Default value: 0 (0: no interrupt, 1: Z High event has occurred)
Z Low. Default value: 0 (0: no interrupt; 1: Z Low event has occurred)
Y High. Default value: 0 (0: no interrupt, 1: Y High event has occurred)
Y Low. Default value: 0 (0: no interrupt, 1: Y Low event has occurred)
X High. Default value: 0 (0: no interrupt, 1: X High event has occurred)
X Low. Default value: 0 (0: no interrupt, 1: X Low event has occurred)
Interrupt 2 source register. Read-only register.
Reading at this address clears the LA_INT2_SRC IA bit (and the interrupt signal on INT 2 pin) and allows the refreshing of data in the LA_INT2_SRC register if the latched option was chosen.

8.19 LA_INT2_THS (36h)

Table 50. LA_INT2_THS register

0 THS6 THS5 THS4 THS3 THS2 THS1 THS0

Table 51. LA_INT2_THS description

THS6 - THS0 Interrupt 1 threshold. Default value: 000 0000

8.20 LA_INT2_DURATION (37h)

Table 52. LA_INT2_DURATION register

0 D6D5D4D3D2D1D0

Table 53. LA_INT2_DURATION description

D6 - D0 Duration value. Default value: 000 0000
The D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized. Duration time steps and maximum values depend on the ODR chosen.
38/42 Doc ID 16917 Rev 1
LSM320HAY30 Package information

9 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Figure 11. LGA-28: mechanical data and package dimensions

Dim.
Min. Typ. Max.
A1 1.1 A2 0.855 A3 0.2 D1 4.25 4.4 4.55 E1 7.25 7.5 7.55 N1 0.3
L1 5.4
L2 1.8 P2 1.2 T1 0.6 T2 0.4
M 0.1
d 0.3
k 0.05
h 0.1
mm
Outline and
mechanical data
LGA-28L (4.4x7.5x1.1mm)
Land Grid Array Package
Pin 1 Indicator
C
h
k
A
1 D
TOP VIEW
E1
E
B
k
C
D
E
k
A2
Seating Plane
A1
D
k
d
A3
2 P
2 L
M
K
==
L1
N1
8190050A
T1
T2
Doc ID 16917 Rev 1 39/42
Ordering information LSM320HAY30

10 Ordering information

Table 54. Device summary

Temperature .
Order code
LSM320HAY30
LSM320HAY30TR Tape and reel
range
[°C]
-40 to +85
Package
[mm]
LGA-28
(4.4x7.5x1.1)
Packing
Tr ay
40/42 Doc ID 16917 Rev 1
LSM320HAY30 Revision history

11 Revision history

14

Table 55. Document revision history

Date Revision Changes
16-Dec-09 1 First issue.
Doc ID 16917 Rev 1 41/42
LSM320HAY30
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
42/42 Doc ID 16917 Rev 1
Loading...