SMSC LAN91C111 User Manual

LAN91C111
10/100 Non-PCI Ethernet Single Chip MAC + PHY
PRODUCT FEATURES
Singl e Chip Ethernet ControllerDu al Speed - 10/100 MbpsF ully Supports Full Duplex Switched EthernetSup ports Burst Data Transfer8 Kbytes Internal Memory for Receive and Transmit
FIFO Buffers
Enh anced Power Management FeaturesOptional Configuration via Serial EEPROM InterfaceSup ports 8, 16 and 32 Bit CPU AccessesInterna l 32 Bit Wide Data Path (Into Packet Buffer
Memory)
Bui lt-in Transparent Arbitration for Slave Sequential
Access Architecture
Flat MMU Architecture with Symmetric Transmit and
Receive Structures and Queues
3 .3V Operation with 5V Tolerant IO Buffers (See Pin
List Description for Additional Details)
Sin gle 25 MHz Reference Clock for Both PHY and
MAC
External 25Mhz-output pin for an external PHY
supporting PHYs physical media.
L ow Power CMOS DesignSup ports Multiple Embedded Processor Host
Interfaces
—ARM —SH — Power PC — Coldfire — 680X0, 683XX — MIPS R3000
Datasheet
3 .3V MII (Media Independent Interface) MAC-PHY
Interface Running at Nibble Rate
MII Management Serial Interface128-Pin QFP package; lead-free RoHS compliant
package also available.
1 28-Pin TQFP package, 1.0 mm height; lead-free
RoHS compliant package also available.
C ommercial Temperature Range from 0 °C to 70°C
(LAN91C111)
Ind ustrial Temperature Range from -40°C to 85°C
(LAN91C111i)
Network Interface
Fully Integrated IEEE 802.3/802.3u-100Base-TX/
10Base-T Physical Layer
Au to Negotiation: 10/100, Full / Half DuplexOn C hip Wave Shaping - No External Filters
Required
Ad aptive EqualizerBa seline Wander CorrectionL ED Outputs (User selectable – Up to 2 LED
functions at one time)
—Link —Activity — Full Duplex — 10/100 — Transmit — Receive
SMSC LAN91C111 REV C DATASHEET Revision 1.91 (08-18-08)
10/100 Non-PCI Ethernet Single Chip MAC + PHY
ORDER NUMBERS:
LAN91C111-NC, LAN91C111i-NC (INDUSTRIAL TEMPERATURE)
FOR 128-PIN QFP PACKAGES LA N 91 C 111- N S, L AN 9 1C 111 i- N S (INDUSTRIAL TEMPERATURE) FOR 128-PIN QFP LEAD-FREE ROHS COMPLIANT PACKAGES
LAN91C111-NE (1.0MM HEIGHT); LAN91C111i-NE (INDUSTRIAL TEMPERATURE)
FOR 128-PIN TQFP PACKAGES
LAN91C111-NU (1.0MM HEIGHT); LAN91C111i-NU (INDUSTRIAL TEMPERATURE)
FOR 128-PIN TQFP LEAD-FREE ROHS COMPLIANT PACKAGES
Datasheet
80 ARKAY DRIVE, HAUPPAUGE, NY 11788 (631) 435-6000, FAX (631) 273-3123
Copyright © 2008 SMSC or its subsidiaries. All rights reserved. Circuit diagrams and other information relating to SMSC products are included as a mean s of illustrating typical applications. Conse quently, complete information sufficient for
construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders.
SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF SMSC OR OTHE RS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Revision 1.91 (08-18-08) 2 SMSC LAN91C111 REV C
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet
Table of Contents
Chapter 1 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chapter 2 Pin Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 3 Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter 4 Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Chapter 5 Description of Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Chapter 6 Signal Description Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1 Buffer Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Chapter 7 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.1 Clock Generator Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2 CSMA/CD Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2.1 DMA Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2.2 Arbiter Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.3 MMU Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.4 BIU Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.5 MAC-PHY Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.5.1 Management Data Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.5.2 Management Data Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.5.3 MI Serial Port Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.5.4 MII Packet Data Communication with External PHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.6 Serial EEPROM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.7 Internal Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.7.1 MII Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.7.2 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.7.3 Decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.7.4 Clock and Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.7.5 Scrambler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.7.6 Descrambler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.7.7 Twisted Pair Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.7.8 Twisted Pair Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.7.9 Collision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.7.10 Start of Packet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.7.11 End of Packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.7.12 Link Integrity & AutoNegotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.7.13 Jabber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.7.14 Receive Polarity Correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.7.15 Full Duplex Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.7.16 Loopback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.7.17 PHY Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.7.18 PHY Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.8 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Chapter 8 MAC Data Structures and Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.1 Frame Format In Buffer Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.2 Receive Frame Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.3 I/O Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
SMSC LAN91C111 REV C 3 Revision 1.91 (08-18-08)
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet
8.4 Bank Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.5 Bank 0 - Transmit Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.6 Bank 0 - EPH Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.7 Bank 0 - Receive Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.8 Bank 0 - Counter Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.9 Bank 0 - Memory Information Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.10 Bank 0 - Receive/Phy Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.11 Bank 1 - Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.12 Bank 1 - Base Address Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.13 Bank 1 - Individual Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.14 Bank 1 - General Purpose Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.15 Bank 1 - Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.16 Bank 2 - MMU Command Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.17 Bank 2 - Packet Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.18 Bank 2 - FIFO Ports Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.19 Bank 2 - Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.20 Bank 2 - Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.21 Bank 2 - Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.22 Bank 3 - Multicast Table Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.23 Bank 3 - Management Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.24 Bank 3 - Revision Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.25 Bank 3 - RCV Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.26 Bank 7 - External Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Chapter 9 PHY MII Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.1 Register 0. Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.2 Register 1. Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.3 Register 2&3. PHY Identifier Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.4 Register 4. Auto-Negotiation Advertisement Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.5 Register 5. Auto-Negotiation Remote End Capability Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.6 Register 16. Configuration 1- Structure and Bit Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.7 Register 17. Configuration 2 - Structure and Bit Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.8 Register 18. Status Output - Structure and Bit Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.9 Register 19. Mask - Structure and Bit Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.10 Register 20. Reserved - Structure and Bit Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Chapter 10 Software Driver and Hardware Sequence Flow . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.1 Software Driver and Hardware Sequence Flow for Power Management. . . . . . . . . . . . . . . . . . . . 84
10.2 Typical Flow of Events for Transmit (Auto Release = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.3 Typical Flow of Events for Transmit (Auto Release = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
10.4 Typical Flow of Event For Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Chapter 11 Board Setup Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Chapter 12 Application Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Chapter 13 Operational Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
13.1 Maximum Guaranteed Ratings* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
13.2 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
13.3 Twisted Pair Characteristics, Transmit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
13.4 Twisted Pair Characteristics, Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Chapter 14 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Revision 1.91 (08-18-08) 4 SMSC LAN91C111 REV C
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet
Chapter 15 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Chapter 16 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
SMSC LAN91C111 REV C 5 Revision 1.91 (08-18-08)
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet
List of Figures
Figure 2.1 Pin Configuration - LAN91C111-FEAST 128 PIN TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2.2 Pin Configuration - LAN91C111-FEAST 128 PIN QFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 3.1 Basic Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 3.2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 3.3 LAN91C111 Physical Layer to Internal MAC Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7.1 MI Serial Port Frame Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 7.2 MII Frame Format & MII Nibble Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 7.3 TX/10BT Frame Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 7.4 TP Output Voltage Template - 10 MBPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 7.5 TP Input Voltage Template -10MBPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 7.6 SOI Output Voltage Template - 10MBPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 7.7 Link Pulse Output Voltage Template - NLP, FLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 7.8 NLP VS. FLP Link Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 8.1 Data Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 8.2 Interrupt Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 10.1 Interrupt Service Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 10.2 RX INTR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 10.3 TX INTR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 10.4 TXEMPTY INTR (Assumes Auto Release Option Selected) . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 10.5 Drive Send and Allocate Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 10.6 Interrupt Generation for Transmit, Receive, MMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 11.1 64 X 16 Serial EEPROM Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 12.1 LAN91C111 on VL BUS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 12.2 LAN91C111 on ISA BUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 12.3 LAN91C111 on EISA BUS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 14.1 Asynchronous Cycle - nADS=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 14.2 Asyn chr o nous Cycle - Using nADS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 14.3 Asynchronous Cycle - nADS=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 14.4 Asynchronous Ready. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 14.5 Burst Write Cycles - nVLBUS=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 14.6 Burst Read Cycles - nVLBUS=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 14.7 Address Latching for All Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 14.8 Synchronous Write Cycle - nVLBUS=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 14.9 Synchronous Read Cycle - nVLBUS=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 14.10MII Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 14.11Transmit Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 14.12Receive Timing, End of Packet - 10 MBPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 14.13Collision Timing, Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 14.14Collision Timing, Transmit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 14.15Jam Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 14.16Link Pulse Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 14.17FLP Link Pulse Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 15.1 128 Pin TQFP Package Outline, 14X14X1.0 Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 15.2 128 Pin QFP Package Outline, 3.9 MM Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Revision 1.91 (08-18-08) 6 SMSC LAN91C111 REV C
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet
List of Tables
Table 4.1 LAN91C111 Pin Requirements (128 Pin QFP and 1.0mm TQFP package) . . . . . . . . . . . . . . 14
Table 7.1 4B/5B Symbol Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 7.2 Transmit Level Adjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 8.1 Internal I/O Space Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 9.1 MII Serial Frame Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 9.2 MII Serial Port Register MAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 10.1 Typical Flow Of Events For Placing Device In Low Power Mode . . . . . . . . . . . . . . . . . . . . . . 84
Table 10.2 Flow Of Events For Restoring Device In Normal Power Mode . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 12.1 VL Local Bus Signal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 12.2 High-End ISA or Non-Burst EISA Machines Signal Connectors . . . . . . . . . . . . . . . . . . . . . . 100
Table 12.3 EISA 32 Bit Slave Signal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 14.1 Transmit Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 14.2 Receive Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 14.3 Collision and Jam Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 14.4 Link Pulse Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 15.1 128 Pin TQFP Package Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 15.2 128 Pin QFP Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 16.1 Customer Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
SMSC LAN91C111 REV C 7 Revision 1.91 (08-18-08)
DATASHEET

Chapter 1 General Description

The SMSC LAN91C111 is designed to facilitate the implementation of a third generation of Fast Ethernet connectivity solutions for embedded applications. For this third generation of products, flexibility and integration dominate the design requirements. The LAN91C111 is a mixed signal Analog/Digital device that implements the MAC and PHY portion of the CSMA/CD protocol at 10 and 100 Mbps. The design will also minimize data throughput constraints utilizing a 32-bit, 16-bit or 8-bit bus Host interface in embedded applications.
The total internal memory FIFO buffer size is 8 Kbytes, which is the total chip storage for transmit and receive operations.
The SMSC LAN91C111 is software compatible with the LAN9000 family of products. Memory management is handled using a patented optimized MMU (Memory Management Unit)
architecture and a 32-bit wide internal data path. This I/O mapped architecture can sustain back-to­back frame transmission and reception for superior data throughput and optimal performance. It also dynamically allocates buffer memory in an efficient buffer utilization scheme, reducing software tasks and relieving the host CPU from performing these housekeep ing functions.
The SMSC LAN91C111 provides a flexible slave interface for easy connectivity with industry-standard buses. The Bus Interface Unit (BIU) can handle synchronous as well as asyn chronous transfers, with different signals being used for each one. Asynchronous bus support for ISA is sup ported even though ISA cannot sustain 100 Mbps traffic. Fast Ethernet data rates are attainable for ISA-based nodes on the basis of the aggregate traffic benefits.
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet
Two different interfaces are supported on the network side. The first Interface is a standard Magnetics transmit/receive pair interfacing to 10/100Base-T utilizing the internal physical layer block. The second interface follows the MII (Media Independent Interface) specification standard, consisting o f 4 bit wide data transfers at the nibble rate. This interface is applicable to 10 Mbps standard Ethernet or 100 Mbps Ethernet networks. Three of the LAN91C111’s pins are used to interface to the two-line MII serial management protocol.
The SMSC LAN91C111 integrates IEEE 802.3 Physical Layer for twisted pair Ethernet applications. The PHY can be configured for either 100 Mbps (100Base-TX) or 10 Mbps (10Base-T) Ethernet operation. The Analog PHY block consists of a 4B5B/Manchester encoder/decoder, scrambler/de­scrambler, transmitter with wave shaping and output driver, twisted pair receiver with on chip equalizer and baseline wander correction, clock and data recovery, Auto-Negotiation, controller interface (MII), and serial port (MI). Internal output wave shaping circuitry and on-chip filters eliminate the ne ed for external filters normally required in 100Base-TX and 10Base-T applications.
The LAN91C111 can automatically configure itself for 100 or 10 Mbps and Full or Half Duplex operation with the on-chip Auto-Negotiation algorithm. The LAN91C111 is ideal for media interfaces for embedded application desiring Ethernet connectivity as well as 100Base-TX/10Base-T a dapter cards, motherboards, repeaters, switching hubs. The LAN91C111 operates from a single 3.3V supply. The inputs and outputs of the host Interface are 5V tolerant and will directly interface to other 5V devices.
Revision 1.91 (08-18-08) 8 SMSC LAN91C111 REV C
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet

Chapter 2 Pin Configurations

Pin Configuration
XTAL2
XTAL1
RX_ER
RX_DV
RXD0
RXD1
RXD2
RXD3
VDD
CRS100
RX25
GND
TXD0
TXD1
TXD2
TXD3
COL100
TXEN100
VDD
TX25
GNDD0D1D2D3
GNDD4D5D6D7
VDD
nBE3
VDD
nCSOUT
IOS0 IOS1 IOS2
ENEEP
EEDO
EEDI EESK EECS
AVDD
RBIAS
AGND
TPO+
TPO-
AVDD
TPI+
TPI-
AGND
nLNK
LBK nLEDA nLEDB
GND
MDI
MDO
MCLK
nCNTRL
INTR0
RESET
nRD
nWR
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33343536373839404142434445464748495051525354555657585960616263
LAN91C111-
FEAST
TM
128 PIN TQFP
104
103
102
101
100
999897
96
nBE2
95
nBE1
94
nBE0
93
GND
92
A15
91
A14
90
A13
89
A12
88
A11
87
A10
86
A9
85
A8
84
A7
83
A6
82
A5
81
A4
80
A3
79
A2
78
A1
77
VDD
76
D8
75
D9
74
D10
73
D11
72
GND
71
D12
70
D13
69
D14
68
D15
67
GND
66
D16
65
D17
64
D31
D30
D29
D28
D27
D26
D25
D24
D23
D22
D21
D20
D19
VDD
nDATACS
W/nR
nADS
nCYCLE
GND
ARDY
AEN
LCLK
nVLBUS
VDD
nSRDY
nLDEV
nRDYRTN
GND
X25OUT
GND
VDD
D18

Figure 2.1 Pin Configuration - LAN91C111-FEAST 128 PIN TQFP

SMSC LAN91C111 REV C 9 Revision 1.91 (08-18-08)
DATASHEET
XTAL1 XTAL2
VDD
nCSOUT
IOS0 IOS1 IOS2
ENEEP
EEDO
EEDI EESK EECS
AVDD
RBIAS
AGND
TPO+
TPO-
AVDD
TPI+
TPI-
AGND
nLNK
LBK nLEDA nLEDB
GND
MDI
MDO
MCLK
nCNTRL
INTR0
RESET
nRD
nWR
VDD
nDATACS
nCYCLE
W/nR
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Pin Configuration
RX_ER
RX_DV
RXD0
RXD1
RXD2
RXD3
VDD
CRS100
RX25
GND
TXD0
TXD1
TXD2
TXD3
COL100
TXEN100
VDD
TX25
GNDD0D1D2D3
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
39404142434445464748495051525354555657585960616263
LAN91C111-
FEAST
TM
128 PIN QFP
109
108
107
GNDD4D5
106
105
104
103
64
102 101 100
99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65
Datasheet
D6 D7 VDD nBE3 nBE2 nBE1 nBE0 GND A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 VDD D8 D9 D10 D11 GND D12 D13 D14 D15 GND D16 D17 D18 D19
D31
D30
D29
D28
D27
D26
D25
D24
D23
D22
D21
nADS
ARDY
GND
nVLBUS
AEN
LCLK
nSRDY
VDD
nLDEV
X25OUT
nRDYRTN
GND
GND
D20
VDD

Figure 2.2 Pin Configuration - LAN91C111-FEAST 128 PIN QFP

Revision 1.91 (08-18-08) 10 SMSC LAN91C111 REV C
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet

Chapter 3 Block Diagrams

The diagram shown in Figure 3.1, "Basic Functional Block Diagram", describes the device basic functional blocks. The SMSC LAN91C111 is a single chip solution for embedded designs with minimal Host and external supporting devices required to implement 10/100 Ethernet conne ctivity solutions.
The optional Serial EEPROM is used to store information relating to default IO offset parameters as well as which of the Interrupt line are used by the ho st.
LAN91C111
ISA,Embedded
Processor
Host System
TX/RX Buffer (8K)
Ethernet
Internal IEEE 802.3 MII (Media
Independent Interface)
MAC
Serial
EEProm
(Optional)

Figure 3.1 Basic Functional Block Diagr am

PHY
Core
Transformer
Minimal LAN91C111
Configuration
RJ45
SMSC LAN91C111 REV C 11 Revision 1.91 (08-18-08)
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet
Control
Address
Data
EEPROM
INTERFACE
8-32 bit
Bus
Interface
Unit
Control
Control
WR
FIFO
RD
FIFO
Control
Arbiter
MMU
8K Byte
Dynamically
Allocated
SRAM
Control
32-bit Data
32-bit Data
TX/RX
FIFO
Pointer
DMA
Control
TX Data
RX Data
Ethernet Protocol
Handler
(EPH)
MII
Control
TPO
10/100
PHY
TXD[0-3]
TPI
RXD[0-3]

Figure 3.2 Block Diagram

The diagram shown in Figure 3.2 describes the supported Host interfaces, which include ISA or Generic Embedded. The Host interface is an 8, 16 or 32 bit wide address / data bus with extensions for 32, 16 and 8 bit embedded RISC and ARM processors.
The figure shown next page describes the SMSC LAN91C111 functional blocks required to integrate a 10/100 Ethernet Physical layer framer to the internal MAC.
Revision 1.91 (08-18-08) 12 SMSC LAN91C111 REV C
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
A
D
Datasheet
MII External
Signals
EECS
EESK
EEDO
EEDI
EEPROM
CONTROL
B
5
B
4
R
E
N
E
C
D
TXD[3:0]
TX_ER
TXEN100
TX25
O
S
A
B
I
R
X
T
E
-
B
A
S
0
0
1
E
R
T
T
I
S
M
A
N
R
T
T
C
H
D
E
I
W
E
M
B
L
A
R
S
C
M
R
R
E
N
E
C
D
O
T
-
S
E
0
B
A
1
E
T
R
T
I
M
S
A
N
R
T
N
E
T
C
U
R
R
E
O
R
U
S
C
C
K
L
O
C
E
N
G
L
)
P
L
(
S
3
L
T
P
L
E
T
L
I
F
+
-
R
+
P
O
T
-
P
O
T
MII
SERIAL
Manage
-ment
CSMA/CD
Power
Reset
On
MII
To MII External Signals
CRS100
COL100
RXD[3:0]
RX_ER
RX_DV
RX25
MDI
MCLK
MDO
L
O
L
C
CONTROLS
S
I
PHY
D
C
E
R
S
T
H
M
C
A
N
E
N
O
I
R
M
O
C
K
L
O
C
E
N
G
L
)
P
L
(
A
1
H
L
C
U
S
E
Q
&
C
K
O
L
4
D
C
E
AUTONEG
LOGIC
B
B
5
D
R
E
O
C
R
A
M
E
S
D
R
E
C
B
L
A
A
T
D
E
R
Y
V
O
E
C
R
T
U
O
A
N
E
N
G
O
I
A
T
T
I
O
K
&
N
L
I
H
L
C
U
S
E
Q
&
C
K
L
O
C
A
A
T
D
y
e
r
v
o
e
c
R
t
e
s
e
r
h
n
c
M
a
(
)
r
d
e
o
e
c
D
E
1
R
P
L
E
T
L
I
F
X
T
E
-
B
A
S
0
0
E
I
E
C
R
V
E
R
L
T
M
D
R
E
N
C
O
-
T
S
E
A
0
B
I
V
E
R
E
E
C
LED
Control
R
+ +
-
+ +
-
nPLED[0-5]
LS[2-0]A
+
-
h
V
t
-
+
/
I
+
P
V
E
P
T
I
A
A
D
L
I
R
Z
E
U
E
A
Q
h
V
t
-
+
/
P
L
E
T
R
L
I
F
Multiplex er
S
D
1
S
8
EN
C
C
1
3C2
B
Multiplex er
S
D
1
S
8
EN
C
C
1
3C2
B
T
P
I
T
-
LED
LE
LS[2-0]B

Figure 3.3 LAN91C111 Physical Layer to Internal MAC Block Diagram

SMSC LAN91C111 REV C 13 Revision 1.91 (08-18-08)
DATASHEET

Chapter 4 Signal Descriptions

Table 4.1 LAN91C111 Pin Requirements (128 Pin QFP and 1.0mm TQFP package)

FUNCTION PIN SYMBOLS NUMBER OF PINS
System Address Bus A1-A15, AEN, nBE0-nBE3 20
System Data Bus D0-D31 32
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet
System Control Bus RESET, nADS, LCLK, ARDY,
nRDYRTN, nSRDY, INTR0, nLDEV,
nRD, nWR, nDATACS, nCYCLE, W/nR,
nVLBUS
Serial EEPROM EEDI, EEDO, EECS, EESK, ENEEP,
IOS0-IOS2
LEDs nLEDA, nLEDB 2
PHY TPO+, TPO-, TPI+, TPI-, nLNK, LBK,
nCNTRL, RBIAS
Crystal Oscillator XTAL1, XTAL2 2
Power VDD, AVDD 10
Ground GND, AGND 12
Physical Interface (MII) TXEN100, CRS100, COL100, RX_DV,
RX_ER, TXD0-TXD3, RXD0-RXD3,
MDI, MDO, MCLK, RX25, TX25
MISC nCSOUT, X25OUT 2
TOTAL 128
14
8
8
18
Revision 1.91 (08-18-08) 14 SMSC LAN91C111 REV C
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet

Chapter 5 Description of Pin Functions

PIN NO.
NAME SYMBOL
TQFP QFP
81-92 83-94 Address A4-A15 I** Input. Decoded by LAN91C111 to
78-80 80-82 Address A1-A3 I** Input. Used by LAN91C111 for internal
41 43 Address Enable AEN I** Input. Used as an address qualifier.
94-97 96-99 nByte Enable nBE0-
107-104, 102-99, 76­73, 71-68, 66-63, 61­58, 56-53, 51-48
30 32 Reset RESET IS** Input. When this pin is asserted high, the
109-106, 104-101, 78-75, 73­70, 68-65, 63-60, 58­55, 53-50
Data Bus D0-D31 I/O24** Bidirecti onal. 32 bit data bus used to
nBE3
BUFFER TYPE
I** Input. Used during LAN91C111 register
DESCRIPTION
determine access to its registers.
register selection.
Address decoding is only enabled when AEN is low.
accesses to determine the width of the access and the register(s) being accessed. nBE0-nBE3 are ignored when nDATACS is low (burst accesses) because 32 bit transfers are assumed.
access the LAN91C111’s internal registers. Data bus has weak internal pullups. Supports direct connection to the system bus without external buffering. For 16 bit systems, only D0-D15 are used.
controller performs an internal system (MAC & PHY) reset. It programs all the registers to their default value, the controller will read the EEPROM device through the EEPROM interface This input is not considered active unless it is active for at least 100ns to filter narrow glitches.
(Note 5.1).
37 39 nAddress
Strobe
35 37 nCycle nCYCLE I** Input. This active l ow signal is used to
36 38 Write/
nRead
40 42 nVL Bus Access nVLBUS I with
SMSC LAN91C111 REV C 15 Revision 1.91 (08-18-08)
nADS IS** Input. For systems that require address
W/nR IS** Input. Defines th e direction of
pullup**
latching, the rising edge of nADS indicates the latching moment for A1-A15 and AEN. All LAN91C111 internal functions of A1-A15, AEN are latched except for nLDEV decoding.
control LAN91C111 EISA burst mode synchronous bus cycles.
synchronous cycles. Write cycles when high, read cycles when low.
Input. When low, the LAN91C111 synchronous bus interface is configured for VL Bus accesses. Otherwise, the LAN91C111 is configured for EISA DMA burst accesses. Does not affect the asynchronous bus interface.
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet
PIN NO.
NAME SYMBOL
TQFP QFP
BUFFER TYPE
DESCRIPTION
42 44 Local Bus Clock LCLK I** Input. Used to interface synchronous
buses. Maximum frequency is 50 MHz. Limited to 8.33 MHz for EISA DMA burst mode. This pin should be tied high if it is in asynchronous mode.
38 40 Asynchronous
Ready
ARDY OD16 Open drain output. ARDY may be used
when interfacing asynchronous buses to extend accesses. Its rising (access completion) edge is controlled by the XTAL1 clock and, therefore, asynchronous to the host CPU or bus clock. ARDY is negated during Asynchronous cycle when one of the following conditions occurs: No_Wait Bit in the Configuration Register is cleared. Read FIFO contains less than 4 bytes when read. Write FIFO is full when write.
43 45 nSynchronous
Ready
nSRDY O16 Output. This output is used when
interfacing synchronous buses and nVLBUS=0 to extend accesses. This signal remains normally inactive, and its falling edge indicates completion. This signal is synchronous to the bus clock LCLK.
46 48 nReady Return nRDYRTN I** Input. This input is used to complete
synchronous read cycles. In EISA burst mode it is sampled on falling LCLK edges, and synchronous cycles are delayed until it is sampled high.
29 31 Interrupt INTR0 O24 Interrupt Output – Active High, it’s used to
interrupt the Host on a status event. Note: The selection bits used to determined by the value of INT SEL 1-0 bits in the Configuration Register are no longer required and have been set to reserved in this revision of the FEAST family of devices.
45 47 nLocal Device nLDEV O16 Output. This active low output is asserted
when AEN is low and A4-A15 decode to the LAN91C111 address programmed into the high byte of the Base Address Register. nLDEV is a combinatorial decode of unlatched address and AEN signals.
31 33 nRead Strobe nRD IS** Input. Used in asyn chronous bus
interfaces.
32 34 nWrite Strobe nWR IS** Input. Used in a synchronous bus
interfaces.
34 36 nData Path
Chip Select
nDATACS I with
pullup**
Input. When nDATACS is low, the Data Path can be accessed regardless of the values of AEN, A1-A15 and the content of the BANK SELECT Register. nDATACS provides an interface for bursting to and from the LAN91C111 32 bits at a time.
Revision 1.91 (08-18-08) 16 SMSC LAN91C111 REV C
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet
PIN NO.
NAME SYMBOL
TQFP QFP
BUFFER TYPE
DESCRIPTION
9 11 EEPROM Clock EESK O4 Output. 4 μsec clock used to shift data in
and out of the serial EEPROM.
10 12 EEPROM
Select
EECS O4 Output. Serial EEPROM chip select.
Used for selection and command framing of the serial EEPROM.
7 9 EEPROM Data
Out
8 10 EEPROM Data InEEDI I with
3-5 5-7 I/O Base IOS0-IOS2 I with
EEDO O4 Output. Connected to the DI input of the
serial EEPROM. Input. Connected to the DO output of the
pulldown **
serial EEPROM. Input. External switches can be
pullup**
connected to these lines to select between predefined EEPROM configurations.
68Enable
EEPROM
ENEEP I with
pullup**
Input. Enables (when high or open) LAN91C111 accesses to the serial EEPROM. Must be grounded if no EEPROM is connected to the LAN91C111.
127, 128 1, 2 Crystal 1
Crystal 2
XTAL1 XTAL2
Iclk** An external 25 MHz crystal is connected
across these pins. If a TTL clock is supplied instead, it should be connected to XTAL1 and XTAL2 should be left open. XTAL1 is the 5V tolerant input of the internal amplifier and XTAL2 is the output of the internal amplifier.
1, 33, 44, 62, 77, 98, 110, 120
3, 35, 46, 64, 79, 100, 112,
Power VDD +3.3V Power supply pins.
122 11, 16 13, 18 Analog Power AVDD +3.3V Analog power supply pins. 24, 39, 52,
57, 67, 72, 93, 103, 108, 117
26, 41, 54,
59, 69, 74,
95, 105,
110 , 11 9
Ground GND Ground pins.
13, 19 15, 21 Analog Ground AGND Analog Ground pins 21 23 Loopback LBK O4 Outp ut. Active when LOOP bit is set
(TCR bit 1).
20 22 nLink Status nLNK I with
pullup
Input. General-purpose input port used to
convey LINK status (EPHSR bit 14). 28 30 nCNTRL nCNTRL O12 General Purpose Control Pin 47 49 X25out X25out O12 25Mhz Output to external PHY 111 113 Transmit Enable
100 Mbps
119 121 Carrier Sense
100 Mbps
TXEN100 O12 Output to MII PHY. Envelope to 100
Mbps transmission.
CRS100 I with
pulldown
Input from MII PHY. Envelope of packet
reception used for deferral and backoff
purposes.
SMSC LAN91C111 REV C 17 Revision 1.91 (08-18-08)
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet
PIN NO.
NAME SYMBOL
TQFP QFP
125 127 Receive Data
RX_DV I with
Valid
112 114 Collision Detect
COL100 I with
100 Mbps
113-116 115-118 Transmit Data TXD3-
BUFFER TYPE
pulldown
pulldown O12 Outputs. Transmit Data nibble to MII
TXD0
109 111 Transmit Clock TX25 I with
pullup
118 120 Receive Clock RX25 I with
pullup
121-124 123-126 Receive Data RXD3-
RXD0
25 27 Management
MDI I with
Data Input
26 28 Management
MDO O4 MII management d ata output.
I with pullup
pulldown
Data Output
DESCRIPTION
Input from MII PHY. Envelope of data
valid reception. Used for receive data
framing.
Input from MII PHY. Collision detection
input.
PHY.
Input. Transmit clock input from MII.
Nibble rate clock (25MHz for 100Mbps &
2.5MHz for 10Mbps).
Input. Receive clock input from MII PHY.
Nibble rate clock. (25MHz for 100Mbps &
2.5MHz for 10Mbps).
Inputs. Received Data nibble from MII
PHY.
MII management data input.
27 29 Management
MCLK O4 MII management cl ock.
Clock
126 128 Receive Error RX_ER I with
pulldown
Input. Indicates a code error detected by
PHY. Used by the LAN91C111 to discard
the packet being received. The error
indication reported for this event is the
same as a bad CRC (Receive Status
Word bit 13). 2 4 nChip Select
Output
nCSOUT O4 Outp ut. Chip Select provided for
mapping of PHY functions into
LAN91C111 decoded space. Active on
accesses to LAN91C111’s eight lower
addresses when the BANK SELECTED is
7.
12 14 External
Resistor
RBIAS NA Transmit Current Set. An external
resistor connected between this pin and
GND will set the output current for the TP
transmit outputs 14 16 TPO+ O/I Twisted Pair Transmit Output, Positive. 15 17 TPO- O/I Twisted Pair Transmit Output, Negative 17 19 TPI+ I/O Twisted Pair Receive Input, Positive 18 20 TPI- I/O Twisted Pair Receive Input, Negative. 22 24 nLEDA OD24 PHY LED Output 23 25 nLEDB OD24 PHY LED Output
Note 5.1 If the EEPROM is enabled.
Revision 1.91 (08-18-08) 18 SMSC LAN91C111 REV C
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet

Chapter 6 Signal Description Parameters

This section provides a detailed description of each SMSC LAN91C111 signal. The signals are arranged in functional groups according to their associated function.
The ‘n’ symbol at the beginning of a signal name indicates that it is an active low signal. When ‘n’ is not present before the signal name, it indicates an active high signal.
The term “assert” or “assertion” indicates that a signal is active; i ndependent of whether that level is represented by a high or low voltage. The term negates or negation indicates that a signa l is inactive.
The term High-Z means tri-stated. The term Undefined means the signal could be high, low, tri-stated, or in some in-between level.

6.1 Buffer Types

O4 Output buffer with 2mA source and 4mA sink O12 Output buffer with 6mA source and 12mA sink O16 Output buffer with 8mA source and 16mA sink O24 Output buffer with 12mA source and 24mA sink OD16 Open drain buffer with 16mA sink OD24 Open drain buffer with 24mA sink I/O4 Bidirectional buffer with 2mA source and 4mA sink I/O24 Bidirectional buffer with 12mA source and 24mA sink I/OD Bidirectional Open drain buffer with 4mA sink I Input buffer IS Input buffer with Schmitt Trigger Hysteresis Iclk Clock input buffer I/O Differential Input O/I Differential Output ** 5V tolerant. Input pins are able to accept 5V signals
DC levels and conditions defined in the DC Electrical Characteristics section.
SMSC LAN91C111 REV C 19 Revision 1.91 (08-18-08)
DATASHEET

Chapter 7 Functional Description

7.1 Clock Generator Block

1. The XTAL1 and XTAL2 pins are to be connected to a 25 MHz crystal.
2. TX25 is an input clock. It will be the nibble rate of the particular PHY connected to the MII (2.5 MHz for a 10 Mbps PHY, and 25 MHz for a 100 Mbps PHY).
3. RX25 - This is the MII nibble rate receive clock used for sampling received data nibbles and running the receive state machine. (2.5 MHz for a 10 Mbps PHY, and 25 MHz for a 100 Mbps PHY).
4. LCLK - Bus clock - Used by the BIU for synchronous accesses. Maximum frequency is 50 MHz for VL BUS mode, and 8.33 MHz for EISA slave DMA.

7.2 CSMA/CD Block

This is a 16 bit oriented block, with fully- independent Transmit and Receive logic. The data path in and out of the block consists of two 16-bit wide uni-directional FIFOs interfacing the DMA block. The DMA port of the FIFO stores 32 bits to exploit the 32 bit data path into memory, but the FIFOs themselves are 16 bit wide. The Control Path consists of a set of registers interfaced to the CPU via the BIU.
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet

7.2.1 DMA Block

This block accesses packet memory on the CSMA/CD’s behalf, fetching transmit data and storing received data. It interfaces the CSMA/CD Transmit and Receive FIFOs on one side and the Arbiter block on the other. To increase the bandwidth into memory, a 50 MHz clock is used by the DMA block, and the data path is 32 bits wide.
For example, during active reception at 100 Mbps, the CSMA/CD block will write a word into the Receive FIFO every 160ns. The DMA will read the FIFO and accumulate two words on the output port to request a memory cycle from the Arbiter every 320ns.
The DMA machine is able to support full duplex operation. Independe nt receive and transmit counters are used. Transmit and receive cycles are alternated when simultaneous receive and transmit accesses are needed.

7.2.2 Arbiter Block

The Arbiter block sequences accesses to packet RAM requested by the BIU and by the DMA blocks. BIU requests represent pipelined CPU accesses to the Data Register, while DMA requests represent CSMA/CD data movement.
Internal SRAM read accesses are always 32 bit wide, and the Arbiter steers the appropriate byte(s) to the appropriate lanes as a function of the address.
The CPU Data Path consists of two uni-directional FIFOs mapped at the D ata Register locatio n. These FIFOs can be accessed in any combination of bytes, word, or doublewords. The Arbiter will indicate 'Not Ready' whenever a cycle is initiated that cannot be satisfied by the present state of the FIFO.

7.3 MMU Block

The Hardware Memory Management Unit allocates memory and transmit and receive packet queues. It also determines the value of the transmit and receive interrupts as a function of the queues. The page size is 2048 bytes, with a maximum memory size of 8kbytes. MIR values are interpreted in 2048 byte units.
Revision 1.91 (08-18-08) 20 SMSC LAN91C111 REV C
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet

7.4 BIU Block

The Bus Interface Unit can handle synchronous as well as asynchronous buses; different signals are used for each one. Transparent latches are added on the address path using rising nADS for latching.
When working with an asynchronous bus like ISA, the read and write operations are controlled by the edges of nRD and nWR. ARDY is used for notifying the system that it should extend the access cycle. The leading edge of ARDY is generated by the leading ed ge of nRD or nWR while the trailing edge of ARDY is controlled by the internal LAN91C111 clock and, therefore, asynchronous to the bus.
In the synchronous VL Bus type mode, nCYCLE and LCLK are used to for read and write operations. Completion of the cycle may be determined by using nSRDY. nSRDY is controlled by LCLK and synchronous to the bus.
Direct 32 bit access to the Data Path is supported by using the nDATACS input. By asserting nDATACS, external DMA type of devices will bypass the BIU address decoders and can sequentially access memory with no CPU intervention. nDATACS accesses can be used in the EISA DMA burst mode (nVLBUS=1) or in asynchronous cycles. These cycles MUST be 32 bit cycles. Please refer to the corresponding timing diagrams for details on these cycles.
The BIU is implemented using the following principles: a. Address decoding is based on the values of A15-A4 and AEN.
b. Address latching is performed by using transparent latches that are transparent when nADS=0 and
nRD=1, nWR=1 and latch on nADS rising edge.
c. Byte, word and doubleword accesses to all registers and Data Path are supported except a
doubleword write to offset Ch will only write the BANK SELECT REGISTER (offset 0x0Fh).
d. No bus byte swapping is implemented (no eight bit mode). e. Word swapping as a function of A1 i s implemented for 16 bit bus support. f. The asynchronous interface uses nRD and nWR strobes. If necessary, ARDY is negated on the
leading edge of the strobe. The ARDY trailing edge is controlled by CLK.
g. The VLBUS synchronous interface uses LCLK, nADS, and W/nR as defined in the VESA
specification as well as nCYCLE to control read and write operations an d generate nSRDY.
h. EISA burst DMA cycles to and from the DATA REGISTER are supported as defined in the EISA
Slave Mode "C" specification when nDATACS is driven by nDAK.
i. Synchronous and asyn chrono us cycles can be mi xed as long a s they are not active simul taneously. j. Address and bank selection can be bypassed to generate 32 bit Data Path accesses by activating
the nDATACS pin.

7.5 MAC-PHY Interface

The LAN91C111 integrates the IEEE 802.3 Physical Layer (PHY) and Media Access Control (MAC) into the same silicon. The data path connection between the MAC and the internal PHY is provided by the internal MII. The LAN91C111 also supports the EXT_PHY mode for the use of an external PHY, such as HPNA. This mode isolates the internal PHY to allow interface with an external PHY through the MII pins. To enter this mode, set EXT PHY bit to 1 in the Configuration Register.

7.5.1 Management Data Software Implementation

The MII interface contains of a pair of signals that physically transport the management informa tion across the MII, a frame format and a protocol specification for exchanging management frames, and a register set that can be read and written using these frames. MII management refers to the ability of a management entity to communicate with PHY via the MII serial ma nagement interface (MI) for the purpose of displaying, selecting and/or controlling different PHY options. The host manipulates the MAC to drive the MII management serial interface. By manipulating the MAC's registers, MII management frames are generated on the management interface for reading or writing information from the PHY registers. Timing and framing for each management command is to be generated by the CPU (host).
SMSC LAN91C111 REV C 21 Revision 1.91 (08-18-08)
DATASHEET
The MAC and external PHY communicate via MDIO and MDC of the MII Management serial interface. MDIO:Management Data input/output. Bi-directional between MAC and PHY that carries management
data. All control and status information sent over this pin is driven and sampled synchronously to the rising edge of MDC signal.
MDC:Management Data Clock. Sourced by the MAC as a timing reference for transfer of information on the MDIO signal. MDC is a periodic signal with no maximum h igh or low times. T he minimum high and low times should be 160ns each and the minimum period of the signal shou ld be 400ns. These values are regardless of the nominal period of the TX and RX clocks.

7.5.2 Management Data Timing

A timing diagram for a Ml serial port frame is shown in Figure 7.1. The Ml serial port is idle when at least 32 continuous 1's are detected on MDIO and remains idle as long as continuous 1's are detected. During idle, MDIO is in the high impedance state. When the Ml serial port is in the idle state, a 01 pattern on the MDIO initiates a serial shift cycle. Data on MDIO is then shifted in on the next 14 rising edges of MDC (MDIO is high impedance). If the register access mode is not enabled, on the next 16 rising edges of MDC, data is either shifted in or out on MDIO, depending on whether a write or re ad cycle was selected with the bits READ and WRITE. After the 32 MDC cycles have been completed, one complete register has been read/written, the serial sh ift process is halted, data is latched into the device, and MDIO goes into high impedance state. Another serial shift cycle cannot be initiated until the idle condition (at least 32 continuous 1's) is detected.
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet

7.5.3 MI Serial Port Frame Structure

The structure of the PHY serial port frame is shown in Table 9.1 and timing diagram of a frame is shown in Figure 7.1. Each serial port access cycl e consists of 32 bits (or 192 bits if multiple register access is enabled and REGAD[4:0]=11111 ) , e x c l u s i v e o f i d l e . T h e f i r s t 1 6 b i t s o f t h e s e r i a l p o r t cycle are always write bits and are used for addressing. The last 16/176 bits are from one/all of the 11 data registers.
The first 2 bit in Table 9.1and Figure7.1 are start bits and need to be wr itten as a 01 for the serial po rt cycle to continue. The next 2 bits are a read and write bit which determine if the accessed data register bits will be read or write. The next 5 bits are device addresses. The next 5 bits are register address select bits, which select one of the five data registers for access. The next 1 bit is a turnaround bit which is not an actual register bit but extra time to switch MDIO from write to read if ne cessary, as shown in Figure 7.1. The final 16 bits of the PHY Ml serial port cycle (or 176 bits if multiple register access is enabled and REGAD[4:0]=11111) come from the specific data register designated by the register address bits REGAD[4:0].
Revision 1.91 (08-18-08) 22 SMSC LAN91C111 REV C
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet
1
3
0
3
9
2
8
2
7
2
6
2
5
2
4
2
3
2
2
2
1
2
0
2
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
9
8
7
6
5
4
3
2
1
E
0
L C Y C E T
I R W
C D M
0 D
1 D
2 D
3 D
4 D
5 D
6 D
7
]
D
0
:
5
1
[ A
8
T
D
A D
9 D
0
1 D
1
1 D
2
1 D
3
1 D
4
1 D
5
1 D
]
0
0
:
1
[ A T
1
0 R
1 R
]
0
:
4
[
2
D
R
A G E
R 3 R
4 R
0 P
1 P
]
0
:
4
[
D
2
A
P
Y
H
P 3
P
4 P
1
]
0
:
1
[
P
O
0
1
]
0
:
1
[
T
S
0
O
I D M
C D M F O S E G D E
G N
I S
I
E
R
S
T
I
T
N
I
R
B
O
W
A
T A D
N
I S
K C O
L C Y H
P
1
3
0
3
9
2
8
2
7
2
6
2
5
2
4
2
3
2
2
2
1
2
0
2
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
9
8
7
6
5
4
3
2
1
0
E
L C Y C
D A E R
C D M
0 D
1 D
2 D
3 D
4 D
5 D
6 D
7 D
8 D
9 D
0
1 D
1
1 D
2
1 D
3
1 D
4
1 D
5
1 D
0
Z
0 R
1 R
2 R
3 R
4 R
0 P
1 P
]
0
:
4
[
2
D
P
A Y H
P 3 P
4 P
0
]
0
:
1
[
P
O
1
1
]
0
:
1
[
T
S
0
O
I D M
C D M F O S E G D E
G N
I S
S
I
T
]
R
I
0
B
:
N
5
D
O
1
[
A
A
A
E
T
T
R
A
A
D
D
T U O
S K C O
L C Y H P
]
0
:
1
[ A T
]
0
:
4
[ D A G E R
C D M F O S E G D E
G N
I S
I
E
R
S
T
I
T
N
I
R
B
O
W
A
T A D
N
I S
K C O
L C Y H P
Figure 7.1 MI Serial Port Frame Timing Diagra m
SMSC LAN91C111 REV C 23 Revision 1.91 (08-18-08)
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY

7.5.4 MII Packet Data Communication with External PHY

The MIl is a nibble wide packet data interface defined in IEEE 802.3. The LAN91C111 meets all the MIl requirements outlined in IEEE 802.3 and shown in Figure 7.2.
Datasheet
TX_EN = 0
IDLE
MII NIBBLE STREAM
PREAMBLE
PRMBLE
FIRST BIT
FIRST NIBBLE
TXD0 / RXD0 TXD1 / RXD1
TXD2 / RXD2 TXD3 / RXD3
TX_EN = 1
OF
SFD
DATA 1
2 BT
= [ 1 0 1 0 ... ] 62 BITS LONG = [ 1 1 ]
= [ BETWEEN 64-1518 DATA BYTES ]
MAC's SERIAL BIT STREAM
DATA NIBBLES
DATA 2
DATA N-1 DATA N
62 BT
LSB
START
FRAME
DELIM.
PREAMBLE
SFD
DATAn
IDLE = TX_EN = 0
D0 D1 D2 D3 D4 D5 D6 D7
Figure 7.2 MII Frame Format & MII Nibble Order
TX_EN = 0
IDLE
MSB
SECOND NIBBLE
The Mll consists of the following signals: four transmit data bits (TXD[3:0]), transmit clock (TX25),transmit enable (TXEN100), four receive data bits(RXD[3:0]), receive clock(RX25), carrier sense (CRS100), receive data valid (RX_DV), receive data error (RX_ER), and collision (COL100). Transmit data is clocked out using the TX25 clock input, while receive data is clocked in using RX25. Th e transmit and receive clocks operate at 25 MHz in 100Mbps mode and 2.5 MHz in 10Mbps.
In 100 Mbps mode, the LAN91C111 provides the following interface signals to the PHY:
For transmission: TXEN100, TX D0-3, TX25For reception: RX_DV, RX_ER, RXD0-3, RX25For CSMA/CD state machines: CRS100, COL100
A transmission begins by TXEN100 going active (high), and TXD0-TXD3 having the first valid preamble nibble. TXD0 carries the least significant bit of the nibble (that is the one tha t would go first out of the EPH at 100 Mbps), while TXD3 carries the most significant bit of the nibble. TXEN100 and TXD0-TXD3 are clocked by the LAN91C111 using TX25 rising edges. TXEN100 goe s inactive at the end of the packet on the last nibble of the CRC.
During a transmission, COL100 might become active to indicate a collision. COL100 is asynchronous to the LAN91C111’s clocks and will be synchronized internally to TX25.
Reception begins when RX_DV (receive data valid) is asserted. A preamble pattern or flag octet will be present at RXD0-RXD3 when RX_DV is activated. The LAN91C111 requires no training sequence beyond a full flag octet for reception. RX_DV as well as RXD0-RXD3 are sampled on RX25 rising
Revision 1.91 (08-18-08) 24 SMSC LAN91C111 REV C
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet
edges. RXD0 carries the least significant bit and RXD3 the most significant bit of the nibble. RX_DV goes inactive when the last valid nibble of the packet (CRC) is presented at RXD0-RXD3.
RX_ER might be asserted during packet reception to signal the L AN91C111 that the present receive packet is invalid. The LAN91C111 will discard the packet by treating it as a CRC error.
RXD0-RXD3 should always be aligned to packet nibbles, therefore, opening flag d etection does not consider misaligned cases. Opening flag detection expects the 5Dh pattern and will not reject the packet on non-preamble patterns.
CRS100 is used as a frame envelope signal for the CSMA/CD MAC state machines (deferral and backoff functions), but it is not used for receive framing functions. CRS100 is an asynchronous signal and it will be active whenever there is activity on the cable, including LAN9 1C111 transmissions and collisions.

7.6 Serial EEPROM Interface

This block is responsible for reading the serial EEPROM upon hardware reset (or equivalent command) and defining defaults for some key registers. A write operation is also implemented b y this block, that under CPU command will program specific locations in the EEPROM. This block is an autonomous state machine and controls the internal Data Bus of the LAN91C111 during active operation.

7.7 Internal Physical Layer

The LAN91C111 integrates the IEEE 802.3 physical layer (PHY) internally. The EXT PHY bit in the Configuration Register is 0 as the default configuration to set the internal PHY enabled. The internal PHY address is 00000, the driver must use this address to talk to the internal PHY. The inte rnal PHY
is placed in isolation mode at power up and reset. It can be removed from isolation mode by clearing the MII_DIS bit in the PHY Control Register. If necessary, the internal PHY can be enabled by clearing the EXT_PHY bit in the Configuration Register.
The internal PHY of LAN91C111 has nine main sections: controller interface, encoder, decoder, scrambler, descrambler, clock and data recovery, twisted pair transmitter, twisted pair receiver, and MI serial port.
The LAN91C111 can operate as a 100BASE-TX device (hereafter referred to as 100Mbps mode) or as a 10BASE-T device (hereafter referred to as 10Mbps mode). The difference between the 100Mbps mode and the 10Mbps mode is data rate, signaling protocol, and allowed wiring. The 100Mbps TX mode uses two pairs of category 5 or better UTP or STP twisted pair cable with 4B5B encoded, scrambled, and MLT-3 coded 62.5 MHz ternary data to achieve a throughput of 100Mbps. The 10Mbps mode uses two pairs of category 3 or better UTP or STP twisted pair cable with Manchester encoded, 10MHz binary data to achieve a 10Mbps throughput. The data symbol format on the twisted pair cable for the 100 and 10Mbps modes are defined in IEEE 802.3 specifications and shown in Figure 7.3.
SMSC LAN91C111 REV C 25 Revision 1.91 (08-18-08)
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet
INTERFRAME
GAP
IDLE
IDLE
PREAMBLE
SSD
DA, SA, LN, LLC DATA, FCS
PREAMBLE
PREAMBLE
DA, SA, LN, LLC DATA, FCS
PREAMBLE
IDLE
PREAMBLE
SFD
= [ 1 1 ] WITH NO MID BIT TRANSITION
SOI
ETHERNET MAC
FRAME
SFD DA
100 BASE-TX DATA SYMBOL S
SFD
IDLE SSD
= [ 1 1 0 0 0 1 0 0 0 1]
= [ 1 0 1 0 ...] 62 BITS LONG
SFD
= [ 1 1]
= [ DATA]
= [ 0 1 1 0 1 0 0 1 1 1]
ESD
10 BASE-T DATA SYMBOLS
SFD
= [ NO TRANSITIONS] = [ 1 0 1 0 ... ] 62 BITS LONG
= [ 1 1]
= [ DATA]
DA
= [ 1 1 1 1...]
DA
SA
SA
SA
LN
LLC DATA
LN ESD
LLC DATA
BEFORE / AFTER
4B5B ENCODING,
SCRAMBLING,
AND MLT3
CODING
LN
LLC DATA
BEFORE / AFTER
MANCHESTER
ENCODING
FCS
FCS
FCS
SOI
INTERFRAME
GAP
IDLE
IDLE

Figure 7.3 TX/10BT Frame Format

On the transmit side for 100Mbps TX operation, data is received on the controller and then se nt to the 4B5B encoder for formatting. The encoded data is then sent to the scrambler. The scrambled and encoded data is then sent to the TP transmitter. The TP transmitter converts the encoded and scrambled data into MLT-3 ternary format, reshapes the output, and drives the twisted pair cable.
On the receive side for 100Mbps TX operation, the twisted pair receiver receives incoming e ncoded and scrambled MLT-3 data from the twisted pair cable, remove any h igh frequency noise, equalizes the input signal to compensate for the effects of the cabl e, qualifies the data with a squelch algorithm, and converts the data from MLT-3 coded twisted pair levels to internal digital levels. The output of the twisted pair receiver then goes to a clock and data recovery block which recovers a clock from the incoming data, uses the clock to latch in valid data into the devic e, and converts the data back to NRZ format. The NRZ data is then unscrambled and decoded by the 4B5B decoder and descrambler, respectively, and outputted to the Ethernet controller.
Revision 1.91 (08-18-08) 26 SMSC LAN91C111 REV C
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet
10Mbps operation is similar to the 100Mbps TX operation except, (1) there is no scrambler/descrambler, (2) the encoder/decoder is Manchester instead of 4B5B, (3) the data rate is 10Mbps instead of 100Mbps, and (4) the twisted pair symbol data is two level Manche ster instead of ternary MLT-3.
The Management Interface, (hereafter referred to as the MI serial port), is a two pin bi-directional link through which configuration inputs can be set and status outputs can be read. Each block plus the operating modes are described in more detail in the following sections.

7.7.1 MII Disable

The internal PHY MII interface can be disabled by setting the MII disable bit in the MI serial port Control register. When the MII is disabled, the MII inputs are ignored, the MII outputs are placed in high impedance state, and the TP output is high impedance.

7.7.2 Encoder

4B5B Encoder - 100 Mbps
100BASE-TX requires that the data be 4B5B encoded. 4B5B coding converts the 4-Bit data nibbles into 5-Bit date code words. The mapping of the 4B nibbles to the 5B code words is specified in IEEE
802.3. The 4B5B encoder on the LAN91C111 takes 4B nibbles from the controller interface, converts them into 5B words and sends the 5B words to the scrambl er. The 4B5B encoder also substitutes the first 8 bits of the preamble with the SSD delimiters (a.k.a. /J/K/ symbo ls) and adds an ESD delimiter (a.k.a. MR/ symbols) to the end of every packet, as defined in IEEE 802.3. The 4B5B encoder also fills the period between packets, called the idle period, with the continuou s stream of idle symbols.
Manchester Encoder - 10 Mbps
The Manchester encoding process combines clock and NRZ data such that the first half of the data bit contains the complement of the data, and the second half of the data bit contains the true data, as specified in IEEE 802.3. This guarantees that a transition always occurs in the middle of the bit call. The Manchester encoder on the LAN91C111 converts the 10Mbps NRZ data from the controller interface into a Manchester Encoded data stream for the TP transmitter and adds a start of idle pulse (SOI) at the end of the packet as specified in IEEE 802.3. The Manchester encoding process is only done on actual packet data, and the idle period between packets is not Manchester encoded and filled with link pulses.

7.7.3 Decoder

4B5B Decoder - 100 Mbps
Since the TP input data is 4B5B encoded on the transmit side, it must also be decoded by the 4B5B decoder on the receive side. The mapping of the 5B nibbles to the 4B code words i s specified in IEEE
802.3. The 4B5B decoder on the LAN91C111 takes the 5B code words from the descrambler, converts them into 4B nibbles per Table 2, and sends the 4B nibbles to the controller interface. The 4B5B decoder also strips off the SSD delimiter (a.k.a. /J/K/ symbols) and replaces them with two 4B Data 5 nibbles (a.k.a. /5/ symbol), and strips off the ESD delimiter (a.k.a. /T/R/ symbols) and replaces it with two 4B Data 0 nibbles (a.k.a. /I/symbol), per IEEE 802.3 specifications and shown in Figure 7.3.
T a ble 7.1 4B/5B Symbol Mapping
SYMBOL NAME DESCRIPTION 5B CODE 4B CODE
0 Data 0 11110 0000 1 Data 1 01001 0001 2 Data 2 10100 0010
SMSC LAN91C111 REV C 27 Revision 1.91 (08-18-08)
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Table 7.1 4B/5B Symbol Mapping (continued)
SYMBOL NAME DESCRIPTION 5B CODE 4B CODE
3 Data 3 10101 0011 4 Data 4 01010 0100 5 Data 5 01011 0101 6 Data 6 01110 0110 7 Data 7 01111 0111 8 Data 8 10010 1000
9 Data 9 10011 1001 A Data A 10110 1010 B Data B 10111 1011 C Data C 11010 1100 D Data D 11011 1101
Datasheet
E Data E 11100 1110 F Data F 11101 1111
I Idle 11111 0000
J SSD #1 11000 0101 K SSD #2 10001 0101 T ESD #1 01101 0 000 R ESD #2 00111 0000 H Halt 00100 Undefined
--- Invalid codes All others* 0000*
* These 5B codes are not used. For decod er, these 5B codes are decoded to 4B 0000. For encoder, 4B 0000 is encoded to 5B 11110, as shown in symbol Data 0.
The 4B5B decoder detects SSD, ESD and codeword errors in the incoming data stream as specified in IEEE 802.3. These errors are indicated by asserting RX_ER output while the errors are being transmitted across RXD[3:0], and they are also indicated in the serial port by setting SSD, ESD, and codeword error bits in the PHY MI serial port Status Output register.
Manchester Decoder - 10 Mbps
In Manchester coded data, the first half of the data bit contains the complement of the data, and the second half of the data bit contains the true data. The Manchester decoder in the LAN91C111 converts the Manchester encoded data stream from the TP receiver into NRZ data for the controller interface by decoding the data and stripping off the SOI pulse. Since the clock and data recovery block has already separated the clock and data from the TP receiver, the Manchester decoding process to NRZ data is inherently performed by that block.
Revision 1.91 (08-18-08) 28 SMSC LAN91C111 REV C
DATASHEET
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet

7.7.4 Clock and Data Recovery

Clock Recovery - 100 Mbps
Clock recovery is done with a PLL. If there is no vali d data present on the T P inputs, the PLL is locked to the 25 MHz TX25. When valid data is detected on the TP inputs with the squelch circuit and when the adaptive equalizer has settled, the PLL input is switch ed to the incoming data on the TP input. The PLL then recovers a clock by locking onto the transitions o f the incoming signal from the twisted pair wire. The recovered dock frequency is a 25 MHz nibble dock, and that clock is outputted on the controller interface signal RX25.
Data Recovery - 100 Mbps
Data recovery is performed by latching in data from the TP receiver with the recovered clock extracted by the PLL. The data is then converted from a single bit stream i nto nibble wide data word according to the format shown in Figure 7.2.
Clock Recovery - 10 Mbps
The clock recovery process for 10Mbps mode is identical to the 100Mbps mode except, (1) the recovered clock frequency is 2.5 MHz nibble clock, (2) the PLL is switched from TX25 to the TP input when the squelch indicates valid data, (3) The PLL takes up to 12 transitions (bit times) to lock onto the preamble, so some of the preamble data symbols are lost, but the dock recovery block recovers enough preamble symbols to pass at least 6 nibbles of preamble to the receive controller interface as shown in Figure 7.2.
Data Recovery - 10 Mbps
The data recovery process for 10Mbps mode is identical to the 100Mbps mode. As mentioned in the Manchester Decoder section, the data recovery process inherently performs decoding of Manchester encoded data from the TP inputs.

7.7.5 Scrambler

100 Mbps
100BASE-TX requires scrambling to reduce the radiated emissions on the twisted pair. The LAN91C111 scrambler takes the encoded data from the 4B5B encoder, scrambles it per the IEEE
802.3 specifications, and sends it to the TP transmitter.
10 Mbps
A scrambler is not used in 10Mbps mode.
Scrambler Bypass
The scrambler can be bypassed by setting the bypass scrambler/descrambler bit in the PHY Ml serial port Configuration 1 register. When this bit is set, the 5B data bypasses the scrambler and goes directly from the 4B5B encoder to the twisted pair transmitter.

7.7.6 Descrambler

100 Mbps
The LAN91C111 descrambler takes the scrambled data from the data recovery block, descrambles it per the IEEE 802.3 specifications, aligns the data on the correct 5B word boundaries, and sends it to the 4B5B decoder.
The algorithm for synchronization of the descrambler is the same as the algorithm outli ned in the IEEE
802.3 specification. Once the descrambler is synchronized, i t will maintain synchronization as long as enough descrambled idle pattern 1's are defected within a given interval. To stay in synchronization, the descrambler needs to detect at least 25 consecutive descrambled idle pattern 1's in a 1ms interval.
SMSC LAN91C111 REV C 29 Revision 1.91 (08-18-08)
DATASHEET
If 25 consecutive descrambled idle pattern 1's are not detected within the 1ms interval, the descrambler goes out of synchronization and restarts the synchronization process.
If the descrambler is in the unsynchronized state, the descrambler loss of synchronization detect bit is set in the Ml serial port Status Output register to indicate this condition. Once this bit is set, it will stay set until the descrambler achieves synchronization.
10 Mbps
A descrambler is not used in 10 Mbps mode.
Descrambler Bypass
The descrambler can be bypassed by setting the bypass scrambler/descrambler bit in the PHY MI serial port Configuration 1 register. When this bit is set, the data bypasses the descrambler and goes directly from the TP receiver to the 4B5B decoder.

7.7.7 Twisted Pair Transmitter

Transmitter - 100 Mbps
The TX transmitter consists of MLT-3 encoder, waveform generator and line driver. The MLT-3 encoder converts the NRZ data from the scrambler into a three level MLT-3 code required
by IEEE 802.3. MLT-3 coding uses three levels and converts 1's to transitions between the three levels, and converts 0's to no transitions or changes in level.
10/100 Non-PCI Ethernet Single Chip MAC + PHY
Datasheet
The purpose of the waveform generator is to shape the transmit output pulse. The waveform generator takes the MLT-3 three level encoded waveform and uses an array of switched current sources to control the rise/fall time and level of the signal at the Output. The output of the switched current sources then goes through a low pass filter in order to "smooth" the current output and remove any high frequency components. In this way, the waveform generator preshapes the output waveform transmitted onto the twisted pair cable to meet the pulse template requirements outlined in IEEE 802.3. The waveform generator eliminates the need fo r any external filters on the TP transmit output.
The line driver converts the shaped and smoothed waveform to a curr ent output that can drive 100 meters of category 5 unshielded twisted pair cable or 150 Ohm shielded twisted pair cable.
Transmitter - 10 Mbps
The transmitter operation in 10 Mbps mode is much different than the 100 Mbps transmitter. Even so, the transmitter still consists of a waveform generator and line driver.
The purpose of the waveform generator is to shape the output transmit pulse. The waveform generator consists of a ROM, DAC, dock generator, and filter. The DAC generates a stair-stepped representation of the desired output waveform. The stairstepped DAC output then goes thro ugh a low pass filter in order to "smooth' the DAC output and remove any high frequency components. The DAC values are determined from the ROM outputs; the ROM contents are chosen to shape the pulse to the desired template and are clocked into the DAC at high speed by the clock generator. In this way, the waveform generator preshapes the output waveform to be transmitted onto the twi sted pair cable to meet the pulse template requirements outlined in IEEE 802.3 Clause 14 and also shown in Figure 7.4. The waveshaper replaces and eliminates external filters on the T P transmit output.
The line driver converts the shaped and smoothed waveform to a curr ent output that can drive 100 meters of category 3/4/5 100 Ohm unshielded twisted pair cable or 150 Ohm shielded twisted pair cable tied directly to the TP output pins without any extern al filters. During the idle period, no output signal is transmitted on the TP outputs (except link pulse).
Revision 1.91 (08-18-08) 30 SMSC LAN91C111 REV C
DATASHEET
Loading...
+ 98 hidden pages