Easi ly interfaces to most 16-bit embedded CPU’s
Un ique Virtual PHY feature simplifies software
development by mimicking the multiple switch ports
as a single port MAC/PHY
Integra ted IEEE 1588 Hardware Time Stamp Unit
Target Applications
Ca ble, satellite, and IP set-top boxes
Digital televisions
Di gital video recorders
VoIP/Video phone systems
Ho me gateways
Test/Measurement equipment
Industrial au tomation systems
Key Benefits
Ethern et Switch Fabric
— 32K buffer RAM
— 1K entry forwarding table
— Port based IEEE 802.1Q VLAN support (16 groups)
– Programmable IEEE 802.1Q tag insertion/removal
— IEEE 802.1d spanning tree protocol support
— QoS/CoS Packet prioritization
– 4 dynamic QoS queues per port
– Input priority determined by VLAN tag, DA lookup,
TOS, DIFFSERV or port default value
– Programmable class of service map based on input
priority
– Remapping of 802.1Q priority field on per port basis
– Programmable rate limiting at the ingress/egress
ports with random early discard, per port / priority
— IGMP v1/v2/v3 snooping for Multicast packet filtering
— IPV6 Multicast Listener Discovery snoop
— Programmable filter by MAC address
Swi tch Management
— Port mirroring/monitoring/sniffing: ingress and/or egress
traffic on any ports or port pairs
— Fully compliant statistics (MIB) gathering counters
— Control registers configurable on-the-fly
Datasheet
Ports
— 2 internal 10/100 PHYs with HP Auto-MDIX support
— Fully compliant with IEEE 802.3 standards
— 10BASE-T and 100BASE-TX support
— Full and half duplex support
— Full duplex flow control
— Backpressure (forced collision) half duplex flow control
— Automatic flow control based on programmable levels
— Automatic 32-bit CRC generation and checking
— Automatic payload padding
— 2K Jumbo packet support
— Programmable interframe gap, flow control pause value
— Full transmit/receive statistics
— Auto-negotiation
— Automatic MDI/MDI-X
— Loop-back mode
H igh-performance host bus interface
— Provides in-band network communication path
— Access to management registers
— Simple, SRAM-like interface
— 16-bit data bus
— Big, little, and mixed endian support
— Large TX and RX FIFO’s for high latency applications
— Programmable water marks and threshold levels
— Host interrupt support
IEEE 1588 Hardware Time Stamp Unit
— Global 64-bit tunable clock
— Master or slave mode per port
— Time stamp on TX or RX of Sync and Delay_req
packets per port, Timestamp on GPIO
— 64-bit timer comparator event generation (GPIO or IRQ)
C omprehensive Power Management Features
— Wake on LAN
— Wake on link status change (energy detect)
— Magic packet wakeup
— Wakeup indicator event signal
Other Features
— General Purpose Timer
— Serial EEPROM interface (I
master) for non-managed configuration
— Programmable GPIOs/LEDs
Si ngle 3.3V power supply
Available in Co mmercial & Industrial Temp. Ranges
construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC
reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications
before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent
rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated
version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors
known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not
designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property
damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of
this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered
trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders.
SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE
OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL
DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT;
TORT; NEGLIGENCE OF SMSC OR OTHE RS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD
TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Revision 1.4 (08-19-08)2SMSC LAN9311/LAN9311i
DATASHEET
Two Port 10/100 Managed Ethernet Switch with 16-Bit Non-PCI CPU Interface
6.4.1.5Spanning Tree Port State Override... ................................ .. ... ............................... ... ....................................................................................... 64
6.4.3.2IP Precedence Based Priority......................................................................................................................................................................... 69
6.4.3.3DIFFSERV Based Priority......................... ... .. ... ............................... ... ............................................................................................................ 69
6.4.10.1Packets from the Host CPU............................................................................................................................................................................ 75
6.4.10.2Packets to the Host CPU ....................... ... ................................ .. ... ............................... .................................................................................. 76
6.5.1.1Buffer Limits and Flow Control Levels ............................................................................................................................................................ 77
7.2.1.1MII MAC Interface........................................................................................................................................................................................... 84
7.2.1.3Scrambler and PISO....................................................................................................................................................................................... 86
7.2.1.4NRZI and MLT-3 Encoding........................................................ ..................................................................................................................... 86
7.2.2.7MII MAC Interface........................................................................................................................................................................................... 88
7.2.3.1MII MAC Interface........................................................................................................................................................................................... 89
7.2.3.210M TX Driver and PLL.................................................................................................................................................................................. 89
7.2.4.210M RX and PLL....... ...................................................................................................................................................................................... 89
7.2.4.3MII MAC Interface........................................................................................................................................................................................... 90
7.2.9.1PHY General Power-Down ............................................................................................................................................................................. 95
8.5.1.1Reset Ending During a Read Cycle .............................................................................................................................................................. 102
8.5.1.2Reset Ending Between Halves of a 16-Bit Read Pair................................................................................................................................... 102
8.5.1.3Writes Following a Reset .............................................................................................................................................................................. 102
9.9.1.1Receive Data FIFO Fast Forward ................................................................................................................................................................. 135
14.2.1.1Interrupt Configuration Regist er (I RQ_ C FG) ................. ............................... ................................................................................................ 173
14.2.1.2Interrupt Status Register (INT_STS)............................................................................................................................................................. 175
14.2.2.7Host MAC CSR Interface Command Register (MAC_CSR_CMD)............................................................................................................... 188
14.2.2.8Host MAC CSR Interface Data Register (MAC_CSR_DATA) ...................................................................................................................... 189
14.2.2.9Host MAC Automatic Flow Control Configuration Register (AFC_CFG) ...................................................................................................... 190
SMSC LAN9311/LAN9311i7Revision 1.4 (08-19-08)
DATASHEET
Two Port 10/100 Managed Ethernet Switch with 16-Bit Non-PCI CPU Interface
14.2.3.2General Purpose I/O Data & Direction Register (GPIO_DATA_DIR)........................................................................................................... 195
14.2.3.3General Purpose I/O Interrupt Status and Enable Register (GPIO_INT_STS_EN)...................................................................................... 196
14.2.4.2EEPROM Data Register (E2P_DATA).......................................................................................................................................................... 201
14.2.5.23 1588 Interrupt Status and Enable Register (1588_INT_STS_EN)................................................................................................................ 227
14.2.6.6Switch Fabric MAC Address High Register (SWITCH_MAC_ADDRH)........................................................................................................ 239
14.2.6.7Switch Fabric MAC Address Low Register (SWITCH_MAC_ADDRL) ......................................................................................................... 240
14.2.6.8Switch Fabric CSR Interface Direct Data Register (S W IT CH_CSR_DIRECT_DATA) ................. ... .. ... ........................................................ 241
14.2.8.1Virtual PHY Basic Control Register (VPHY_B A SI C_ C TRL ) ....... ... .. ............................................................................................................. 247
14.2.8.2Virtual PHY Basic Status Register (VPH Y_ B A SI C _ STA TUS )......... ... ... ............................... ... .. ................................................................... 249
14.2.8.3Virtual PHY Identification MSB Register (VP H Y _ ID_ MSB) ................ ... .. ..................................................................................................... 251
14.2.8.4Virtual PHY Identification LSB Regist er (V P HY _I D _ LS B ) .......................... .. ... ................................ .. ........................................................... 252
14.2.8.5Virtual PHY Auto-Negotiation Ad ve r tise m e n t Reg i st er (VPHY_AN_ADV).......... .. ... ............................... ... ................................................... 253
14.2.8.6Virtual PHY Auto-Negotiation Link Partner Base Page Ability Register (VPHY_AN_LP_BASE_ABILITY).................................................. 255
14.2.9.1Chip ID and Revision (ID_REV).................................................................................................................................................................... 260
14.2.9.2Byte Order Test Register (BYTE_TEST) .......... ............................................................................................................................................ 261
14.2.9.3Hardware Configuration Regist er (HW_CFG)................ ............................... ... ............................................................................................. 262
14.2.9.4Power Management Control Register (PMT_CTRL).................................................................................................................................... 264
14.4.2.1Port x PHY Basic Control Register (PHY_BASIC_CONTROL_x) ................................................................................................................ 289
14.4.2.2Port x PHY Basic Status Register (PHY_BASIC_STATUS_x)..................................................................................................................... 291
14.4.2.3Port x PHY Identification MSB Register (PHY_ID_MSB_x).......................................................................................................................... 293
14.4.2.4Port x PHY Identification LSB Register (PHY_ID_LSB_x)............................................................................................................................ 294
14.4.2.5Port x PHY Auto-Negotiation Advertisement Register (PHY_AN_ADV_x)................................................................................................... 295
14.4.2.6Port x PHY Auto-Negotiation Link Partner Base Page Ability Register (PHY_AN_LP_BASE_ABILITY_x)................................................. 298
14.4.2.7Port x PHY Auto-Negotiation Expansion Register (PHY_AN_EXP_x)..................................................... .................................................... 300
14.4.2.8Port x PHY Mode Control/Status Register (PHY_MODE_CONTROL_STATUS_x)..................................................................................... 301
14.4.2.9Port x PHY Special Modes Register (PHY_SPECIAL_MODES_x).............................................................................................................. 302
14.4.2.10 Port x PHY Special Control/Status Indication Register (PHY_SPECIAL_CONTROL_STAT_IND_x).......................................................... 304
14.4.2.11 Port x PHY Interrupt Source Flags Register (PHY_INTERRUPT_SOURCE_x)........................................................................................... 306
14.4.2.12 Port x PHY Interrupt Mask Register (PHY_INTERRUPT_MASK_x) ............................................................................................................ 307
14.4.2.13 Port x PHY Special Control/Status Register (PHY_SPECIAL_CONTROL_STATUS_x).............................................................................. 308
14.5.2.1Port x MAC Version ID Register (MAC_VER_ID_x) ..................................................................................................................................... 324
14.5.2.2Port x MAC Receive Configuration Register (MAC_RX_CFG_x)................................................................................................................. 325
14.5.2.3Port x MAC Receive Undersize Count Register (MAC_RX_UNDSZE_CNT_x)........................................................................................... 326
14.5.2.4Port x MAC Receive 64 Byte Count Register (MAC_RX_64_CNT_x).......................................................................................................... 327
14.5.2.5Port x MAC Receive 65 to 127 Byte Count Register (MAC_RX_65_TO_127_CNT_x)................................................................................ 328
14.5.2.6Port x MAC Receive 128 to 255 Byte Count Register (MAC_RX_128_TO_255_CNT_x)............................................................................ 329
14.5.2.7Port x MAC Receive 256 to 511 Byte Count Register (MAC_RX_256_TO_511_CNT_x)............................................................................ 330
14.5.2.8Port x MAC Receive 512 to 1023 Byte Count Register (MAC_RX_512_TO_1023_CNT_x)........................................................................ 331
14.5.2.9Port x MAC Receive 1024 to Max Byte Count Register (MAC_RX_1024_TO_MAX_CNT_x)..................................................................... 332
14.5.2.10 Port x MAC Receive Oversize Count Register (MAC_RX_OVRSZE_CNT_x)............................................................................................. 333
14.5.2.11 Port x MAC Receive OK Count Register (MAC_RX_PKTOK_CNT_x)......................................................................................................... 334
14.5.2.12 Port x MAC Receive CRC Error Count Register (MAC_RX_CRCERR_CNT_x)................................................ .......................................... 335
14.5.2.13 Port x MAC Receive Multicast Count Register (MAC_RX_MULCST_CNT_x)............................................................................................. 336
14.5.2.14 Port x MAC Receive Broadcast Count Register (MAC_RX_BRDCST_CNT_x)........................................................................................... 337
14.5.2.15 Port x MAC Receive Pause Frame Count Register (MAC_RX_PAUSE_CNT_x)........................................................................................ 338
14.5.2.16 Port x MAC Receive Fragment Error Count Register (MAC_RX_FRAG_CNT_x)........................................................................................ 339
14.5.2.17 Port x MAC Receive Jabber Error Count Register (MAC_RX_JABB_CNT_x)............................................................................................. 340
14.5.2.18 Port x MAC Receive Alignment Error Count Register (MAC_RX_ALIGN_CNT_x)...................................................................................... 341
14.5.2.19 Port x MAC Receive Packet Length Count Register (MAC_RX_PKTLEN_CNT_x)..................................................................................... 342
14.5.2.20 Port x MAC Receive Good Packet Length Count Register (MAC_RX_GOODPKTLEN_CNT_x) ................................................................ 343
14.5.2.21 Port x MAC Receive Symbol Error Count Register (MAC_RX_SYMBOL_CNT_x)...................................................................................... 344
14.5.2.22 Port x MAC Receive Control Frame Count Register (MAC_RX_CTLFRM_CNT_x) .................................................................................... 345
14.5.2.23 Port x MAC Transmit Configuration Register (MAC_TX_CFG_x) ................................................................................................................ 346
14.5.2.24 Port x MAC Transmit Flow Control Settings Register (MAC_TX_FC_S ETTINGS_x) .......... ... .. ... ................................................................ 347
14.5.2.25 Port x MAC Transmit Deferred Count Register (MAC_TX_DEFER_CNT_x) ............................................................................................... 348
14.5.2.26 Port x MAC Transmit Pause Count Register (MAC_TX_PAUSE_CNT_x)................................................................................................... 349
14.5.2.27 Port x MAC Transmit OK Count Register (MAC_TX_PKTOK_CNT_x)........................................................................................................ 350
14.5.2.28 Port x MAC Transmit 64 Byte Count Register (MAC_TX_64_CNT_x)......................................................................................................... 351
14.5.2.29 Port x MAC Transmit 65 to 127 Byte Count Register (MAC_TX_65_TO_127_CNT_x)............................................................................... 352
14.5.2.30 Port x MAC Transmit 128 to 255 Byte Count Register (MAC_TX_128_TO_255_CNT_x)........................................................................... 353
14.5.2.31 Port x MAC Transmit 256 to 511 Byte Count Register (MAC_TX_256_TO_511_CNT_x)........................................................................... 354
14.5.2.32 Port x MAC Transmit 512 to 1023 Byte Count Register (MAC_TX_512_TO_1023_CNT_x)....................................................................... 355
14.5.2.33 Port x MAC Transmit 1024 to Max Byte Count Register (MAC_TX_1024_TO_MAX_CNT_x)..................................................................... 356
14.5.2.34 Port x MAC Transmit Undersize Count Register (MAC_TX_UNDSZE_CNT_x) .......................................................................................... 357
14.5.2.35 Port x MAC Transmit Packet Length Count Register (MAC_TX_PKTLEN_CNT_x) .................................................................................... 358
14.5.2.36 Port x MAC Transmit Broadcast Count Register (MAC_TX_BRDCST_CNT_x) .......................................................................................... 359
14.5.2.37 Port x MAC Transmit Multicast Count Register (MAC_TX_MULCST_CNT_x) ............................................................................................ 360
14.5.2.38 Port x MAC Transmit Late Collision Count Register (MAC_TX_LATECOL_CNT_x) ................................................................................... 361
14.5.2.39 Port x MAC Transmit Excessive Collision Count Register (MAC_TX_EXCCOL_CNT_x)..........................................
14.5.2.40 Port x MAC Transmit Single Collision Count Register (MAC_TX_SNGLECOL_CNT_x) ............................................................................. 363
14.5.2.41 Port x MAC Transmit Multiple Collision Count Register (MAC_TX_MULTICOL_CNT_x) ............................................................................ 364
14.5.2.42 Port x MAC Transmit Total Collision Count Register (MAC_TX_TOTALCOL_CNT_x)................................................................................ 365
14.5.2.43 Port x MAC Interrupt Mask Register (MAC_IMR_x) ..................................................................................................................................... 366
14.5.2.44 Port x MAC Interrupt Pending Register (MAC_IPR_x) ................................................................................................................................. 367
14.5.3.17 Switch Engine Port Ingress Configuration Register (SWE_PORT_INGRSS_CFG)..................................................................................... 387
14.5.3.18 Switch Engine Admit Only VLAN Register (SWE_A DMT_ O N LY _ V LA N)........ ............................................................................................. 388
14.5.3.19 Switch Engine Port State Register (SWE_P ORT _S TATE).................... .. ... .. ................................ ... .. ........................................................... 389
14.5.3.20 Switch Engine Priority to Queue Register (SWE_PRI_TO_QUE)................................................................................................................ 390
14.5.3.21 Switch Engine Port Mirroring Register (SW E _P ORT_MIRROR)............................. ............................... ...................................................... 391
14.5.3.22 Switch Engine Ingress Port Type Register (SWE_INGRSS_PORT_TYP)................................................................................................... 392
14.5.3.24 Switch Engine Admit Non Member Register (SWE_A DM T_ N_ M E MBE R )........................ ... ... .. ................................................................... 394
14.5.3.25 Switch Engine Ingress Rate Configuration Regist er (S W E _I NGRSS_RATE_CFG) .... ... ............................................................................. 395
14.5.3.40 Switch Engine Interrupt Pending Regist er (S W E _ IP R )............................ ... ............................... ... ................................................................ 411
14.5.4.6Buffer Manager Port 0 Drop Count Register (BM_DRP_CNT_SRC_MII) ........................................... ......................................................... 418
14.5.4.7Buffer Manager Port 1 Drop Count Register (BM_DRP_CNT_SRC_1) ....................................................................................................... 419
14.5.4.8Buffer Manager Port 2 Drop Count Register (BM_DRP_CNT_SRC_2) ....................................................................................................... 420
14.5.4.9Buffer Manager Reset Status Register (BM_RST_STS).............................................................................................................................. 421
14.5.4.10 Buffer Manager Random Discard Table Command Register (BM_RNDM_DSCRD_TBL_CMD)................................................................ 422
14.5.4.11 Buffer Manager Random Discard Table Write Data Register (BM_RNDM_DSCRD_TBL_WDATA)........................................................... 423
14.5.4.12 Buffer Manager Random Discard Table Read Data Register (BM_RNDM_DSCRD_TBL_RDATA)............................................................ 424
14.5.4.13 Buffer Manager Egress Port Type Register (BM_EGRSS_PORT_TYPE)................................................................................................... 425
14.5.4.20 Buffer Manager Port 0 Default VLAN ID and Priority Register (BM_VLAN_MII).......................................................................................... 433
14.5.4.21 Buffer Manager Port 1 Default VLAN ID and Priority Register (BM_VLAN_1)............................................................................................. 434
14.5.4.22 Buffer Manager Port 2 Default VLAN ID and Priority Register (BM_VLAN_2)............................................................................................. 435
14.5.4.23 Buffer Manager Port 0 Ingress Rate Drop Count Register (BM_RATE_DRP_CNT_SRC_MII) ................................................................... 436
14.5.4.24 Buffer Manager Port 1 Ingress Rate Drop Count Register (BM_RATE_DRP_CNT_SRC_1) ...................................................................... 437
14.5.4.25 Buffer Manager Port 2 Ingress Rate Drop Count Register (BM_RATE_DRP_CNT_SRC_2) ...................................................................... 438
Two Port 10/100 Managed Ethernet Switch with 16-Bit Non-PCI CPU Interface
Chapter 1 Preface
1.1 General Terms
100BT100BASE-T (100Mbps Fast Ethernet, IEEE 802.3u)
ADCAnalog-to-Digital Converter
ALRAddress Logic Resolution
BLWBaseline Wander
BMBuffer Manager - Part of the switch fabric
Datasheet
BPDUBridge Protocol Data Unit - Messages which carry the Spanning Tree
Byte8-bits
CSMA/CDCarrier Sense Multiple Access / Collision Detect
CSRControl and Status Registers
CTRCounter
DADestination Address
DWORD32-bits
EPCEEPROM Controller
FCSFram e Check Sequence - The extra checksum characters adde d to the end
FIFOFirst In First Out buffer
FSMFinite State Machine
GPIOGeneral Purpose I/O
HBIHost Bus Interface. The physical bus connecting the LAN9311/LAN9311i to
HBICHost Bus Interface Controller. The hardware module that interfaces
Protocol information
of an Ethernet frame, used for error detection and correction.
the host. Also referred to as the Host Bus.
theLAN9311/LAN9311i to the HBI.
HostExternal system (Includes proces sor, application software, etc.)
IGMPInternet Group Management Protocol
InboundRefers to data input to the LAN9311/LAN9311i from the host
Level-Triggered Sticky BitThis type of status bit is set whenever the condition that it represents is
lsbLeast Significant Bit
LSBLeast Si gnificant Byte
MDIMedi um Dependant Interface
MDIXMedia Independent Interface with Crossover
Revision 1.4 (08-19-08)16SMSC LAN9311/LAN9311i
asserted. The bit remains set until the condition is no longer true, and th e
status bit is cleared by writing a zero.
DATASHEET
Two Port 10/100 Managed Ethernet Switch with 16-Bit Non-PCI CPU Interface
Datasheet
MIIMedia Independ ent Interface
MIIMMedia Independ ent Interface Management
MILMAC Interface Layer
MLDMulticast Listening Discovery
MLT-3Multi-Level Transmission Encoding (3-Levels). A tri-level encoding meth od
msbMost Significant Bit
MSBMost Signifi cant Byte
NRZINon Return to Zero Inverted. This encoding method inverts the signal for a
N/ANot Applicable
NCNo Connect
OUIOrganizationally Unique Identifier
Outbound Refers to data output from the LAN9311/LAN9311i to the host
PIO cycleProgram I/O cycle. An SRAM-like read or write cycle on the HBI.
PISOParallel In Serial Out
PLLPhase Locked Loop
PTPPrecision Time Protocol
RESERVEDRefers to a reserved bit field or address. Unless otherw ise noted, reserved
where a change in the logic level represents a code bit “1” and the logic
output remaining at the same level represents a code bit “0 ”.
“1” and leaves the signal unchanged for a “0”
bits must always be zero for write operations. Unless otherwise noted, values
are not guaranteed when reading reserved bits. Unless otherwise noted, do
not read or write to reserved addresses.
RTCReal-Time Clock
SASource Address
SFDStart of Frame Delimiter - The 8-bit value indicating the end of the preamble
SIPOSerial In Parallel Out
SMISerial Management Interface
SQESignal Quality Error (also known as “heartbeat”)
SSDStart of Stream Delimiter
UDPUser Datagram Protocol - A connectionless protocol run on to p of IP
UUIDUniversally Unique IDentifier
WORD16-bits
of an Ethernet frame.
networks
SMSC LAN9311/LAN9311i17Revision 1.4 (08-19-08)
DATASHEET
Two Port 10/100 Managed Ethernet Switch with 16-Bit Non-PCI CPU Interface
1.2 Buffer Types
Table 1.1 describes the pi n buffer type notation used in Chapter 3, "Pin Description and Configuration,"
on page 26 and throughout this document.
Table 1.1 Buffer Types
BUFFER TYPEDESCRIPTION
ISSchmitt-triggered Input
O8Output with 8mA sink and 8mA source
OD8Open -drain output with 8mA sink
O12Output with 12mA sink and 12mA source
OD12Open-drain output with 12mA sink
Datasheet
PU50uA (typical) internal pull-up. Unless otherwise noted in the pin de scription, internal pull-
PD50uA (typical) internal pull-down. Unless otherwise noted in the pin description, internal
AIAnalog input
AOAnalog output
AIOAnalog bi-directional
ICLKCrystal oscillator input pin
OCLKCrystal oscillator output pin
PPower pin
ups are always enabled.
Note:Internal pull-up resistors prevent unconnected inputs from floating. Do not rely on
internal resistors to drive signals external to the LAN9311/LAN9311i. When
connected to a load that must be pulled high, an ex ternal resistor must be ad ded.
pull-downs are always enabled.
Note:Internal pull-down resistors prevent unconnected inputs from floating. Do not rely
on internal resistors to drive signals external to the LAN9311/LAN9311i. When
connected to a load that must be pulled low, an external resistor must be added.
Revision 1.4 (08-19-08)18SMSC LAN9311/LAN9311i
DATASHEET
Two Port 10/100 Managed Ethernet Switch with 16-Bit Non-PCI CPU Interface
Datasheet
1.3 Register Nomenclature
Table 1.2 describ es the register bit attribute notation used throughout this document.
Table 1.2 Register Bit Types
REGISTER BIT TYPE
NOTATIONREGISTER BIT DESCRIPTION
RRead: A register or bit with this attribute can be read.
WRead: A register or bit with this attribute can be written.
RORead only: Read only. Writes have no effect.
WOWrite only: If a register or bit is write-only, reads will return unspecified data.
WCWrite One to Clear: writing a one clears the value. Writing a zero has no effect
WACWrite Anything to Clear: writing anything clears the value.
RCRead to Clear: Contents is cleared after the read. Writes have no effect.
LLLatch Low: Clear on read of register.
LHLatch High: Clear on read of register.
SCSelf-Clearing: Contents are self-cleared after the being set. Writes of zero have no
SSSelf-Setting: Contents are self-setting after being cleared. Writes of one have no
RO/LHRead Only, Latch High: Bits with this attribute will stay high until the bit is read. After
NASRNot Affected by Software Reset. The state of NASR bits do not change on assertion
RESERVEDReserved Field: Reserved fields must be written with zeros to ensure future
Many of these register bit notations can be combined. Some examples of this are shown below:
R/W: Can be written. Will return current setting on a read.
R/WAC: Will return current setting on a read. Writing anything clears the bit.
effect. Contents can be read.
effect. Contents can be read.
it is read, the bit will either remain high if the high condition remains, or will go low if
the high condition has been removed. If the bit has not been read, the bit will remain
high regardless of a change to the high condition. This mode is used in some Ethernet
PHY registers.
of a software reset.
compatibility. The value of reserved bits is not guaranteed on a read.
SMSC LAN9311/LAN9311i19Revision 1.4 (08-19-08)
DATASHEET
Chapter 2 Introduction
2.1 General Description
The LAN9311/LAN9311i is a full featured, 2 port 10/100 managed Ethernet switch designed for
embedded applications where performance, flexibility, ease of integration and system cost control are
required. The LAN9311/LAN9311i combines all the functions of a 10/100 switch system, including the
switch fabric, packet buffers, buffer manager, media access controllers (MACs), PHY transceivers, a nd
host bus interface. The LAN9311/LAN9311i complies with the IEEE 802.3 (full/half-duplex 10BASE-T
and 100BASE-TX) Ethernet protocol specification and 802.1D/802.1Q network manageme nt protocol
specifications, enabling compatibility with industry standard Ethernet and Fast Ethernet applications.
At the core of the LAN9311/LAN9311i is the high performance, high efficiency 3 port Ethernet switch
fabric. The switch fabric contains a 3 port VLAN layer 2 switch engine that supports untagged, VLAN
tagged, and priority tagged frames. The switch fabric provides an extensive feature set which includes
spanning tree protocol support, multicast packet filtering and Quality of Service (QoS) packet
prioritization by VLAN tag, destination address, port default value or DIFFSERV/TOS, allowing for a
range of prioritization implementations. 32K of buffer RAM allows for the storage of multiple packets
while forwarding operations are completed, and a 1K entry forwarding table provides ample room for
MAC address forwarding tables. Each port is allocated a cluster of 4 dynamic QoS queues which allow
each queue size to grow and shrink with traffic, effectively utilizing all available memory. This memory
is managed dynamically via the buffer manager block within th e switch fabric. All aspects of the switch
fabric are managed via the switch fabric configuration and status registers, which are indirectly
accessible via the memory mapped system control and status registers.
Two Port 10/100 Managed Ethernet Switch with 16-Bit Non-PCI CPU Interface
Datasheet
The LAN9311/LAN9311i provides 2 switched ports. Each port is fully compliant with the IEEE 802.3
standard and all internal MACs and PHYs support full/half duplex 10BASE-T and 100BASE-TX
operation. The LAN9311/LAN9311i provides 2 on-chip PHYs, 1 Virtual PHY and 3 MACs. The Virtual
PHY and the Host MAC are used to connect the LAN9311/LAN9311i switch fabric to the host bus
interface. All ports support automatic or manual full duplex flo w control or half duplex backpressure
(forced collision) flow control. Automatic 32-bit CRC generation/checking and automatic payload
padding are supported to further reduce CPU overhead. 2K jumbo packet (2048 byte) support allows
for oversized packet transfers, effectively increasing throughput while deceasing CPU load. All MAC
and PHY related settings are fully configurable via their respective registers within the
LAN9311/LAN9311i.
The integrated Host Bus Interface (HBI) easily interfaces to most 16-bit embedded CPU’s via a simple
SRAM like interface, enabling switch fabric acce ss via the internal Host MAC and allowing full control
over the LAN9311/LAN9311i via memory mapped system control and status registers. The HBI
supports 16-bit operation with big, little, and mixed endian operations. Four separate FIFO mechanisms
(TX/RX Data FIFO’s, TX/RX Status FIFO’s) interface the HBI to the Host MAC and facilitate the
transferring of packet data and status information between the host CPU and the switch fabric. The
LAN9311/LAN9311i also provides power management features which allow for wake on LAN, wake on
link status change (energy detect), and magic packet wakeup detection. A configurable host interrupt
pin allows the device to inform the host CPU of any internal interrupts.
2
The LAN9311/LAN9311i contains an I
optional EEPROM. This allows for the storage and retrieval of static data. The internal EEPROM
Loader can be optionally configured to automatically load stored configuration settings from the
EEPROM into the LAN9311/LAN9311i at reset.
In addition to the primary functionality described above, the LAN9311/LAN9311i provides additional
features designed for extended functionality. These include a configurable 16-bit General Purpose
Timer (GPT), a 32-bit 25MHz free running counter, a 12-bit configurable GPIO/LED interfa ce, and IEEE
1588 time stamping on all ports and select GPIOs. The IEEE time stamp unit provides a 64-bit tunable
clock for accurate PTP timing and a timer comparator to allow time based interrup t generation.
C/Microwire master EEPROM controller for connection to an
The LAN9311/LAN9311i’s performance, features and small size make it an ideal solution for many
applications in the consumer electronics and industrial automation markets. Targeted applications
include: set top boxes (cable, satellite and IP), digital televisions, digital video recorders, voice over IP
and video phone systems, home gateways, and test and measurement e quipment.
Revision 1.4 (08-19-08)20SMSC LAN9311/LAN9311i
DATASHEET
Revision 1.4 (08-19-08)21 SMSC LAN9311/LAN9311i
2.2 Block Diagram
IEEE 1588
Time Stamp
Datasheet
Two Port 10/100 Managed Ethernet Switch with 16-Bit Non-PCI CPU Interface
Two Port 10/100 Managed Ethernet Switch with 16-Bit Non-PCI CPU Interface
2.2.1System Clocks/Reset/PME Controller
A clock module contained within the LAN9311/LAN9311i generates all the system clocks required by
the device. This module interfaces directly with the external 25MHz crystal/oscillator to generate the
required clock divisions for each internal module, with the exception of the 1588 clocks, which are
generated in the 1588 Time Stamp Clock/Events module. A 16-bit general pu rpose timer and 32-bit
free-running clock are provided by this module for general purpo se use.
The LAN9311/LAN9311i reset events are categorized as chip-level resets, multi-module resets, and
single-module resets.
A chip-level reset is initiated by assertion of any of the fo llowing input events:
Power-On Reset
nRST Pin Reset
A multi-module reset is initiated by assertion of the fo llowing:
Digital Reset - DIGITAL_RST (bit 0) in the Reset Control Register (RESET_CTL)
- Resets all LAN9311/LAN9311i sub-modules except the Ethernet PHYs (Port 1 PHY, Port 2 PHY,
and Virtual PHY)
Soft Reset - SRST (bit 0) in the Hardware Configuration Register (HW_CFG)
- Resets the HBI, Host MAC, and System CSRs below address 100h
Datasheet
A single-module reset is initiated by assertion of the following:
Port 2 PHY Reset - PHY2_RST (bit 2) in the Reset Control Register (RESET_CTL) or Reset (bit
15) in the Port x PHY Basic Control Register (PHY_BASIC_CONTROL_x)
- Resets the Port 2 PHY
Port 1 PHY Reset - PHY1_RST (bit 1) in the Reset Control Register (RESET_CTL) or Reset (bit
15) in the Port x PHY Basic Control Register (PHY_BASIC_CONTROL_x)
- Resets the Port 1 PHY
Virtual PHY Reset - VPHY_RST (bit 0) in the Reset Control Register (RESET_CTL), (bit 10) in
the Power Manag ement Control Register (PMT_CTRL), or Reset (bit 15) in the Virtual PHY Basic
Control Register (VPHY_BASIC_CTRL)
- Resets the Virtual PHY
The LAN9311/LAN9311i supports numerous power management and wakeup featu res. The Port 1 &
2 PHYs provide general power-down and energy detect power-down modes, which allo w a reduction
in PHY power consumption. The Host MAC provides wake-up frame detection and magic packet
detection modes. The LAN9311/LAN9311i can be programmed to issue an external wake signal (PME)
via several methods, including wake on LAN, wake on link status change (energy detect), and magic
packet wakeup. The PME signal is ideal for triggering system power-up using remote Ethernet wakeup
events.
2.2.2System Interrupt Controller
The LAN9311/LAN9311i provides a multi-tier programmable interrupt structure which is co ntrolled by
the System Interrupt Controller. At the top level are the Interrupt Status Register (INT_STS) and
Interrupt Enable Register (INT_EN). These registers aggregate and control all interrupts from the
various LAN9311/LAN9311i sub-modules. The LAN9311/LAN9311i is capable of generating interrupt
events from the following:
1588 Time Stamp
Switch Fabric
Ethernet PHYs
GPIOs
Host MAC (FIFOs, power management)
Revision 1.4 (08-19-08)22SMSC LAN9311/LAN9311i
DATASHEET
Two Port 10/100 Managed Ethernet Switch with 16-Bit Non-PCI CPU Interface
Datasheet
General Purpose Timer
Software (general purpose)
A dedicated programmable IRQ interrupt output pin is provided for external indication of any
LAN9311/LAN9311i interrupts. The IRQ pin is controlled via the Interrupt Configuration Register
(IRQ_CFG), which allows configuration of the IRQ buffer type, polarity, and de-assertion interval.
2.2.3Switch Fabric
The Switch Fabric consists of the following major function blocks:
10/100 MACs
There is one 10/100 Ethernet MAC per switch fabric port, which provid es basic 10/100 Ethernet
functionality, including transmission deferral, collision back-off/retry, TX/RX FCS
checking/generation, TX/RX pause flow control, and transmit back pressure. The 10/1 00 MACs act
as an interface between the switch engine and the 10/1 00 PHYs (for ports 1 and 2). The port 0
10/100 MAC interfaces the switch engine to the Host MAC. Each 10/100 MAC i ncludes RX and
TX FIFOs and per port statistic counters.
Switch Engine
This block, consisting of a 3 port VLAN layer 2 switching engine, provides the control for all
forwarding/filtering rules and supports untagged, VLAN tagged, and priority tagged frames. The
switch engine provides an extensive feature set which includes spanning tree protocol su pport,
multicast packet filtering and Quality of Service (QoS) packet prioritization by VLAN tag, destination
address, and port default value or DIFFSERV/TOS, allowing for a range of prioritization
implementations. A 1K entry forwarding table provides ample room for MAC address forwarding
tables.
Buffer Manager
This block controls the free buffer space, multi-level transmit queues, transmission scheduling, and
packet dropping of the switch fabric. 32K of buffer RAM allows for the storage of multiple packets
while forwarding operations are completed. Each port is allocated 1a cluster of 4 dynamic QoS
queues which allow each queue size to grow and shrink with tra ffic, effectively utilizing all available
memory. This memory is managed dynamically via the Buffer Manager block.
Switch CSRs
This block contains all switch related control and status registers, and allows all aspects of the
switch fabric to be managed. These registers are indirectly accessibl e via the memory mapped
system control and status registers
2.2.4Ethernet PHYs
The LAN9311/LAN9311i contains three PHYs: Port 1 PHY, Port 2 PHY and a Virtual PHY. The Port 1
& 2 PHYs are identical in functionality and each connect thei r corresponding Ethernet signal pins to
the switch fabric MAC of their respective port. These PHYs interface with their respective MAC via an
internal MII interface. The Virtual PHY provides the virtual functionality of a PH Y and al lows connecti on
of the Host MAC to port 0 of the switch fabric as if it was connected to a single port PHY. All PHYs
comply with the IEEE 802.3 Physical Layer for Twisted Pair Ethernet and can be configured for full/half
duplex 100 Mbps (100BASE-TX) or 10Mbps (10BASE-T) Ethernet operation. All PHY registers follow
the IEEE 802.3 (clause 22.2.4) specified MII management register se t.
2.2.5Host Bus Interface (HBI)
The Host Bus Interface (HBI) module provides a high-speed asynchronous SRAM-like slave interface
that facilitates communication between the LAN9311/LAN9311i and a host system. The HBI allows
access to the System CSRs and handles byte swapping based on the dynamic endianess select. The
HBI interfaces to the switch fabric via the Host MAC, which contains the TX/RX Data and Status FIFOs,
Host MAC registers and power management features. The main features of the HBI are:
Asynchronous 16-bit Host Bus Interface
- Host Data Bus Endianess Control
- Direct FIFO Access Modes
SMSC LAN9311/LAN9311i23Revision 1.4 (08-19-08)
DATASHEET
System CSRs Access
Interrupt Support
2.2.6Host MAC
The Host MAC incorporates the essential protocol requirements for operating an Ethernet/IEEE 802.3compliant node and provides an interface between the Host Bus Interface (HBI) and the Ethernet PHYs
and Switch Fabric. On the front end, the Host MAC interfaces to the HBI via 2 sets of FIFO’s (TX Data
FIFO, TX Status FIFO, RX Data FIFO, RX Status FIFO). The FIFOs are a conduit between the HBI
and the Host MAC through which all transmitted and received data and status information is passed.
An additional bus is used to access the Host MAC CSR’s via the Host MAC CSR Interface Command
Register (MAC_CSR_CMD) and Host MAC CSR Interface Data Register (MAC_CSR_DATA) system
registers.
On the back end, the Host MAC interfaces with the 10/100 Ethernet PHY’s (Virtual PHY, Port 1 PHY,
Port 2 PHY) via an internal SMI (Serial Management Interface) bus. This allows the Host MAC access
to the PHY’s internal registers via the Host MAC MII Access Register (HMAC_MII_ACC) and Host
MAC MII Data Register (HMAC_MII_DATA). The Host MAC interfaces to the Switch Engine Port 0 via
an internal MII (Media Independent Interface) connection allowing for incoming and outgoi ng Ethernet
packet transfers.
The Host MAC can operate at either 100Mbps or 10Mbps in both half-duplex or full-duplex modes.
When operating in half-duplex mode, the Host MAC complies fully with Section 4 of ISO/IEC 8802-3
(ANSI/IEEE standard) and ANSI/IEEE 802.3 standards. When operating in full-duplex mode, the Host
MAC complies with IEEE 802.3 full-duplex operation standard.
Two Port 10/100 Managed Ethernet Switch with 16-Bit Non-PCI CPU Interface
Datasheet
2.2.7EEPROM Controller/Loader
The EEPROM Controller is an I2C/Microwire master module which interfaces an optional external
EEPROM with the system register bus and the EEPROM Loader. Multiple types (I2C/Microwire) and
sizes of external EEPROMs are supported. Configuration of the EEPROM type and size are
accomplished via the eeprom_type_strap and eeprom_size_strap[1:0] configuration straps respectively.
Various commands are supported for each EEPROM type, allowing for the storage and retrieval of
static data. The I
The EEPROM Loader module interfaces to the EEPROM Controller, Ethernet PHYs, and the system
CSRs. The EEPROM Loader provides the automatic loading of configuration settings from the
EEPROM into the LAN9311/LAN9311i at reset. The EEPROM Loader runs upon a pin reset (nRST),
power-on reset (POR), digital reset (DIGITAL_RST bit in the Reset Control Register (RESET_CTL)),
or upon the issuance of a RELOAD command via the EEPROM Command Register (E2P_CMD).
2
C interface conforms to the Philips I2C-Bus Specification.
2.2.81588 Time Stamp
The IEEE 1588 Time Stamp modules provide hardware support for the IEEE 1588 Precision Time
Protocol (PTP), allowing clock synchronization with remote Ethernet devices, packet time stamping,
and time driven event generation. Time stamping is supported on all ports, with an individual IEEE
1588 Time Stamp module connected to each port via the MII bus. Any port may function as a master
or a slave clock per the IEEE 1588 specification, and the LAN9311/LAN9311i as a whole may function
as a boundary clock.
A 64-bit tunable clock is provided that is used as the time source for all IEEE 1588 time stamp related
functions. The IEEE 1588 Clock/Events block provides IEEE 1588 clock comparison based interrupt
generation and time stamp related GPIO event generation. Two LAN9311/LAN9311i GPIO pins
(GPIO[8:9]) can be used to trigger a time stamp capture when configured as an input, or output a
signal from the GPIO based on an IEEE 1588 clock target compare event when configured as an
output. All features of the IEEE 1588 hardware time stamp unit can be monitored and configured via
their respective IEEE 1588 configuration and status registers (CSRs).
Revision 1.4 (08-19-08)24SMSC LAN9311/LAN9311i
DATASHEET
Two Port 10/100 Managed Ethernet Switch with 16-Bit Non-PCI CPU Interface
Datasheet
2.2.9GPIO/LED Controller
The LAN9311/LAN9311i provides 12 configurable general-purpose input/output pins which are
controlled via this module. These pins can be individually configured via the GPIO/LED CSRs to
function as inputs, push-pull outputs, or open drain outputs and each is capable of interrupt generation
with configurable polarity. Two of the GPIO pins (GPIO[9:8]) can be used for IEEE 1588 timestamp
functions, allowing GPIO driven 1588 time clock capture when configured as an input, or GPIO output
generation based on an IEEE 1588 clock target compare event.
In addition, 8 of the GPIO pins can be alternatively configured as LED outputs. These pins, GPIO[7:0]
(nP1LED[3:0] and nP2LED[3:0]), may be enabled to drive Ethernet status LEDs for external indication
of various attributes of the switch ports.
2.3 System Configuration
In a typical application, the LAN9311/LAN9311i Host Bus Interface (HBI) is connected to the host
microprocessor/microcontroller via the asynchronous 16-bit interface, allowing access to the
LAN9311/LAN9311i system configuration and status registers. The LAN9311/LAN9311i utilizes the
internal Host MAC to provide a network path for the host CPU. The LAN9311/LAN9311i may share the
host bus with additional system memory and/or peripherals. For more information on the HBI, refer to
Chapter 8, "Host Bus Interface (HBI)," on page 99.
The 2 Ethernet ports of the LAN9311/LAN9311i must be connected to Auto-MDIX style magnetics for
proper operation on the Ethernet network. Refer to the SMSC Application Note 8.13 “Suggested
Magnetics” for further details.
To Ethernet
To Ethernet
The LAN9311/LAN9311i also supports optional EEPROM and GPIOs/LEDs. When an EEPROM is
connected, the EEPROM loader can be used to load th e initial device configuration from the external
EEPROM via the I
2
C/Microwire interface.
A system configuration diagram of the LAN9311/LAN9311i in a typical embedded en vironment can be
seen in Figure 2.2.
Magnetics
Magnetics
LAN9311/LAN9311i
GPIOs/LEDs
(optional)
I2C/Microwire
External
25MHz Crystal
EEPROM
(optional)
Microprocessor/
Microcontroller
System
Memory
System
Peripherals
Figure 2.2 System Block Diagram
SMSC LAN9311/LAN9311i25Revision 1.4 (08-19-08)
DATASHEET
Two Port 10/100 Managed Ethernet Switch with 16-Bit Non-PCI CPU Interface
This section contains the descriptions of the LAN9311/LAN9311i pins. The pin descriptions have been
broken into functional groups as follows:
LAN Port 1 Pins
LAN Port 2 Pins
LAN Port 1 & 2 Power and Common Pins
Host Bus Interface Pins
EEPROM Pins
Dedicated Configuration Strap Pins
Miscellaneous Pins
PLL Pins
Core and I/O Power and Ground Pins
No-Connect Pins
Note: A list of b uffer type definitions is provided in Section 1.2, "Buffer Types," on page 18.
Two Port 10/100 Managed Ethernet Switch with 16-Bit Non-PCI CPU Interface
Datasheet
Table 3.1 LAN Port 1 Pins
PINNAMESYMBOL
Port 1 LED
nP1LED[3:0]OD12LED Indicators: When configured as LED outputs
Indicators
General
GPIO[3:0]IS/O12/
Purpose I/O
89-92
110
Data
Port 1
Ethernet TX
TXN1AIOEthernet TX Negative: Negative output of Port 1
Negative
111
Port 1
Ethernet TX
TXP1AIOEthernet TX Positive: Positive output of Port 1
Positive
BUFFER
TYPEDESCRIPTION
via the LED Configuration Register (LED_CFG),
these pins are open-drain, active low outputs and
the pull-ups and input buffers are disabled. The
functionality of each pin is determined via the
LED_CFG[9:8] bits.
General Purpose I/O Data: When configured as
OD12
(PU)
GPIO via the LED Configuration Register
(LED_CFG), these general purpose signals are
fully programmable as either push-pull outputs,
open-drain outputs or Schmitt-triggered inputs by
writing the General Purpose I/O Configuration
Register (GPIO_CFG) and General Purpose I/O
Data & Direction Register (GPIO_DATA_DIR). The
pull-ups are enabled in GPIO mode. The input
buffers are disabled when set as an output.
Note:See Chapter 13, "GPIO/LED Controller,"
on page 163 for additional details.
Ethernet transmitter. See Note 3.1 for additiona l
information.
Ethernet transmitter. See Note 3.1 for additional
information.
Port 1
115
Ethernet RX
Negative
Port 1
116
Ethernet RX
Positive
Revision 1.4 (08-19-08)28SMSC LAN9311/LAN9311i
RXN1AIOEthernet RX Negative: Negative input of Port 1
Ethernet receiver. See Note 3.1 for additiona l
information.
RXP1AIOEthernet RX Positive: Positive input of Port 1
Ethernet receiver. See Note 3.1 for additiona l
information.
DATASHEET
Two Port 10/100 Managed Ethernet Switch with 16-Bit Non-PCI CPU Interface
Datasheet
Note 3.1The pin names for the twisted pair pins apply to a normal connection. If HP Auto-MDIX is
enabled and a reverse connection is detected or manually se lected, the RX and TX pins
will be swapped internally.
Table 3.2 LAN Port 2 Pins
BUFFER
PINNAMESYMBOL
TYPEDESCRIPTION
83-86
127
126
124
Port 2 LED
Indicators
General
Purpose I/O
Data
Port 2
Ethernet TX
Negative
Port 2
Ethernet TX
Positive
Port 2
Ethernet RX
Negative
nP2LED[3:0]OD12LED indicators: When configured as LED outputs
GPIO[7:4]IS/O12/
OD12
(PU)
TXN2AIOEthernet TX Negative: Negative output of Port 2
TXP2AIOEthernet TX Positive: Positive output of Port 2
RXN2AIOEthernet RX Negative: Negative input of Port 2
via the LED Configuration Register (LED_CFG),
these pins are open-drain, active low outputs and
the pull-ups and input buffers are disabled. The
functionality of each pin is determined via the
LED_CFG[9:8] bits.
General Purpose I/O Data: When configured as
GPIO via the LED Configuration Register
(LED_CFG), these general purpose signals are
fully programmable as either push-pull outputs,
open-drain outputs or Schmitt-triggered inputs by
writing the General Purpose I/O Configuration
Register (GPIO_CFG) and General Purpose I/O
Data & Direction Register (GPIO_DATA_DIR). The
pull-ups are enabled in GPIO mode. The input
buffers are disabled when set as an output.
Note:See Chapter 13, "GPIO/LED Controller,"
on page 163 for additional details.
Ethernet transmitter. See Note 3.2 for additiona l
information.
Ethernet transmitter. See Note 3.2 for additional
information.
Ethernet receiver. See Note 3.2 for additiona l
information.
Port 2
123
PINNAMESYMBOL
119
114,117
SMSC LAN9311/LAN9311i29Revision 1.4 (08-19-08)
Ethernet RX
Positive
Note 3.2The pin names for the twisted pair pins apply to a normal connection. If HP Auto-MDIX is
enabled and a reverse connection is detected or manually se lected, the RX and TX pins
will be swapped internally.
Bias
Reference
+3.3V Port 1
Analog Power
Supply
RXP2AIOEthernet RX Positive: Positive input of Port 2
Ethernet receiver. See Note 3.2 for additiona l
information.
T a ble 3.3 LAN Port 1 & 2 Power and Common Pins
BUFFER
TYPEDESCRIPTION
EXRESAIBias Reference: Used for internal bias circuits.
Connect to an external 12.4K ohm, 1% resistor to
ground.
VDD33A1P+3.3V Port 1 Analog Power Supply
Refer to the LAN9311/LAN9311i application note
for additional connection information.
DATASHEET
Table 3.3 LAN Port 1 & 2 Power and Common Pins (continued)
PINNAMESYMBOL
Two Port 10/100 Managed Ethernet Switch with 16-Bit Non-PCI CPU Interface
Datasheet
BUFFER
TYPEDESCRIPTION
122,125
120
121
118
+3.3V Port 2
Analog Power
Supply
+3.3V Master
Bias Power
Supply
Port 2
Transmitter
+1.8V Power
Supply
Port 1
Transmitter
+1.8V Power
Supply
VDD33A2P+3.3V Port 2 Analog Power Supply
Refer to the LAN9311/LAN9311i application note
for additional connection information.
VDD33BIASP+3.3V Master Bias Power Supply
Refer to the LAN9311/LAN9311i application note
for additional connection information.
VDD18TX2PPort 2 Transmitter +1.8V Power Supply: This pin
is supplied from the internal PHY voltage regulator.
This pin must be tied to the VDD18TX1 pin for
proper operation.
Refer to the LAN9311/LAN9311i application note
for additional connection information.
VDD18TX1P+1.8V Port 1 Transmitter Power Supply: This pin
must be connected directly to the VDD18TX2 pin
for proper operation.
Refer to the LAN9311/LAN9311i application note
for additional connection information.
Table 3.4 Host Bus Interface Pins
PINNAMESYMBOL
25,26,
28-32,
34-38,
41-44
45,47,
49-53,
55,56
57
58
59
Host Bus
Data
Host Bus
Address
Read StrobenRDISRead Strobe: Active low strobe to indicate a read
Write StrobenWRISWrite Stro be: Active low strobe to indicate a write
Chip SelectnCSISChip Select: Active low signal used to qualify read
D[15:0]IS/O8Host Bus Data: Bits 15-0 of the Host Bus data
A[9:1]ISHost Bus Address: 9-bit Host Bu s Address Port
BUFFER
TYPEDESCRIPTION
port.
Note:Big and little endianess is supported.
used to select Internal CSR’s and TX and RX
FIFO’s.
Note:The A0 bit is not used because the
LAN9311/LAN9311i must be accessed on
WORD boundaries.
cycle. This signal is qualified by the nCS chip
select.
cycle. This signal is qualified by the nCS chip
select.
and write operations.
Revision 1.4 (08-19-08)30SMSC LAN9311/LAN9311i
DATASHEET
Loading...
+ 430 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.