Easi ly interfaces to most 32-bit embedded CPU’s
Un ique Virtual PHY feature simplifies software
development by mimicking the multiple switch ports
as a single port MAC/PHY
Integra ted IEEE 1588 Hardware Time Stamp Unit
Target Applications
Ca ble, satellite, and IP set-top boxes
Digital televisions
Di gital video recorders
VoIP/Video phone systems
Ho me gateways
Test/Measurement equipment
Industrial au tomation systems
Key Benefits
Ethern et Switch Fabric
— 32K buffer RAM
— 1K entry forwarding table
— Port based IEEE 802.1Q VLAN support (16 groups)
– Programmable IEEE 802.1Q tag insertion/removal
— IEEE 802.1d spanning tree protocol support
— QoS/CoS Packet prioritization
– 4 dynamic QoS queues per port
– Input priority determined by VLAN tag, DA lookup,
TOS, DIFFSERV or port default value
– Programmable class of service map based on input
priority
– Remapping of 802.1Q priority field on per port basis
– Programmable rate limiting at the ingress/egress
ports with random early discard, per port / priority
— IGMP v1/v2/v3 snooping for Multicast packet filtering
— IPV6 Multicast Listener Discovery snoop
— Programmable filter by MAC address
Swi tch Management
— Port mirroring/monitoring/sniffing: ingress and/or egress
traffic on any ports or port pairs
— Fully compliant statistics (MIB) gathering counters
— Control registers configurable on-the-fly
Datasheet
Ports
— 2 internal 10/100 PHYs with HP Auto-MDIX support
— Fully compliant with IEEE 802.3 standards
— 10BASE-T and 100BASE-TX support
— Full and half duplex support
— Full duplex flow control
— Backpressure (forced collision) half duplex flow control
— Automatic flow control based on programmable levels
— Automatic 32-bit CRC generation and checking
— Automatic payload padding
— 2K Jumbo packet support
— Programmable interframe gap, flow control pause value
— Full transmit/receive statistics
— Auto-negotiation
— Automatic MDI/MDI-X
— Loop-back mode
H igh-performance host bus interface
— Provides in-band network communication path
— Access to management registers
— Simple, SRAM-like interface
— 32-bit data bus
— Big, little, and mixed endian support
— Large TX and RX FIFO’s for high latency applications
— Programmable water marks and threshold levels
— Host interrupt support
IEEE 1588 Hardware Time Stamp Unit
— Global 64-bit tunable clock
— Master or slave mode per port
— Time stamp on TX or RX of Sync and Delay_req
packets per port, Timestamp on GPIO
— 64-bit timer comparator event generation (GPIO or IRQ)
C omprehensive Power Management Features
— Wake on LAN
— Wake on link status change (energy detect)
— Magic packet wakeup
— Wakeup indicator event signal
Other Features
— General Purpose Timer
— Serial EEPROM interface (I
master) for non-managed configuration
— Programmable GPIOs/LEDs
Si ngle 3.3V power supply
Available in Co mmercial Temp. Range
2
C master or MicrowireTM
SMSC LAN9312DATASHEETRevision 1.4 (08-19-08)
High Performance Two Port 10/100 Managed Ethernet Switch with 32-Bit Non-PCI CPU Interface
ORDER NUMBERS:
LAN9312-NU FOR 128-PIN, VTQFP LEAD-FREE ROHS COMPLIANT PACKAGE (0 TO 70°C TEMP RANGE)
LAN9312-NZW FOR 128-PIN, XVTQFP LEAD-FREE ROHS COMPLIANT PACKAGE (0 TO 70°C TEMP RANGE)
construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC
reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications
before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent
rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently da ted
version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors
known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not
designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property
damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of
this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered
trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders.
SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE
OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL
DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT;
TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD
TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Revision 1.4 (08-19-08)2SMSC LAN9312
DATASHEET
High Performance Two Port 10/100 Managed Ethernet Switch with 32-Bit Non-PCI CPU Interface
6.4.1.5Spanning Tree Port State Override... ................................ .. ... ............................... ... ....................................................................................... 64
6.4.3.2IP Precedence Based Priority......................................................................................................................................................................... 69
6.4.3.3DIFFSERV Based Priority......................... ... .. ... ............................... ... ............................................................................................................ 69
6.4.10.1Packets from the Host CPU............................................................................................................................................................................ 75
6.4.10.2Packets to the Host CPU ....................... ... ................................ .. ... ............................... .................................................................................. 76
6.5.1.1Buffer Limits and Flow Control Levels ............................................................................................................................................................ 77
7.2.1.1MII MAC Interface........................................................................................................................................................................................... 84
7.2.1.3Scrambler and PISO......................................................................................... .............................................................................................. 86
7.2.1.4NRZI and MLT-3 Encoding........................................................ ..................................................................................................................... 86
7.2.2.7MII MAC Interface........................................................................................................................................................................................... 88
7.2.3.1MII MAC Interface........................................................................................................................................................................................... 89
7.2.3.210M TX Driver and PLL............................................................................................... .. ................................................................................. 89
7.2.4.210M RX and PLL....... ...................................................................................................................................................................................... 89
7.2.4.3MII MAC Interface........................................................................................................................................................................................... 90
7.2.9.1PHY General Power-Down ............................................................................................................................................................................. 95
8.4.1.1Reset Ending During a Read Cycle .............................................................................................................................................................. 101
8.4.1.2Writes Following a Reset .............................................................................................................................................................................. 101
9.9.1.1Receive Data FIFO Fast Forward ................................................................................................................................................................. 134
14.2.1.1Interrupt Configuration Regist er (I RQ_ C FG) ................. ............................... ................................................................................................ 172
14.2.1.2Interrupt Status Register (INT_STS)............................................................................................................................................................. 174
14.2.2.7Host MAC CSR Interface Command Register (MAC_CSR_CMD)............................................................................................................... 187
14.2.2.8Host MAC CSR Interface Data Register (MAC_CSR_DATA) ...................................................................................................................... 188
14.2.2.9Host MAC Automatic Flow Control Configuration Register (AFC_CFG) ...................................................................................................... 189
14.2.3.2General Purpose I/O Data & Direction Register (GPIO_DATA_DIR)........................................................................................................... 194
14.2.3.3General Purpose I/O Interrupt Status and Enable Register (GPIO_INT_STS_EN)...................................................................................... 195
14.2.4.2EEPROM Data Register (E2P_DATA).......................................................................................................................................................... 200
14.2.5.23 1588 Interrupt Status and Enable Register (1588_INT_STS_EN)................................................................................................................ 226
14.2.6.6Switch Fabric MAC Address High Register (SWITCH_MAC_ADDRH)........................................................................................................ 238
14.2.6.7Switch Fabric MAC Address Low Register (SWITCH_MAC_ADDRL) ......................................................................................................... 239
14.2.6.8Switch Fabric CSR Interface Direct Data Register (S W IT CH_CSR_DIRECT_DATA) ................. ... .. ... ........................................................ 240
14.2.8.1Virtual PHY Basic Control Register (VPHY_B A SI C_ C TRL ) ....... ... .. ............................................................................................................. 246
14.2.8.2Virtual PHY Basic Status Register (VPH Y_ B A SI C _ STA TUS )......... ... ... ............................... ... .. ................................................................... 248
14.2.8.3Virtual PHY Identification MSB Register (VP H Y _ ID_ MSB) ................ ... .. ..................................................................................................... 250
14.2.8.4Virtual PHY Identification LSB Regist er (V P HY _I D _ LS B ) .......................... .. ... ................................ .. ........................................................... 251
14.2.8.5Virtual PHY Auto-Negotiation Ad ve r tise m e n t Reg i st er (VPHY_AN_ADV).......... .. ... ............................... ... ................................................... 252
14.2.8.6Virtual PHY Auto-Negotiation Link Partner Base Page Ability Register (VPHY_AN_LP_BASE_ABILITY).................................................. 254
14.2.9.1Chip ID and Revision (ID_REV).................................................................................................................................................................... 259
14.2.9.2Byte Order Test Register (BYTE_TEST) .......... ............................................................................................................................................ 260
14.2.9.3Hardware Configuration Regist er (HW_CFG)................ ............................... ... ............................................................................................. 261
14.2.9.4Power Management Control Register (PMT_CTRL).................................................................................................................................... 263
14.4.2.1Port x PHY Basic Control Register (PHY_BASIC_CONTROL_x) ................................................................................................................ 287
14.4.2.2Port x PHY Basic Status Register (PHY_BASIC_STATUS_x)..................................................................................................................... 289
14.4.2.3Port x PHY Identification MSB Register (PHY_ID_MSB_x).......................................................................................................................... 291
14.4.2.4Port x PHY Identification LSB Register (PHY_ID_LSB_x)............................................................................................................................ 292
14.4.2.5Port x PHY Auto-Negotiation Advertisement Register (PHY_AN_ADV_x)................................................................................................... 293
14.4.2.6Port x PHY Auto-Negotiation Link Partner Base Page Ability Register (PHY_AN_LP_BASE_ABILITY_x)................................................. 296
14.4.2.7Port x PHY Auto-Negotiation Expansion Register (PHY_AN_EXP_x)..................................................... .................................................... 298
14.4.2.8Port x PHY Mode Control/Status Register (PHY_MODE_CONTROL_STATUS_x)..................................................................................... 299
14.4.2.9Port x PHY Special Modes Register (PHY_SPECIAL_MODES_x).............................................................................................................. 300
14.4.2.10 Port x PHY Special Control/Status Indication Register (PHY_SPECIAL_CONTROL_STAT_IND_x).......................................................... 302
14.4.2.11 Port x PHY Interrupt Source Flags Register (PHY_INTERRUPT_SOURCE_x)........................................................................................... 304
14.4.2.12 Port x PHY Interrupt Mask Register (PHY_INTERRUPT_MASK_x) ............................................................................................................ 305
14.4.2.13 Port x PHY Special Control/Status Register (PHY_SPECIAL_CONTROL_STATUS_x).............................................................................. 306
14.5.2.1Port x MAC Version ID Register (MAC_VER_ID_x) ..................................................................................................................................... 322
14.5.2.2Port x MAC Receive Configuration Register (MAC_RX_CFG_x)................................................................................................................. 323
14.5.2.3Port x MAC Receive Undersize Count Register (MAC_RX_UNDSZE_CNT_x)........................................................................................... 324
14.5.2.4Port x MAC Receive 64 Byte Count Register (MAC_RX_64_CNT_x).......................................................................................................... 325
14.5.2.5Port x MAC Receive 65 to 127 Byte Count Register (MAC_RX_65_TO_127_CNT_x)................................................................................ 326
14.5.2.6Port x MAC Receive 128 to 255 Byte Count Register (MAC_RX_128_TO_255_CNT_x)............................................................................ 327
14.5.2.7Port x MAC Receive 256 to 511 Byte Count Register (MAC_RX_256_TO_511_CNT_x)............................................................................ 328
14.5.2.8Port x MAC Receive 512 to 1023 Byte Count Register (MAC_RX_512_TO_1023_CNT_x)........................................................................ 329
14.5.2.9Port x MAC Receive 1024 to Max Byte Count Register (MAC_RX_1024_TO_MAX_CNT_x)..................................................................... 330
14.5.2.10 Port x MAC Receive Oversize Count Register (MAC_RX_OVRSZE_CNT_x)............................................................................................. 331
14.5.2.11 Port x MAC Receive OK Count Register (MAC_RX_PKTOK_CNT_x)......................................................................................................... 332
14.5.2.12 Port x MAC Receive CRC Error Count Register (MAC_RX_CRCERR_CNT_x)................................................ .......................................... 333
14.5.2.13 Port x MAC Receive Multicast Count Register (MAC_RX_MULCST_CNT_x)............................................................................................. 334
14.5.2.14 Port x MAC Receive Broadcast Count Register (MAC_RX_BRDCST_CNT_x)........................................................................................... 335
14.5.2.15 Port x MAC Receive Pause Frame Count Register (MAC_RX_PAUSE_CNT_x)........................................................................................ 336
14.5.2.16 Port x MAC Receive Fragment Error Count Register (MAC_RX_FRAG_CNT_x)........................................................................................ 337
14.5.2.17 Port x MAC Receive Jabber Error Count Register (MAC_RX_JABB_CNT_x)............................................................................................. 338
14.5.2.18 Port x MAC Receive Alignment Error Count Register (MAC_RX_ALIGN_CNT_x)...................................................................................... 339
14.5.2.19 Port x MAC Receive Packet Length Count Register (MAC_RX_PKTLEN_CNT_x)..................................................................................... 340
14.5.2.20 Port x MAC Receive Good Packet Length Count Register (MAC_RX_GOODPKTLEN_CNT_x) ................................................................ 341
14.5.2.21 Port x MAC Receive Symbol Error Count Register (MAC_RX_SYMBOL_CNT_x)...................................................................................... 342
14.5.2.22 Port x MAC Receive Control Frame Count Register (MAC_RX_CTLFRM_CNT_x) .................................................................................... 343
14.5.2.23 Port x MAC Transmit Configuration Register (MAC_TX_CFG_x) ................................................................................................................ 344
14.5.2.24 Port x MAC Transmit Flow Control Settings Register (MAC_TX_FC_S ETTINGS_x) .......... ... .. ... ................................................................ 345
14.5.2.25 Port x MAC Transmit Deferred Count Register (MAC_TX_DEFER_CNT_x) ............................................................................................... 346
14.5.2.26 Port x MAC Transmit Pause Count Register (MAC_TX_PAUSE_CNT_x)................................................................................................... 347
14.5.2.27 Port x MAC Transmit OK Count Register (MAC_TX_PKTOK_CNT_x)........................................................................................................ 348
14.5.2.28 Port x MAC Transmit 64 Byte Count Register (MAC_TX_64_CNT_x)......................................................................................................... 349
14.5.2.29 Port x MAC Transmit 65 to 127 Byte Count Register (MAC_TX_65_TO_127_CNT_x)............................................................................... 350
14.5.2.30 Port x MAC Transmit 128 to 255 Byte Count Register (MAC_TX_128_TO_255_CNT_x)........................................................................... 351
14.5.2.31 Port x MAC Transmit 256 to 511 Byte Count Register (MAC_TX_256_TO_511_CNT_x)........................................................................... 352
14.5.2.32 Port x MAC Transmit 512 to 1023 Byte Count Register (MAC_TX_512_TO_1023_CNT_x)....................................................................... 353
14.5.2.33 Port x MAC Transmit 1024 to Max Byte Count Register (MAC_TX_1024_TO_MAX_CNT_x)..................................................................... 354
14.5.2.34 Port x MAC Transmit Undersize Count Register (MAC_TX_UNDSZE_CNT_x) .......................................................................................... 355
14.5.2.35 Port x MAC Transmit Packet Length Count Register (MAC_TX_PKTLEN_CNT_x) .................................................................................... 356
14.5.2.36 Port x MAC Transmit Broadcast Count Register (MAC_TX_BRDCST_CNT_x) .......................................................................................... 357
14.5.2.37 Port x MAC Transmit Multicast Count Register (MAC_TX_MULCST_CNT_x) ............................................................................................ 358
14.5.2.38 Port x MAC Transmit Late Collision Count Register (MAC_TX_LATECOL_CNT_x) ................................................................................... 359
14.5.2.39 Port x MAC Transmit Excessive Collision Count Register (MAC_TX_EXCCOL_CNT_x)..........................................
14.5.2.40 Port x MAC Transmit Single Collision Count Register (MAC_TX_SNGLECOL_CNT_x) ............................................................................. 361
14.5.2.41 Port x MAC Transmit Multiple Collision Count Register (MAC_TX_MULTICOL_CNT_x) ............................................................................ 362
14.5.2.42 Port x MAC Transmit Total Collision Count Register (MAC_TX_TOTALCOL_CNT_x)................................................................................ 363
14.5.2.43 Port x MAC Interrupt Mask Register (MAC_IMR_x) ..................................................................................................................................... 364
14.5.2.44 Port x MAC Interrupt Pending Register (MAC_IPR_x) ................................................................................................................................. 365
14.5.3.17 Switch Engine Port Ingress Configuration Register (SWE_PORT_INGRSS_CFG)..................................................................................... 385
14.5.3.18 Switch Engine Admit Only VLAN Register (SWE_A DMT_ O N LY _ V LA N)........ ............................................................................................. 386
14.5.3.19 Switch Engine Port State Register (SWE_P ORT _S TATE).................... .. ... .. ................................ ... .. ........................................................... 387
14.5.3.20 Switch Engine Priority to Queue Register (SWE_PRI_TO_QUE)................................................................................................................ 388
14.5.3.21 Switch Engine Port Mirroring Register (SW E _P ORT_MIRROR)............................. ............................... ...................................................... 389
14.5.3.22 Switch Engine Ingress Port Type Register (SWE_INGRSS_PORT_TYP)................................................................................................... 390
14.5.3.24 Switch Engine Admit Non Member Register (SWE_A DM T_ N_ M E MBE R )........................ ... ... .. ................................................................... 392
14.5.3.25 Switch Engine Ingress Rate Configuration Regist er (S W E _I NGRSS_RATE_CFG) .... ... ............................................................................. 393
14.5.3.40 Switch Engine Interrupt Pending Regist er (S W E _ IP R )............................ ... ............................... ... ................................................................ 409
14.5.4.6Buffer Manager Port 0 Drop Count Register (BM_DRP_CNT_SRC_MII) ........................................... ......................................................... 416
14.5.4.7Buffer Manager Port 1 Drop Count Register (BM_DRP_CNT_SRC_1) ....................................................................................................... 417
14.5.4.8Buffer Manager Port 2 Drop Count Register (BM_DRP_CNT_SRC_2) ....................................................................................................... 418
14.5.4.9Buffer Manager Reset Status Register (BM_RST_STS).............................................................................................................................. 419
14.5.4.10 Buffer Manager Random Discard Table Command Register (BM_RNDM_DSCRD_TBL_CMD)................................................................ 420
14.5.4.11 Buffer Manager Random Discard Table Write Data Register (BM_RNDM_DSCRD_TBL_WDATA)........................................................... 421
14.5.4.12 Buffer Manager Random Discard Table Read Data Register (BM_RNDM_DSCRD_TBL_RDATA)............................................................ 422
14.5.4.13 Buffer Manager Egress Port Type Register (BM_EGRSS_PORT_TYPE)................................................................................................... 423
14.5.4.20 Buffer Manager Port 0 Default VLAN ID and Priority Register (BM_VLAN_MII).......................................................................................... 431
14.5.4.21 Buffer Manager Port 1 Default VLAN ID and Priority Register (BM_VLAN_1)............................................................................................. 432
14.5.4.22 Buffer Manager Port 2 Default VLAN ID and Priority Register (BM_VLAN_2)............................................................................................. 433
14.5.4.23 Buffer Manager Port 0 Ingress Rate Drop Count Register (BM_RATE_DRP_CNT_SRC_MII) ................................................................... 434
14.5.4.24 Buffer Manager Port 1 Ingress Rate Drop Count Register (BM_RATE_DRP_CNT_SRC_1) ...................................................................... 435
14.5.4.25 Buffer Manager Port 2 Ingress Rate Drop Count Register (BM_RATE_DRP_CNT_SRC_2) ...................................................................... 436
High Performance Two Port 10/100 Managed Ethernet Switch with 32-Bit Non-PCI CPU Interface
Chapter 1 Preface
1.1 General Terms
100BT100BASE-T (100Mbps Fast Ethernet, IEEE 802.3u)
ADCAnalog-to-Digital Converter
ALRAddress Logic Resolution
BLWBaseline Wander
BMBuffer Manager - Part of the switch fabric
Datasheet
BPDUBridge Protocol Data Unit - Messages which carry the Spanning Tree
Byte8-bits
CSMA/CDCarrier Sense Multiple Access / Collision Detect
CSRControl an d Status Registers
CTRCounter
DADestination Address
DWORD32-bits
EPCEEPROM Controller
FCSFram e Check Sequence - The extra checksum characters adde d to the end
FIFOFirst In First Out buffer
FSMFinite State Machine
GPIOGeneral Purpose I/O
HBIHost Bus Interface. The physical bus connecting the LAN9312 to the host.
HBICHost Bus Interface Controller. The hardware module that interfaces the
Protocol information
of an Ethernet frame, used for error detection and correction.
Also referred to as the Host Bus.
LAN9312 to the HBI.
HostExternal system (Includes proces sor, application software, etc.)
IGMPInternet Group Management Protocol
InboundRefers to data input to the LAN9312from the host
Level-Triggered Sticky BitThis type of status bit is set whenever the condition that it represents is
lsbLeast Significant Bit
LSBLeast Si gnificant Byte
MDIMedium Dependant Interface
MDIXMedia Independent Interface with Crossover
Revision 1.4 (08-19-08)16SMSC LAN9312
asserted. The bit remains set until the condition is no longer true, and th e
status bit is cleared by writing a zero.
DATASHEET
High Performance Two Port 10/100 Managed Ethernet Switch with 32-Bit Non-PCI CPU Interface
Datasheet
MIIMedia Independ ent Interface
MIIMMedia Independ ent Interface Management
MILMAC Interface Layer
MLDMulticast Listening Discovery
MLT-3Multi-Level Transmission Encoding (3-Levels). A tri-level encoding method
msbMost Significant Bit
MSBMost Signifi cant Byte
NRZINon Return to Zero Inverted. This encoding method inverts the signal for a
N/ANot Applicable
NCNo Connect
OUIOrganizati onally Unique Identifier
Outbound Refers to data output from the LAN9312 to the host
PIO cycleProgram I/O cycle. An SRAM-like read or write cycle on the HBI.
PISOParallel In Serial Out
PLLPhase Locked Loop
PTPPrecision Time Protocol
RESERVEDRefers to a reserved bit field or address. Unless otherw ise noted, reserved
where a change in the logic level represents a code bit “1” and the logic
output remaining at the same level represents a code bit “0 ”.
“1” and leaves the signal unchanged for a “0”
bits must always be zero for write operations. Unless otherwise noted, values
are not guaranteed when reading reserved bits. Unless otherwise noted, do
not read or write to reserved addresses.
RTCReal-Time Clock
SASource Address
SFDStart of Frame Delimiter - The 8-bit value indicating the end of the preamble
SIPOSerial In Parallel Out
SMISerial Management Interface
SQESignal Qua lity Error (also known as “heartbeat”)
SSDStart of Stream Delimiter
UDPUser Datagram Protocol - A connectionles s protocol run on top of IP
UUIDUniversally Unique IDentifier
WORD16-bits
of an Ethernet frame.
networks
SMSC LAN931217Revision 1.4 (08-19-08)
DATASHEET
High Performance Two Port 10/100 Managed Ethernet Switch with 32-Bit Non-PCI CPU Interface
1.2 Buffer Types
Table 1.1 describes the pin buffer type notation used in Chapter 3, "Pin Description and Configuration,"
on page 26 and throughout this document.
Table 1.1 Buffer Types
BUFFER TYPEDESCRIPTION
ISSchmitt-triggered Input
O8Output with 8mA sink and 8mA source
OD8Open-drain output with 8mA sink
O12Output with 12mA sink and 12mA source
OD12Open-drain output with 12mA sink
Datasheet
PU50uA (typical) internal pull-up. Unless otherwise noted in the pin de scription, internal pull-
PD50uA (typical) internal pull-down. Unless otherwise noted in the pin description, internal
AIAnalog input
AOAnalog output
AIOAnalog bi-directional
ICLKCrystal oscillator input pin
OCLKCrystal oscillator output pin
PPower pin
ups are always enabled.
Note:Internal pull-up resistors prevent unconnected inputs from floating. Do not rely on
internal resistors to drive signals external to the LAN9312. When connected to a
load that must be pulled high, an external resistor must be added.
pull-downs are always enabled.
Note:Internal pull-down resistors prevent unconnected inputs from floating. Do not rely
on internal resistors to drive signals external to the LAN931 2. When connected to
a load that must be pulled low, an external resistor must be added.
Revision 1.4 (08-19-08)18SMSC LAN9312
DATASHEET
High Performance Two Port 10/100 Managed Ethernet Switch with 32-Bit Non-PCI CPU Interface
Datasheet
1.3 Register Nomenclature
Table 1.2 describes the register bit attribute notation used throughout this do cument.
Table 1.2 Register Bit Types
REGISTER BIT TYPE
NOTATIONREGISTER BIT DESCRIPTION
RRead: A register or bit with this attribute can be read.
WRead: A register or bit with this attribute can be written.
RORead only: Read only. Writes have no effect.
WOWrite only: If a register or bit is write-only, reads will return unspecified data.
WCWrite One to Clear: writing a one clears the value. Writing a zero has no effect
WACWrite Anything to Clear: writing anything clears the value.
RCRead to Clear: Contents is cleared after the read. Writes have no effect.
LLLatch Low: Clear on read of register.
LHLatch High: Clear on read of register.
SCSelf-Clearing: Contents are self-cleared after the being set. Writes of zero have no
SSSelf-Setting: Contents are self-setting after being cleared. Writes of one have no
RO/LHRead Only, Latch High: Bits with this attribute will stay high until the bit is read. After
NASRNot Affected by Software Reset. The state of NASR bits do not change on assertion
RESERVEDReserved Field: Reserved fields must be written with zeros to ensure future
Many of these register bit notations can be combined. Some examples of this are shown below:
R/W: Can be written. Will return current setting on a read.
R/WAC: Will return current setting on a read. Writing anything clears the bit.
effect. Contents can be read.
effect. Contents can be read.
it is read, the bit will either remain high if the high condition remains, or will go low if
the high condition has been removed. If the bit has not been read, the bit will remain
high regardless of a change to the high condition. This mode is used in some Ethernet
PHY registers.
of a software reset.
compatibility. The value of reserved bits is not guaranteed on a read.
SMSC LAN931219Revision 1.4 (08-19-08)
DATASHEET
High Performance Two Port 10/100 Managed Ethernet Switch with 32-Bit Non-PCI CPU Interface
Chapter 2 Introduction
2.1 General Description
The LAN9312 is a full featured, 2 port 10/100 managed Ethernet switch designed for embedded
applications where performance, flexibility, ease of integration and system cost control are required.
The LAN9312 combines all the functions of a 1 0/100 switch system, including the switch fabric, packet
buffers, buffer manager, media access controllers (MACs), PHY transceivers, and host bus interface.
The LAN9312 complies with the IEEE 802.3 (full/half-d uplex 10BASE-T and 100BASE-TX) Ethernet
protocol specification and 802.1D/802.1Q network management protocol specifications, enabling
compatibility with industry standard Ethernet and Fast Ethernet applications.
At the core of the LAN9312 is the high performance, high efficiency 3 port Ethernet switch fabric. The
switch fabric contains a 3 port VLAN layer 2 switch engine that supports untagged, VLAN tagged, and
priority tagged frames. The switch fabric provides an extensive feature set which includes spanning
tree protocol support, multicast packet filtering and Quality of Service (QoS) packet prioritization by
VLAN tag, destination address, port default value or DIFFSERV/TOS, allowing for a range of
prioritization implementations. 32K of buffer RAM allows for the storage of multiple packets while
forwarding operations are completed, and a 1K entry forwarding table provides ample roo m for MAC
address forwarding tables. Each port is allocated a cluster of 4 dynami c QoS queues which allow e ach
queue size to grow and shrink with traffic, effectively utilizing all available memory. This memory is
managed dynamically via the buffer manager block within the switch fabric. All aspects of the switch
fabric are managed via the switch fabric configuration and status registers, which are indirectly
accessible via the memory mapped system control and status registers.
Datasheet
The LAN9312 provides 2 switched ports. Each port is fully compliant with the IEEE 802.3 standard and
all internal MACs and PHYs support full/half duplex 10BASE-T and 100BASE-TX operation. The
LAN9312 provides 2 on-chip PHYs, 1 Virtual PHY and 3 MACs. The Virtual PHY and the Host MAC
are used to connect the LAN9312 switch fabric to the host bus interface. Al l ports support automatic
or manual full duplex flow control or half duplex backpressure (forced collision) flow control. Automatic
32-bit CRC generation/checking and automatic payload padding are supported to further reduce CPU
overhead. 2K jumbo packet (2048 byte) support allows for oversized packet transfers, effectively
increasing throughput while deceasing CPU load. All MAC and PHY related settings are fully
configurable via their respective registers within the LAN9312.
The integrated Host Bus Interface (HBI) easily interfaces to most 32-bit embedded CPU’s via a simple
SRAM like interface, enabling switch fabric acce ss via the internal Host MAC and allowing full control
over the LAN9312 via memory mapped system control and status registers. The HBI supports 32-bit
operation with big, little, and mixed endian operations. Four separate FIFO mechanisms (TX/RX Data
FIFO’s, TX/RX Status FIFO’s) interface the HBI to the Host MAC and facilitate the transferring of
packet data and status information between the host CPU and the switch fabric. The LAN9312 also
provides power management features which allow for wake on LAN, wake on link status change
(energy detect), and magic packet wakeup detection. A configurable host interrupt pin allows the
device to inform the host CPU of any internal interrupts.
2
The LAN9312 contains an I
EEPROM. This allows for the storage and retrieval of static data. The internal EEPROM Loader can
be optionally configured to automatically load stored configuration settings from the EEPROM into the
LAN9312 at reset.
In addition to the primary functionality described above, the LAN9312 provides additional features
designed for extended functionality. These include a configurable 16-bit General Purpose Timer (GPT),
a 32-bit 25MHz free running counter, a 12-bit configurable GPIO/LED interface, and IEEE 1588 time
stamping on all ports and select GPIOs. The IEEE time stamp unit provides a 64-bit tunable clock for
accurate PTP timing and a timer comparator to allow time based interrupt generation.
C/Microwire master EEPROM controller for connection to an optional
The LAN9312’s performance, features and small size make it an ideal solution for many applications
in the consumer electronics and industrial automation markets. Targeted applications include: set top
boxes (cable, satellite and IP), digital televisions, digital video recorders, voice over IP and video phone
systems, home gateways, and test and measurement equipment.
Revision 1.4 (08-19-08)20SMSC LAN9312
DATASHEET
Revision 1.4 (08-19-08)21 SMSC LAN9312
2.2 Block Diagram
IEEE 1588
Time Stamp
High Performance Two Port 10/100 Managed Ethernet Switch with 32-Bit Non-PCI CPU Interface
Datasheet
DATASHEET
To Ethernet
To Ethernet
10/100
PHY
Registers
IEEE 1588
Time Stamp
10/100
PHY
Registers
LAN9312
MII
MDIO
MII
MDIO
To optional GPIOs/LEDs
Port 1
10/100
MAC
Port 2
10/100
MAC
GPIO/LED
Controller
4 Queues
Dynamic
QoS
4 Queues
Dynamic
QoS
10/100
Port 0
MAC
Switch Engine
Buffer Manager
4 Queues
Dynamic
QoS
Search
Engine
Frame
Buffers
Switch
Registers
(CSRs)
Switch Fabric
IEEE 1588
Time Stamp
Clock/Events
System
Interrupt
Controller
IRQ
System
Clocks/
Reset/PME
Controller
External
25MHz Crystal
Figure 2.1 Internal LAN9312 Bloc k Diagram
IEEE 1588
Time Stamp
System
Registers
(CSRs)
GP Timer
Free-Run
Clk
MII
Host MAC
TX/RX FIFOs
Register
Access
MUX
MDIO
MDIO
EEPROM Controller
Virtual PHY
Registers
MDIO
Host Bus Interface
EEPROM Loader
I2C (master)
Microwire (master)
To 32-bit
Host Bus
2
I
C/Microwire
To optional
EEPROM
High Performance Two Port 10/100 Managed Ethernet Switch with 32-Bit Non-PCI CPU Interface
2.2.1System Clocks/Reset/PME Controller
A clock module contained within the LAN9312 generate s all the system clocks required by the device.
This module interfaces directly with the external 25MHz crystal/oscillator to generate the required clock
divisions for each internal module, with the exception of the 1588 clocks, which are generated in the
1588 Time Stamp Clock/Events module. A 16-bit general purpose timer and 32-bit free-running clock
are provided by this module for general purpose use.
The LAN9312 reset events are categorized as chip-level resets, multi-module resets, and singlemodule resets.
A chip-level reset is initiated by assertion of any of the fo llowing input events:
Power-On Reset
nRST Pin Reset
A multi-module reset is initiated by assertion of the fo llowing:
Digital Reset - DIGITAL_RST (bit 0) in the Reset Control Register (RESET_CTL)
- Resets all LAN9312 sub-modules except the Ethernet PHYs (Port 1 PHY, Port 2 PHY, and Virtual
PHY)
Soft Reset - SRST (bit 0) in the Hardware Configuration Register (HW_CFG)
- Resets the HBI, Host MAC, and System CSRs below address 100h
Datasheet
A single-module reset is initiated by assertion of the following:
Port 2 PHY Reset - PHY2_RST (bit 2) in the Reset Control Register (RESET_CTL) or Reset (bit
15) in the Port x PHY Basic Control Register (PHY_BASIC_CONTROL_x)
- Resets the Port 2 PHY
Port 1 PHY Reset - PHY1_RST (bit 1) in the Reset Control Register (RESET_CTL) or Reset (bit
15) in the Port x PHY Basic Control Register (PHY_BASIC_CONTROL_x)
- Resets the Port 1 PHY
Virtual PHY Reset - VPHY_RST (bit 0) in th e Reset Control Register (RESET_CTL), (bit 10) in
the Power Manag ement Control Register (PMT_CTRL), or Reset (bit 15) in the Virtual PHY Basic
Control Register (VPHY_BASIC_CTRL)
- Resets the Virtual PHY
The LAN9312 supports numerous power management and wakeup features. The Port 1 & 2 PHYs
provide general power-down and energy detect power-down modes, which allow a reduction in PHY
power consumption. The Host MAC provides wake-up frame detection and magic packet detection
modes. The LAN9312 can be programmed to issue an external wake signal (PME) via several
methods, including wake on LAN, wake on link status change (energy detect), and magic packet
wakeup. The PME signal is ideal for triggering system power-up using remote Ethernet wakeup events.
2.2.2System Interrupt Controller
The LAN9312 provides a multi-tier programmable i nterrupt structure which is controlled by the System
Interrupt Controller. At the top level are the Interrupt Status Register (INT_STS) and Interrupt Enable
Register (INT_EN). These registers aggregate and control all interrupts from the various LAN9312 sub-
modules. The LAN9312 is capable of generating interrupt events from the following:
1588 Time Stamp
Switch Fabric
Ethernet PHYs
GPIOs
Host MAC (FIFOs, power management)
General Purpose Timer
Revision 1.4 (08-19-08)22SMSC LAN9312
DATASHEET
High Performance Two Port 10/100 Managed Ethernet Switch with 32-Bit Non-PCI CPU Interface
Datasheet
Software (general purpose)
A dedicated programmable IRQ interrupt output pin is p rovided for external indication of any LAN9312
interrupts. The IRQ pin is controlled via the Interrupt Configuration Register (IRQ_CFG), which allows
configuration of the IRQ buffer type, polarity, and de-assertion interval.
2.2.3Switch Fabric
The Switch Fabric consists of the following major function blocks:
10/100 MACs
There is one 10/100 Ethernet MAC per switch fabric port, which provid es basic 10/100 Ethernet
functionality, including transmission deferral, collision back-off/retry, TX/RX FCS
checking/generation, TX/RX pause flow control, and transmit back pressure. The 10/1 00 MACs act
as an interface between the switch engine and the 10/1 00 PHYs (for ports 1 and 2). The port 0
10/100 MAC interfaces the switch engine to the Host MAC. Each 10/100 MAC i ncludes RX and
TX FIFOs and per port statistic counters.
Switch Engine
This block, consisting of a 3 port VLAN layer 2 switching engine, provides the control for all
forwarding/filtering rules and supports untagged, VLAN tagged, and priority tagged frames. The
switch engine provides an extensive feature set which includes spanning tree protocol su pport,
multicast packet filtering and Quality of Service (QoS) packet prioritization by VLAN tag, destination
address, and port default value or DIFFSERV/TOS, allowing for a range of prioritization
implementations. A 1K entry forwarding table provides ample room for MAC address forwarding
tables.
Buffer Manager
This block controls the free buffer space, multi-level transmit queues, transmission scheduling, and
packet dropping of the switch fabric. 32K of buffer RAM allows for the storage of multiple packets
while forwarding operations are completed. Each port is allocated 1a cluster of 4 dynamic QoS
queues which allow each queue size to grow and shrink with tra ffic, effectively utilizing all available
memory. This memory is managed dynamically via the Buffer Manager block.
Switch CSRs
This block contains all switch related control and status registers, and allows all aspects of the
switch fabric to be managed. These registers are indirectly accessibl e via the memory mapped
system control and status registers
2.2.4Ethernet PHYs
The LAN9312 contains three PHYs: Port 1 PHY, Port 2 PHY and a Virtual PHY. The Port 1 & 2 PHYs
are identical in functionality and each connect their corresponding Ethernet sig nal pins to the switch
fabric MAC of their respective port. These PHYs interface with their respective MAC vi a an internal MII
interface. The Virtual PHY provides the virtual functionality of a PHY and allows connection of the Ho st
MAC to port 0 of the switch fabric as if it was connected to a single po rt PHY. All PHYs comply with
the IEEE 802.3 Physical Layer for Twisted Pair Ethernet and can be configured for full/half duplex 100
Mbps (100BASE-TX) or 10Mbps (10BASE-T) Ethernet operation. All PHY registers follow the IEEE
802.3 (clause 22.2.4) specified MII management register set.
2.2.5Host Bus Interface (HBI)
The Host Bus Interface (HBI) module provides a high-speed asynchronous SRAM-like slave interface
that facilitates communication between the LAN9312 and a host system. The HBI allows access to the
System CSRs and handles byte swapping based on the dyna mic endianess se lect. The HBI interfaces
to the switch fabric via the Host MAC, which contains the TX/RX Data and Status FIFOs, Host MAC
registers and power management features. The main features of the HBI are:
Asynchronous 32-bit Host Bus Inte rface
- Host Data Bus Endianess Control
- Direct FIFO Access Modes
SMSC LAN931223Revision 1.4 (08-19-08)
DATASHEET
System CSRs Access
Interrupt Support
2.2.6Host MAC
The Host MAC incorporates the essential protocol requirements for operating an Ethernet/IEEE 802.3compliant node and provides an interface between the Host Bus Interface (HBI) and the Ethernet PHYs
and Switch Fabric. On the front end, the Host MAC interfaces to the HBI via 2 sets of FIFO’s (TX Data
FIFO, TX Status FIFO, RX Data FIFO, RX Status FIFO). The FIFOs are a conduit between the HBI
and the Host MAC through which all transmitted and received data and status information is passed.
An additional bus is used to access the Host MAC CSR’s via the Host MAC CSR Interface Command
Register (MAC_CSR_CMD) and Host MAC CSR Interface Data Register (MAC_CSR_DATA) system
registers.
On the back end, the Host MAC interfaces with the 10/100 Ethernet PHY’s (Virtual PHY, Port 1 PHY,
Port 2 PHY) via an internal SMI (Serial Management Interface) bus. This allows the Host MAC access
to the PHY’s internal registers via the Host MAC MII Access Register (HMAC_MII_ACC) and Host
MAC MII Data Register (HMAC_MII_DATA). The Host MAC interfaces to the Switch Engine Port 0 via
an internal MII (Media Independent Interface) connection allowing for incoming and outgoi ng Ethernet
packet transfers.
The Host MAC can operate at either 100Mbps or 10Mbps in both half-duplex or full-duplex modes.
When operating in half-duplex mode, the Host MAC complies fully with Section 4 of ISO/IEC 8802-3
(ANSI/IEEE standard) and ANSI/IEEE 802.3 standards. When operating in full-duplex mode, the Host
MAC complies with IEEE 802.3 full-duplex operation standard.
High Performance Two Port 10/100 Managed Ethernet Switch with 32-Bit Non-PCI CPU Interface
Datasheet
2.2.7EEPROM Controller/Loader
The EEPROM Controller is an I2C/Microwire master module which interfaces an optional external
EEPROM with the system register bus and the EEPROM Loader. Multiple types (I2C/Microwire) and
sizes of external EEPROMs are supported. Configuration of the EEPROM type and size are
accomplished via the eeprom_type_strap and eeprom_size_strap[1:0] configuration straps respectively.
Various commands are supported for each EEPROM type, allowing for the storage and retrieval of
static data. The I
The EEPROM Loader module interfaces to the EEPROM Controller, Ethernet PHYs, and the system
CSRs. The EEPROM Loader provides the automatic loading of configuration settings from the
EEPROM into the LAN9312 at reset. The EEPROM Loader runs upon a pin reset (nRST), power-on
reset (POR), digital reset (DIGITAL_RST bit in the Reset Control Register (RESET_CTL)), or upon the
issuance of a RELOAD command via the EEPROM Command Register (E2P_CMD).
2
C interface conforms to the Philips I2C-Bus Specification.
2.2.81588 Time Stamp
The IEEE 1588 Time Stamp modules provide hardware support for the IEEE 1588 Precision Time
Protocol (PTP), allowing clock synchronization with remote Ethernet devices, packet time stamping,
and time driven event generation. Time stamping is supported on all ports, with an individual IEEE
1588 Time Stamp module connected to each port via the MII bus. Any port may functi on as a master
or a slave clock per the IEEE 1588 specification, and the LAN9312 as a whole may function as a
boundary clock.
A 64-bit tunable clock is provided that is used as the time source for all IEEE 1588 time stamp related
functions. The IEEE 1588 Clock/Events block provides IEEE 1588 clock comparison based interrupt
generation and time stamp related GPIO event generation. Two LAN9312 GPIO pins (GPIO[8:9]) can
be used to trigger a time stamp capture when configured as an input, or output a signal from the GPIO
based on an IEEE 1588 clock target compare event when configured as an output. All features of the
IEEE 1588 hardware time stamp unit can be monitored and configured via their respective IEEE 1588
configuration and status registers (CSRs).
Revision 1.4 (08-19-08)24SMSC LAN9312
DATASHEET
High Performance Two Port 10/100 Managed Ethernet Switch with 32-Bit Non-PCI CPU Interface
Datasheet
2.2.9GPIO/LED Controller
The LAN9312 provides 12 configurable general-purpose input/outpu t pins which are controlled via this
module. These pins can be individually configured via the GPIO/LED CSRs to function as inputs, pushpull outputs, or open drain outputs and each is capable of interrupt generation with configurable
polarity. Two of the GPIO pins (GPIO[9:8]) can be used for IEEE 1588 timestamp functions, allowing
GPIO driven 1588 time clock capture when configured as an input, or GPIO output generation based
on an IEEE 1588 clock target compare event.
In addition, 8 of the GPIO pins can be alternatively configured as LED outputs. These pins, GPIO[7:0]
(nP1LED[3:0] and nP2LED[3:0]), may be enabled to drive Ethernet status LEDs for external indication
of various attributes of the switch ports.
2.3 System Configuration
In a typical application, the LAN9312 Host Bus Interface (HBI) is connected to the host
microprocessor/microcontroller via the asynchronous 32-bit interface, allowing access to the LAN9312
system configuration and status registers. The LAN9312 utilizes the internal Host MAC to provide a
network path for the host CPU. The LAN9312 may share the host bus with additional system memory
and/or peripherals. For more information on the HBI, refer to Chapter 8, "Host Bus Interface (H BI)," on
page 99.
The 2 Ethernet ports of the LAN9312 must be connected to Auto-MDIX style magnetics for proper
operation on the Ethernet network. Refer to the SMSC Application Note 8.13 “Suggested Magnetics”
for further details.
To Ethernet
To Ethernet
The LAN9312 also supports optional EEPROM and GPIOs/LEDs. When an EEPROM is connected,
the EEPROM loader can be used to load the initial device configuration from the external EEPROM
via the I
2
C/Microwire interface.
A system configuration diagram of the LAN9312 in a typical embedded environme nt can be seen in
Figure 2.2.
Magnetics
Magnetics
GPIOs/LEDs
(optional)
I2C/Microwire
LAN9312
External
25MHz Crystal
EEPROM
(optional)
Microprocessor/
Microcontroller
System
Memory
System
Peripherals
Figure 2.2 System Block Diagram
SMSC LAN931225Revision 1.4 (08-19-08)
DATASHEET
High Performance Two Port 10/100 Managed Ethernet Switch with 32-Bit Non-PCI CPU Interface
NOTE: EXPOSED PAD ON BOTTOM OF PACKAGE MUST BE CONNECTED TO GROUND
VDD33IO
VDD18CORE
VSS
VDD33IO
D13
VDD33IO
32
D9
D12
D10
D11
Figure 3.2 LAN9312 128-XVTQFP Pin As signments (TOP VIEW)
SMSC LAN931227Revision 1.4 (08-19-08)
DATASHEET
3.2 Pin Descriptions
This section contains the descriptions of the LAN9312 pins. The pin descriptions have been broken
into functional groups as follows:
LAN Port 1 Pins
LAN Port 2 Pins
LAN Port 1 & 2 Power and Common Pins
Host Bus Interface Pins
EEPROM Pins
Dedicated Configuration Strap Pins
Miscellaneous Pins
PLL Pins
Core and I/O Power and Ground Pins
No-Connect Pins
Note: A list of b uffer type definitions is provided in Section 1.2, "Buffer Types," on page 18.
High Performance Two Port 10/100 Managed Ethernet Switch with 32-Bit Non-PCI CPU Interface
Datasheet
Table 3.1 LAN Port 1 Pins
PINNAMESYMBOL
Port 1 LED
nP1LED[3:0]OD12LED Indicators: When configured as LED outputs
Indicators
General
GPIO[3:0]IS/O12/
Purpose I/O
89-92
110
Data
Port 1
Ethernet TX
TXN1AIOEthernet TX Negative: Negative output of Port 1
Negative
111
Port 1
Ethernet TX
TXP1AIOEthernet TX Positive: Positive output of Port 1
Positive
BUFFER
TYPEDESCRIPTION
via the LED Configuration Register (LED_CFG),
these pins are open-drain, active low outputs and
the pull-ups and input buffers are disabled. The
functionality of each pin is determined via the
LED_CFG[9:8] bits.
General Purpose I/O Data: When configured as
OD12
(PU)
GPIO via the LED Configuration Register
(LED_CFG), these general purpose signals are
fully programmable as either push-pull outputs,
open-drain outputs or Schmitt-triggered inputs by
writing the General Purpose I/O Configuration
Register (GPIO_CFG) and General Purpose I/O
Data & Direction Register (GPIO_DATA_DIR). The
pull-ups are enabled in GPIO mode. The input
buffers are disabled when set as an output.
Note:See Chapter 13, "GPIO/LED Controller,"
on page 162 for additional details.
Ethernet transmitter. See Note 3.1 for additiona l
information.
Ethernet transmitter. See Note 3.1 for additional
information.
Port 1
115
Ethernet RX
Negative
Port 1
116
Ethernet RX
Positive
Revision 1.4 (08-19-08)28SMSC LAN9312
RXN1AIOEthernet RX Negative: Negative input of Port 1
Ethernet receiver. See Note 3.1 for additiona l
information.
RXP1AIOEthernet RX Positive: Positive input of Port 1
Ethernet receiver. See Note 3.1 for additiona l
information.
DATASHEET
High Performance Two Port 10/100 Managed Ethernet Switch with 32-Bit Non-PCI CPU Interface
Datasheet
Note 3.1The pin names for the twisted pair pins apply to a normal connection. If HP Auto-MDIX is
enabled and a reverse connection is detected or manually se lected, the RX and TX pins
will be swapped internally.
Table 3.2 LAN Port 2 Pins
BUFFER
PINNAMESYMBOL
TYPEDESCRIPTION
83-86
127
126
124
Port 2 LED
Indicators
General
Purpose I/O
Data
Port 2
Ethernet TX
Negative
Port 2
Ethernet TX
Positive
Port 2
Ethernet RX
Negative
nP2LED[3:0]OD12LED indicators: When configured as LED outputs
GPIO[7:4]IS/O12/
OD12
(PU)
TXN2AIOEthernet TX Negative: Negative output of Port 2
TXP2AIOEthernet TX Positive: Positive output of Port 2
RXN2AIOEthernet RX Negative: Negative input of Port 2
via the LED Configuration Register (LED_CFG),
these pins are open-drain, active low outputs and
the pull-ups and input buffers are disabled. The
functionality of each pin is determined via the
LED_CFG[9:8] bits.
General Purpose I/O Data: When configured as
GPIO via the LED Configuration Register
(LED_CFG), these general purpose signals are
fully programmable as either push-pull outputs,
open-drain outputs or Schmitt-triggered inputs by
writing the General Purpose I/O Configuration
Register (GPIO_CFG) and General Purpose I/O
Data & Direction Register (GPIO_DATA_DIR). The
pull-ups are enabled in GPIO mode. The input
buffers are disabled when set as an output.
Note:See Chapter 13, "GPIO/LED Controller,"
on page 162 for additional details.
Ethernet transmitter. See Note 3.2 for additiona l
information.
Ethernet transmitter. See Note 3.2 for additional
information.
Ethernet receiver. See Note 3.2 for additiona l
information.
Port 2
123
PINNAMESYMBOL
119
114,117
SMSC LAN931229Revision 1.4 (08-19-08)
Ethernet RX
Positive
Note 3.2The pin names for the twisted pair pins apply to a normal connection. If HP Auto-MDIX is
enabled and a reverse connection is detected or manually se lected, the RX and TX pins
will be swapped internally.
Bias
Reference
+3.3V Port 1
Analog Power
Supply
RXP2AIOEthernet RX Positive: Positive input of Port 2
Ethernet receiver. See Note 3.2 for additiona l
information.
T a ble 3.3 LAN Port 1 & 2 Power and Common Pins
BUFFER
TYPEDESCRIPTION
EXRESAIBias Reference: Used for internal bias circuits.
Connect to an external 12.4K ohm, 1% resistor to
ground.
VDD33A1P+3.3V Port 1 Analog Power Supply
Refer to the LAN9312 application note fo r
additional connection information.
DATASHEET
Table 3.3 LAN Port 1 & 2 Power and Common Pins (continued)
PINNAMESYMBOL
High Performance Two Port 10/100 Managed Ethernet Switch with 32-Bit Non-PCI CPU Interface
Datasheet
BUFFER
TYPEDESCRIPTION
122,125
120
121
118
+3.3V Port 2
Analog Power
Supply
+3.3V Master
Bias Power
Supply
Port 2
Transmitter
+1.8V Power
Supply
Port 1
Transmitter
+1.8V Power
Supply
VDD33A2P+3.3V Port 2 Analog Power Supply
Refer to the LAN9312 application note fo r
additional connection information.
VDD33BIASP+3.3V Master Bias Power Supply
Refer to the LAN9312 application note fo r
additional connection information.
VDD18TX2PPort 2 Transmitter +1.8V Power Supply: This pin
is supplied from the internal PHY voltage regulator.
This pin must be tied to the VDD18TX1 pin for
proper operation.
Refer to the LAN9312 application note fo r
additional connection information.
VDD18TX1P+1.8V Port 1 Transm itter Power Supply: This pin
must be connected directly to the VDD18TX2 pin
for proper operation.
Refer to the LAN9312 application note fo r
additional connection information.
Table 3.4 Host Bus Interface Pins
PINNAMESYMBOL
4-6,
8-12,
15-17,19,
20,22-26,
28-32,
34-38,
41-44
45,47,
49-53,
55
57
58
59
Host Bus
Data
Host Bus
Address
Read StrobenRDISRead Strobe: Active low strobe to indicate a read
Write StrobenWRISWri te St rob e: Active l ow strobe to indicate a write
Chip SelectnCSISChip Select: Active low signal used to qualify read
D[31:0]IS/O8Host Bus Data High: Bits 31-0 of the Host Bus 32-
A[9:2]ISHost Bus Address: 9-bit Host Bu s Address Port
BUFFER
TYPEDESCRIPTION
bit data port.
Note:Big and little endianess is supported.
used to select Internal CSR’s and TX and RX
FIFO’s.
Note:The A0 and A1 bits are not used because
the LAN9312 must be accessed on
DWORD boundaries.
cycle. This signal is qualified by the nCS chip
select.
cycle. This signal is qualified by the nCS chip
select.
and write operations.
Revision 1.4 (08-19-08)30SMSC LAN9312
DATASHEET
Loading...
+ 428 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.