SK hynix HMT451R7BFR8A, HMT41GR7BFR8A, HMT41GR7BFR4A, HMT42GR7BFR4A, HMT84GR7BMR4A User Manual

Page 1
240pin DDR3L SDRAM Registered DIMM
DDR3L SDRAM Registered DIMM
Based on 4Gb B-die
HMT451R7BFR8A HMT41GR7BFR8A HMT41GR7BFR4A HMT42GR7BFR4A
HMT84GR7BMR4A
*SK hynix reserves the right to change products or specifications without notice.
Rev. 1.0 /May. 2014 1
Page 2
Revision No. History Draft Date Remark
0.1 Initial Release Mar.2014
1.0 Revision 1.0 Release May.2014
Rev. 1.0 / May. 2014 2
Page 3

Description

SK hynix Registered DDR3L SDRAM DIMMs (Register ed Double Data Rate Synchr onous DRAM Dual In-Line Memory Modules) are low power, high-speed operation memory modules that use DDR3L SDRAM devices. These Registered SDRAM DIMMs are intended for use as main memory when installed in systems such as servers and workstations.

Features

• Power Supply: VDD=1.35V (1.283V to 1.45V)
• VDDQ = 1.35V (1.283V to 1.45V)
• VDDSPD=3.0V to 3.6V
• Backward Compatible with 1.5V DDR3 Memory Module
• 8 internal banks
• Data transfer rates: PC3-14900, PC3-12800, PC3-10600, PC3-8500
• Bi-Directional Differential Data Strobe
• 8 bit pre-fetch
• Burst Length (BL) switch on-the-fly BL8 or BC4(Burst Chop)
• Supports ECC error correction and detection
• On-Die Termination (ODT)
• Temperature sensor with integrated SPD
• Backward compatible with 1.5V DDR3 Memory module.
• This product is in compliance with the RoHS directive.

Ordering Information

Part Number Density Organization Component Composition
HMT451R7BFR8A-H9/PB/RD 4GB 512Mx72 512Mx8(H5TC4G83BFR)*9 1 X
HMT41GR7BFR8A-H9/PB/RD 8GB 1Gx72 512Mx8(H5TC4G83BFR)*18 2 X
HMT41GR7BFR4A-H9/PB/RD 8GB 1Gx72 1Gx4(H5TC4G43BFR)*18 1 X
HMT42GR7BFR4A-H9/PB/RD 16GB 2Gx72 1Gx4(H5TC4G43BFR)*36 2 O
HMT84GR7BMR4A-G7/H9/PB 32GB 4Gx72 DDP 2Gx4(H5TC8G43BMR)*36 4 O
* In order to uninstall FDHS, please contact sales administrator
Rev. 1.0 / May. 2014 3
# of
ranks
FDHS
Page 4

Key Parameters

MT/s Grade
DDR3L-1066 -G7 1.875 7 13.125 13.125 37.5 50.625 7-7-7
DDR3L-1333 -H9 1.5 9
DDR3L-1600 -PB 1.25 11
DDR3L-1866 -Rd 1.07 13
tCK
(ns)
CAS
Latency
(tCK)
tRCD
(ns)
13.5
(13.125)*
13.75
(13.125)*
13.91
(13.125)*
tRP
(ns)
13.5
(13.125)*
13.75
(13.125)*
13.91
(13.125)*
tRAS
(ns)
36
35
34
tRC
(ns)
49.5
(49.125)*
48.75
(48.125)*
47.91
(48.125)*
CL-tRCD-tRP
9-9-9
11-11-11
13-13-13
*SK hynix DRAM devices support optional downbinning to CL11, CL9 and CL7. SPD setting is programmed to match.

Speed Grade

Frequency [Mbps]
Grade
CL6 CL7 CL8 CL9 CL10 CL11 CL12 CL13
-G7 800 1066 1066
-H9 800 1066 1066 1333 1333
Remark
-PB 800 1066 1066 1333 1333 1600
-RD 800 1066 1066 1333 1333 1600 1866

Address Table

4GB(1Rx8) 8GB(1Rx4) 8GB(2Rx8) 16GB(2Rx4) 32GB(4Rx4)
Refresh Method 8K/64ms 8K/64ms 8K/64ms 8K/64ms 8K/64ms
Row Address A0-A15 A0-A15 A0-A15 A0-A15 A0-A15
Column Address A0-A9 A0-A9,A11 A0-A9 A0-A9,A11 A0-A9,A11
Bank Address BA0-BA2 BA0-BA2 BA0-BA2 BA0-BA2 BA0-BA2
Page Size 1KB 1KB 1KB 1KB 1KB
Rev. 1.0 / May. 2014 4
Page 5

Pin Descriptions

Pin Name Description
Num ber
Pin Name Description
CK0 Clock Input, positive line 1 ODT[1:0] On Die Termination Inputs 2 CK0
Clock Input, negative line 1 DQ[63:0] Data Input/Output 64 CK1 Clock Input, positive line 1 CB[7:0] Data check bits Input/Output 8 CK1 Clock Input, negative line 1 DQS[8:0] Data strobes 9
CKE[1:0] Clock Enables 2 DQS[8:0]
DM[8:0]/
RAS
Row Address Strobe 1
DQS[17:9],
TDQS[17:9]
CAS Column Address Strobe 1
DQS[17:9], TDQS[17:9]
WE Write Enable 1 EVENT
S
[3:0] Chip Selects 4 TEST
A[9:0],A11,
A[15:13]
A10/AP Address Input/Autoprecharge 1 A12/BC Address Input/Burst chop 1
BA[2:0] SDRAM Bank Addresses 3
SCL
SDA SPD Data Input/Output 1
SA[2:0] SPD Address Inputs 3
Par_In
Err_Out
Address Inputs 14 RESET
V
DD
V
SS
V
REFDQ
Serial Presence Detect (SPD)
Clock Input
Parity bit for the Address and
Control bus
Parity error found on the
Address and Control bus
1
1
1
V
REFCA
V
V
DDSPD
TT
Data strobes, negative line 9 Data Masks / Data strobes,
Termination data strobes Data strobes, negative line,
Termination data strobes Reserved for optional hardware
temperature sensing Memory bus test tool (Not Con-
nected and Not Usable on DIMMs)
Register and SDRAM control pin 1
Power Supply 22 Ground 59 Reference Voltage for DQ 1
Reference Voltage for CA 1
Termination Voltage 4 SPD Power 1
Num ber
9
9
1
1
Rev. 1.0 / May. 2014 5
Page 6

Input/Output Functional Descriptions

Symbol Type Polarity Function
CK0 IN
CK0
IN
CK1 IN
CK1
IN
CKE[1:0] IN
S
[3:0] IN
ODT[1:0] IN
AS, CAS, WE IN
R
V
REFDQ
V
REFCA
Supply Reference voltage for DQ0-DQ63 and CB0-CB7.
Supply
BA[2:0] IN
A[15:13,
12/BC
,11,
IN
10/AP,[9:0]
DQ[63:0],
CB[7:0]
I/O Data and Check Bit Input/Output pins
DM[8:0] IN
V
DD
, V
SS
V
TT
Supply Power and ground for the DDR SDRAM input buffers and core logic. Supply Termination Voltage for Address/Command/Control/Clock nets.
Positive
Line
Negative
Line
Positive
Line
Negative
Line
Active
High
Active
Low
Active
High
Active
Low
Active
High
Positive line of the differential pair of system clock inputs that drives input to the on­DIMM Clock Driver.
Negative line of the differential pair of system clock inputs that drives the input to the on-DIMM Clock Driver.
Terminated but not used on RDIMMs.
Terminated but not used on RDIMMs.
CKE HIGH activates, and CKE LOW deactivates internal clock signals, a nd device input buffers and output drivers of the SDRAMs. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN (row ACTIVE in any bank)
Enables the command decoders for the associated rank of SDRAM when low and dis­ables decoders when high. When decoders are disabled, new commands are ignored and previous operations continue. Other combinations of these input signals perform unique functions, including disabling all outputs (except CKE and ODT) of the register(s) on the DIMM or accessing internal control wo rds in the register device(s). For modules with two registers, S[3:2]
operate similarly to S[1:0] for the second set of register out-
puts or register control words.
On-Die Termination control signals
When sampled at the positive rising edge of the clock, CAS
, RAS, and WE define the
operation to be executed by the SDRAM.
Reference voltage for A0-A15, BA0-BA2, RAS
, CAS, WE, S0, S1, CKE0, CKE1, Par_In,
ODT0 and ODT1. Selects which SDRAM bank of eight is activated.
BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines mode register is to be accessed during an MRS cycle.
Provided the row address for Active commands and the column address and Auto Precharge bit for Read/Write commands to select one location out of the mem­ory array in the respective bank. A10 is sampled during a Precharge command to deter­mine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected b y BA. A12 is also utiliz ed fo r BL 4/8 identification for ‘’BL on the fly’’ during CAS
command. The address inputs also pro-
vide the op-code during Mode Register Set commands.
Masks write data when high, issued concurrently with input data.
Rev. 1.0 / May. 2014 6
Page 7
Symbol Type Polarity Function
DQS[17:0] I/O
DQS[17:0]
TDQS[17:9] TDQS[17:9]
OUT
I/O
Positive
Edge
Negative
Edge
Positive line of the differential data strobe for input and output data.
Negative line of the differential data strobe for input and output data.
TDQS/TDQS
is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in MR1,DRAM will enable the same termination resistance function on TDQS/TDQS applied to DQS/DQS provide the data mask function and TDQS
. When disabled via mode register A11=0 in MR1, DM/TDQS will
is not used. X4/X16 DRAMs must disable the
TDQS function via mode register A11=0 in MR1
SA[2:0] IN
These signals are tied at the system planar to either V serial SPD EEPROM address range.
SS
or V
This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor
SDA I/O
must be connected from the SDA bus line to V
on the system planar to act as a
DDSPD
pullup.
SCL IN
OUT
EVENT
(open
Active Low
drain)
V
DDSPD
RESET
Supply
IN
This signal is used to clock data into and out of the SPD EEPROM. A resistor may be con­nected from the SCL bus time to V
on the system planar to act as a pullup.
DDSPD
This signal indicates that a thermal event has been d e tected in the thermal sensing device.The system should guarantee the electrical level requirement is met for the EVENT
pin on TS/SPD part.
No pull-up resister is provided on DIMM. Serial EEPROM positive power supply wired to a separate power pin at the connector
which supports from 3.0 Volt to 3.6 Volt (nominal 3.3V) operation. The RESET
pin is connected to the RESET pin on the register and to the RESET pin on
the DRAM.
Par_In IN Parity bit for the Address and Control bus. (“1 “: Odd, “0 “: Even)
Err_Out
OUT (open drain)
Parity error detected on the Address and Control bus. A resistor may be connected from Err_Out
bus line to VDD on the system planar to act as a pull up.
TEST Used by memory bus analysis tools (unused (NC) on memory DIMMs)
to configure the
DDSPD
that is
Rev. 1.0 / May. 2014 7
Page 8

Pin Assignments

Pin #
Front Side
(left 1–60)
1VREFDQ 121
V
2
SS
Pin #
122 DQ4 62 VDD 182 VDD
Back Side
(right 121–180)
V
SS
Pin #
Front Side
(left 61–120)
Pin #
Back Side
(right 181–240)
61 A2 181 A1
3 DQ0 123 DQ5 63 NC, CK1 183 VDD 4 DQ1 124
5
V
SS
125
6DQS0126 7 DQS0 127
V
8
SS
128 DQ6 68 Par_In, NC 188 A0
V
SS
DM0,DQS9,
TDQS9
NC,DQS9
TDQS9
V
SS
64 NC, CK1 184 CK0 65 VDD 185 CK0
,
66 VDD 186 VDD 67 VREFCA 187 EVENT, NC
9 DQ2 129 DQ7 69 VDD 189 VDD
10 DQ3 130
V
11
SS
131 DQ12 71 BA0 191 VDD
V
SS
70 A10 / AP 190 BA1
12 DQ8 132 DQ13 72 VDD 192 RAS 13 DQ9 133
14
V
SS
134
15 DQS1 135 16 DQS1 136
V
17
SS
137 DQ14 77 ODT1, NC 197 VDD
V
SS
DM1,DQS10,
TDQS10
NC,DQS10
TDQS10
V
SS
73 WE 193 S0 74 CAS 194 VDD
,
75 VDD 195 ODT0 76 S1, NC 196 A13
18 DQ10 138 DQ15 78 VDD 198 S3, NC 19 DQ11 139 20
V
SS
140 DQ20 80
SS
79 S2, NC 199
V
SS
200 DQ36
V
21 DQ16 141 DQ21 81 DQ32 201 DQ37 22 DQ17 142
23
24 DQS2
V
SS
143
144
25 DQS2 145 26
V
SS
146 DQ22 86
SS
DM2,DQS11,
TDQS11
NC,DQS11
TDQS11
V
SS
,
82 DQ33 202 83
V
SS
203
84 DQS4 204 85 DQS4 205
V
SS
206 DQ38
DM4,DQS13,
TDQS13
NC,DQS13
TDQS13
V
27 DQ18 147 DQ23 87 DQ34 207 DQ39 28 DQ19 148 29
V
SS
149 DQ28 89
SS
88 DQ35 208
V
SS
209 DQ44
V
30 DQ24 150 DQ29 90 DQ40 210 DQ45
V
31 DQ25 151
SS
91 DQ41 211
V
SS
V
SS
,
V
SS
V
SS
V
SS
NC = No Connect; RFU = Reserved Future Use
Rev. 1.0 / May. 2014 8
Page 9
Pin #
32
Front Side
(left 1–60)
V
SS
33 DQS3 34 DQS3 154
35
V
SS
Pin #
152
153
155 DQ30 95
Back Side
(right 121–180)
DM3,DQS12,
TDQS12
NC,DQS12
TDQS12
,
V
SS
Pin #
92
Front Side
(left 61–120)
V
SS
93 DQS5 213 94 DQS5 214
V
SS
Pin #
212
Back Side
(right 181–240)
DM5,DQS14,
TDQS14
NC,DQS14
TDQS14
215 DQ46
36 DQ26 156 DQ31 96 DQ42 216 DQ47
V
37 DQ27 157 38
V
SS
158 CB4, NC 98
SS
39 CB0, NC 159 CB5, NC 40 CB1, NC 160
41
42 DQS8
V
SS
161
162
43 DQS8 163 44
V
SS
164 CB6, NC 104
V
SS
NC,DM8,DQS17,
TDQS17
NC,DQS17
TDQS17
V
SS
,
97 DQ43 217
V
SS
218 DQ52
99 DQ48 219 DQ53
100 DQ49 220 101
V
SS
221
102 DQS6 222
DM6,DQS15,
TDQS15
NC,DQS15
TDQS15
103 DQS6 223
V
SS
224 DQ54 45 CB2, NC 165 CB7, NC 105 DQ50 225 DQ55 46 CB3, NC 166 47
V
SS
167 NC(TEST) 107
SS
106 DQ51 226
V
SS
227 DQ60
V
48 VTT, NC 168 RESET 108 DQ56 228 DQ61
KEY KEY 109 DQ57 229
49 VTT, NC 169 CKE1, NC 110
50 CKE0 170 V
DD 111 DQS7 231
V
SS
230
DM7,DQS16,
TDQS16
NC,DQS16
TDQS16 51 VDD 171 A15 112 DQS7 232 52 BA2 172 A14 113
V
SS
233 DQ62 53 Err_Out, NC 173 VDD 114 DQ58 234 DQ63 54 V 55 A11 175 A9 116
DD 174 A12 / BC 115 DQ59 235
V
SS
236 VDDSPD 56 A7 176 VDD 117 SA0 237 SA1 57 VDD 177 A8 118 SCL 238 SDA 58 A5 178 A6 119
SA2
239 59 A4 179 VDD 120 VTT 240 VTT 60 VDD 180 A3
,
V
SS
V
SS
V
SS
,
V
SS
V
SS
V
SS
,
V
SS
V
SS
V
SS
NC = No Connect; RFU = Reserved Future Use
Rev. 1.0 / May. 2014 9
Page 10

Registering Clock Driver Specifications

Capacitance Values

Symbol Parameter Conditions Min Typ Max Unit
Input capacitance, Data inputs 1.5 - 2.5 pF
C
I
Input capacitance, CK, CK, FBIN, FBIN (up to DDR3-1600)
1.5 - 2.5 pF
C
Input capacitance, RESET, MIRROR,
IR
QCSEN

Input & Output Timing Requirements

DDR3L-800
Symbol Parameter Conditions
f
clock
f
TEST
t
t
SU
H
Input clock fre-
quency
Input clock fre-
quency
Setup time
Hold time
Application fre-
quency
Test frequency 70 300 70 300 70 300 Mhz
Input valid before
CK/CK
Input to remain
valid after CK/CK
Propagation
t
PDM
delay, single-bit
to output 0.65 1.0 0.65 1.0 0.65 1.0 ns
CK/CK
switching
1066/1333
Min Max Min Max Min Max
300 670 300 810 300 945 Mhz
100 - 50 - 40 - ps
175-125- 75 -ps
VI = VDD or GND; VDD = 1.5v
DDR3L-1600 DDR3L-1866
--3pF
Unit
Output disable
t
DIS
time (1/2-Clock
prelaunch)
Output enable
t
time (1/2-Clock
EN
prelaunch)
Rev. 1.0 / May. 2014 10
to output
Yn/Yn
float
Output driving to
Yn/Yn
0.5 +
tQSK1(min)
0.5 -
tQSK1(max)
-
-
0.5 +
tQSK1(min)
0.5 -
tQSK1(max)
-
-
0.5 +
tQSK1(min)
0.5 -
tQSK1(max)
-ps
-ps
Page 11

On DIMM Thermal Sensor

EVENT SCL
SDA
SA0 SA1
SA2
EVENT SCL
SDA
SA0
SA1 SA2
SPD with
Integrated
TS
The DDR3 SDRAM DIMM temperature is monitored by integrated thermal sensor. The integrated thermal sensor comply with JEDEC “TSE2002av, Serial Presence Detect with Temperature Sensor”.

Connection of Thermal Sensor

Temperature-to-Digital Conversion Performance

Parameter Condition Min Typ Max Unit
Active Range,
< 95°C
A
< 125°C
A
Temperature Sensor Accuracy (Grade B)
75°C < T
Monitor Range,
40°C < T
-20°C < TA < 125°C
Resolution 0.25
Rev. 1.0 / May. 2014 11
- ± 0.5 ± 1.0 °C
- ± 1.0 ± 2.0 °C
- ± 2.0 ± 3.0 °C °C
Page 12

Functional Block Diagram

CB[7:0]
DQS8 DQS8 DM8/DQS17 DQS17
RRASA
RCASA
RS0A
RWEA
PCK0A
PCK0A
RCKE0A
RODT0A
A[N:O]A
Vtt
DQ[31:24]
DQS3 DQS3 DM3/DQS12 DQS12
DQ[23:16]
DQS2 DQS2 DM2/DQS11 DQS11
DQ[15:8]
DQS1 DQS1 DM1/DQS10 DQS10
DQ[7:0]
DQS0 DQS0 DM0/DQS9 DQS9
DQS DQS TDQS TDQS
D8
DQ [7:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS TDQS TDQS
D3
DQ [7:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[N:O]
DQS DQS TDQS TDQS
D2
DQ [7:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[N:O]
DQS DQS TDQS TDQS
D1
DQ [7:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS TDQS TDQS
D0
DQ [7:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A
[N
:O]/BA[N:O]
DQ[39:32]
DQS4 DQS4 DM4/DQS13 DQS13
RRASB
RCASB
RS0B
RWEB
PCK0B
PCK0B
RCKE0B
RODT0B
A[N:O]B
Vtt
DQ[47:40]
DQS5 DQS5 DM5/DQS14 DQS14
DQ[55:48]
DQS6 DQS6 DM6/DQS15 DQS15
DQ[63:56]
DQS7 DQS7 DM7/DQS16 DQS16
DQS DQS TDQS TDQS
D4
DQ [7:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
DQS DQS TDQS TDQS
D5
DQ [7:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[N:O]
DQS DQS TDQS TDQS
D6
DQ [7:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[N:O]
DQS DQS TDQS TDQS
D7
DQ [7:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
/BA[N:O]A
/BA[N:O]B
S0 S1
BA[N:0] A[N:0] RAS
CAS WE
CKE0
ODT0
CK0
CK0
PAR_IN
RS0A
→CS0: SDRAMs D[3:0], D8 RS0B → CS0: SDRAMs D[7:4] RBA[N:0]A → BA[N:0]: SDRAMs D[3:0], D8
RRASA → RAS: SDRAMs D[7:4]
RBA[N:0]A → BA[N:0]: SDRAMs D[7:4] RA[N:0]A → A[N:0]: SDRAMs D[7:4]
RA[N:0]A → A[N:0]: SDRAMs D[3:0], D8
RRASA → RAS: SDRAMs D[3:0], D8
RCASA → CAS: SDRAMs D[7:4]
RCASA →CAS: SDRAMs D[3:0], D8
RWEA → WE: SDRAMs D[7:4]
RWEA → WE: SDRAMs D[3:0], D8
RCKE0B→ CKE0: SDRAMs D[7:4]
RCKE0A→ CKE0: SDRAMs D[3:0], D8
RODT0B → ODT0: SDRAMs D[7:4]
RODT0A → ODT0: SDRAMs D[3:0], D8
PCK0B → CK: SDRAMs D[7:4]
PCK0A → CK: SDRAMs D[3:0], D8
PCK0B→ CK: SDRAMs D[7:4]
PCK0A→ CK: SDRAMs D[3:0], D8
Err_Out
OERR
RESET
RST
RST: SDRAMs D[8:0]
S[3:2], CKE1, ODT1, are NC (Unused register inputs ODT1 and CKE1 have a 330
resistor to ground
1: 2 R E G I S T E R / P
D0–D8
V
DD
V
TT
V
DDSPD
D0–D8
VREFDQ
SPD
VREFCA
V
SS
D0–D8
D0–D8
Note:
1.DQ-to-I/O wiring may be changed within byte.
2.ZQ resistors are 240
Ω±1%.For all other resistor values refer to the
appropriate wiring diagram.
VDDSPD EVENT SCL
SDA
SA0
SPD with
Integrated
TS
SA1 SA2 VSS
VDDSPD
EVENT
SCL
SDA
SA0 SA1 SA2 VSS
Plan to use SPD with Integrated TS of Class B and might be changed on customer’s requests. For more details of SPD and Thermal sensor, please contact local SK hynix sales representative
120
±
1%
CK0 CK0
120
±
1%
L L

4GB, 512Mx72 Module(1Rank of x8)

Rev. 1.0 / May. 2014 12
Page 13

8GB, 1Gx72 Module(1Rank of x4) - page1

RRASA
RCASA
RS0A
RWEA
PCK0A
PCK0A
RCKE0A
RODT0A
A[O:N]A
Vtt
/BA[O:N]A
CB[3:0]
DQS8 DQS8
DQS DQS DM
D8
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
CB[7:4]
DQS17 DQS17 VSS
DQS DQS DM
D17
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
VSS
VSS
VSS
DQ[27:24]
DQS3 DQS3
DQS DQS DM
D3
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
DQ[31:28]
DQS12 DQS12 VSS
DQS DQS DM
D12
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
VSS
VSS
VSS
DQ[19:16]
DQS2 DQS2
DQS DQS DM
D2
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
DQ23:20]
DQS11 DQS11 VSS
DQS DQS DM
D11
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
VSS
VSS
VSS
DQ[11;8]
DQS1 DQS1
DQS DQS DM
D1
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
DQ[15:12]
DQS10 DQS10 VSS
DQS DQS DM
D10
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
VSS
VSS
VSS
DQ[3:0]
DQS0 DQS0
DQS DQS DM
D0
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
DQ[7:4]
DQS9 DQS9 VSS
DQS DQS DM
D9
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
VSS
VSS
VSS
RRASB
RCASB
RS0B
RWEB
PCK0B
PCK0B
RCKE0B
RODT0B
A[O:N]B
Vtt
/BA[O:N]B
DQ[35:32]
DQS4 DQS4
DQS DQS DM
D4
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
DQ[39:36]
DQS13 DQS13 VSS
DQS DQS DM
D13
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
VSS
VSS
VSS
DQ[43:40]
DQS5 DQS5
DQS DQS DM
D5
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
DQ[47:44]
DQS14 DQS14 VSS
DQS DQS DM
D14
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
VSS
VSS
VSS
DQ[51:48]
DQS6 DQS6
DQS DQS DM
D6
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
DQ[55;52]
DQS15 DQS15 VSS
DQS DQS DM
D15
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
VSS
VSS
VSS
DQ[59:56]
DQS7 DQS7
DQS DQS DM
D7
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
DQ[63:60]
DQS16 DQS16 VSS
DQS DQS DM
D16
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[O:N]
VSS
VSS
VSS
D0–D17
V
DD
D0–D17
V
TT
V
DDSPD
D0–D17
VREFDQ
SPD
VREFCA
V
SS
D0–D17
D0–D17
Note:
1. DQ-to-I/O wiring may be changed within a nibble.
2. Unless otherwise noted, resistor values are 15%.
3. See the wiring diagrams for all resistors associated with the com­mand, address and control bus.
4. ZQ resistors are 240%. For all other resistor values refer to the appro­priate wiring diagram.
1
5
VDDSPD EVENT SCL
SDA
SA0
SPD with
Integrated
TS
SA1 SA2 VSS
VDDSPD
EVENT
SCL
SDA
SA0 SA1 SA2 VSS
Plan to use SPD with Integrated TS of Class B and might be changed on customer’s requests. For more details of SPD and Thermal sensor, please contact local SK hynix sales representative
Rev. 1.0 / May. 2014 13
Page 14

8GB, 1Gx72 Module(1Rank of x4) - page2

S0
S1 BA[N:0] A[N:0] RAS
CAS WE
CKE0 ODT0
CK0
CK0
PAR_IN
RS0A
→CS0: SDRAMs D[3:0], D[12:8], D17
RS0B → CS0: SDRAMs D[7:4], D[16:13]
RRASB → RAS: SDRAMs D[7:4], D[16:13]
RBA[N:0]B → BA[N:0]: SDRAMs D[7:4], D[16:13]
RBA[N:0]A → BA[N:0]: SDRAMs D[3:0], D[12:8], D17
RRASA → RAS: SDRAMs D[3:0], D[12:8], D17
RCASB → CAS: SDRAMs D[7:4], D[16:13]
RCASA →CAS: SDRAMs D[3:0], D[12:8], D17
RWEB→ WE: SDRAMs D[7:4], D[16:13]
RWEA → WE: SDRAMs D[3:0], D[12:8], D17
RCKE0B→ CKE0: SDRAMs D[7:4], D[16:13]
RCKE0A→ CKE0: SDRAMs D[3:0], D[12:8], D17
RODT0B → ODT0: SDRAMs D[7:4], D[16:13]
RODT0A → ODT0: SDRAMs D[3:0], D[12:8]. D17
PCK0B → CK: SDRAMs D[7:4]
PCK0A → CK: SDRAMs D[3:0], D8
PCK0B→ CK: SDRAMs D[7:4]
PCK0A→ CK: SDRAMs D[3:0], D8
Err_Out
OERR
RESET
RST
RST: SDRAMs D[17:0]
1:2 R
E
G
I S T E R / P
RA[N:0]B → A[N:0]: SDRAMs D[7:4], D[16:13]
RA[N:0]A → A[N:0]: SDRAMs D[3:0], D[12:8], D17
L
L
* S[3:2], CKE1, ODT1, CK1 and CK1 ar e NC (Unused register inputs ODT1 and C K E 1 h ave a 330 resistor to ground.)
RS1A → CS1: SDRAMs D[12:9], D17 RS1B → CS1: SDRAMs D[16:13]
Rev. 1.0 / May. 2014 14
Page 15

8GB, 1Gx72 Module(2Rank of x8) - page1

DQS DQS TDQS TDQS
D17
DQ [7:0] ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
RRASA
RCASA
RS0A
RWEA
PCK0A
PCK0A
RCKE0A
RODT0A
A[N:O]A
Vtt
/BA[N:O]A
RS1A
PCK1A
PCK1A
RCKE1A
RODT1A
DQ[31:24]
DQS3 DQS3 DM3/DQS12 DQS12
DQS DQS TDQS TDQS
D3
DQ [7:0] ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS TDQS TDQS
D12
DQ [7:0] ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQ[23:16]
DQS2 DQS2 DM2/DQS11 DQS11
DQS DQS TDQS TDQS
D2
DQ [7:0] ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS TDQS TDQS
D11
DQ [7:0] ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQ[15:8]
DQS1 DQS1 DM1/DQS10 DQS10
DQS DQS TDQS TDQS
D1
DQ [7:0] ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[N:O]
DQS DQS TDQS TDQS
D10
DQ [7:0] ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[N:O]
DQ[7:0]
DQS0 DQS0 DM0/DQS9 DQS9
DQS DQS TDQS TDQS
D0
DQ [7:0] ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS TDQS TDQS
D9
DQ [7:0] ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
CB[7:0]
DQS8 DQS8 DM8/DQS17 DQS17
DQS DQS TDQS TDQS
D8
DQ [7:0] ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS TDQS TDQS
D13
DQ [7:0] ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
RRASB
RCASB
RS0B
RWEB
PCK0B
PCK0B
RCKE0B
RODT0B
A[N:O]B
Vtt
/BA[N:O]B
RS1B
PCK1B
PCK1B
RCKE1B
RODT1B
DQ[47:40]
DQS5 DQS5 DM5/DQS14 DQS14
DQS DQS TDQS TDQS
D5
DQ [7:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS TDQS TDQS
D14
DQ [7:0] ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQ55:48]
DQS6 DQS6 DM6/DQS15 DQS15
DQS DQS TDQS TDQS
D6
DQ [7:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS TDQS TDQS
D15
DQ [7:0] ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQ[63:56]
DQS7 DQS7 DM7/DQS16 DQS16
DQS DQS TDQS TDQS
D7
DQ [7:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS TDQS TDQS
D16
DQ [7:0] ZQ
RAS
CASCSWECKCK
CKE
ODT
A[O:N]/BA[N:O]
DQ[39:32]
DQS4 DQS4 DM4/DQS13 DQS13
DQS DQS TDQS TDQS
D4
DQ [7:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D0–D17
V
DD
D0–D17
V
TT
V
DDSPD
D0–D17
VREFDQ
Serial PD
VREFCA
V
SS
D0–D17
D0–D17
Note:
1. DQ-to-I/O wiring may be changed within a byte.
2. Unless otherwise noted, resistor values are 15Ω±5%.
3. ZQ resistors are 240Ω±1%. For all other resistor values refer to the appropriate wiring diagram.
4. See the wiring diagrams for all resistors associated with the command, address and control bus.
VDDSPD EVENT SCL SDA
SA0
SPD with
Integrated
TS
SA1 SA2 VSS
VDDSPD
EVENT
SCL
SDA
SA0 SA1 SA2 VSS
Plan to use SPD with Integrated TS of Class B and might be changed on customer’s requests. For more details of SPD and Thermal sensor, please contact local SK hynix sales representative
Rev. 1.0 / May. 2014 15
Page 16

8GB, 1Gx72(2Rank of x8) - page2

S0 S1
BA[N:0]
A[N:0] RAS
CAS WE
CKE0
ODT0
CK0
CK0
PAR_IN
RS0A
→CS0: SDRAMs D[3:0], D8
RS0B → CS0: SDRAMs D[7:4] RS1A → CS1: SDRAMs D[12:9], D17
RRASB → RAS: SDRAMs D[7:4], D[16:13]
RS1B → CS1: SDRAMs D[16:13] RBA[N:0]B → BA[N:0]: SDRAMs D[7:4], D[16:13]
RBA[N:0]A → BA[N:0]: SDRAMs D[3:0], D[12:8], D17
RRASA → RAS: SDRAMs D[3:0], D[12:8], D17
RCASB → CAS: SDRAMs D[7:4], D[16:13]
RCASA →CAS: SDRAMs D[3:0], D[12:8], D17
RWEB→ WE: SDRAMs D[7:4], D[16:13]
RWEA → WE: SDRAMs D[3:0], D[12:8], D17
RCKE0B→ CKE0: SDRAMs D[7:4]
RCKE0A→ CKE0: SDRAMs D[3:0], D8
RODT0B → ODT0: SDRAMs D[7:4]
RODT0A → ODT0: SDRAMs D[3:0], D8
PCK0B → CK: SDRAMs D[7:4]
PCK0A → CK: SDRAMs D[3:0], D8
PCK0B→ CK: SDRAMs D[7:4]
PCK0A→ CK: SDRAMs D[3:0], D8
Err_Out
OERR
RESET
RST
RST : SDRAMs D[17:0]
1:2
R E G I S T E R / P
RCKE1B→ CKE1: SDRAMs D[16:13]
RCKE1A→ CKE1: SDRAMs D[12:9], D17
ODT1
RODT1A
ODT1: SDRAMs D[16:13]
RODT1A → ODT1: SDRAMs D[12:9], D17
CKE1
RA[N:0]B
A[N:0]: SDRAMs D[7:4], D[16:13]
RA[N:0]A → A[N:0]: SDRAMs D[3:0], D[12:8], D17
PCK1B → CK: SDRAMs D[16:13]
PCK1A → CK: SDRAMs D[12:9], D17
PCK1B→ CK: SDRAMs D[16:13
]
PCK1A→ CK: SDRAMs D[12:9], D17
L L
* S[3:2], CK1 and CK1 are NC
S[3:2] NC
120
±5%
CK1 CK1
120
±5%
Rev. 1.0 / May. 2014 16
Page 17

16GB, 2Gx72 Module(2Rank of x4) - page1

RRASA
RCASA
RS0A
RWEA
PCK0A
PCK0A
RCKE0A
RODT0A
A[O:N]A
/BA[O:N]A
CB[7:4]
DQS17
DQS17
DQS DQS DM
D17
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D35
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[31:28]
DQS12
DQS12
DQS DQS DM
D12
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS
D30
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[23:20]
DQS11
DQS11
DQS DQS DM
D11
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D29
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[15:12]
DQS10
DQS10
DQS DQS DM
D10
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D28
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[3:0]
DQS0 DQS0
DQS DQS DM
D0
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D18
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
Vtt
CB[3:0]
DQS8 DQS8
DQS DQS DM
D8
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D26
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[27:24]
DQS3 DQS3
DQS DQS DM
D3
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS
D21
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[19:16]
DQS2 DQS2
DQS DQS DM
D2
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D20
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[11:8]
DQS1 DQS1
DQS DQS DM
D1
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D19
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[7:4]
DQS9 DQS9
DQS DQS DM
D9
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D27
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
RS1A
RCKE1A
R0DT1A
DM DM
Vtt
RRASA
RCASA
RS0A
RWEA
PCK0A
PCK0A
RCKE0A
RODT0A
A[O:N]A
/BA[O:N]A
RS
1A
RCKE1A
R0DT1A
PCK1
A
PCK1A
PCK1A
PCK1A
Rev. 1.0 / May. 2014 17
Page 18

16GB, 2Gx72 Module(2Rank of x4) - page2

D0–D35
V
DD
D0–D35
V
TT
V
DDSPD
D0–D35
VREFDQ
SPD
VREFCA
V
SS
D0–D35
D0–D35
Note:
1. DQ-to-I/O wiring may be changed within a nibble.
2. See wiring diagrams for all resistors values.
3. ZQ pins of each SDRAM are connected to individual RZQ resistors (240+/-1%) ohms.
VDDSPD EVENT SCL
SDA
SA0
SPD with
Integrated
TS
SA1 SA2 VSS
VDDSPD
EVENT
SCL
SDA
SA0 SA1 SA2 VSS
RRASB
RCASB
RS0B
RWEB
PCK0B
PCK0B
RCKE0B
RODT0B
A[N:O]B
/BA[N:O]B
DQ[47:44]
DQS14
DQS14
DQS DQS DM
D14
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D32
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQS4 DQS4
DQS DQS DM
D4
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS
D22
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQS16
DQS16
DQS DQS DM
D16
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D34
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQS7 DQS7
DQS DQS DM
D7
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D25
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
Vtt
DQ[39:36]
DQS13 DQS13
DQS DQS DM
D13
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D31
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[43:40]
DQS5 DQS5
DQS DQS DM
D5
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS
D23
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[55:52]
DQS15 DQS15
DQS DQS DM
D15
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D33
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
DQ[51:48]
DQS6 DQS6
DQS DQS DM
D6
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D24
DQ [3:0]
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
RS1B
RCKE1B
R0DT1B
DM DM
Vtt
RRASB
RCASB
RS0B
RWEB
PCK0B
PCK0B
RCKE0B
RODT0B
A[N:O]B
/BA[N:O]B
RS
1B
RCKE1B
R0DT1B
PCK1
B
PCK1B
PCK1B
PCK1B
DQ[35:32]
DQ[63:60]
DQ[59:56]
Plan to use SPD with Integrated TS of Class B and might be changed on customer’s requests. For more details of SPD and Thermal sensor, please contact local SK hynix sales representative
Rev. 1.0 / May. 2014 18
Page 19

16GB, 2Gx72 Module(2Rank of x4) - page3

S0 S1
BA[N:0]
A[N:0] RAS
CAS WE
CKE0
ODT0
CK0
CK0
PAR_IN
RS0A
→CS0: SDRAMs D[3:0], D[12:8], D17
RS0B → CS0: SDRAMs D[7:4], D[16:13] RS1A → CS1: SDRAMs D[21:18], D[30:26], D35
RRASB → RAS: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31 ]
RS1B → CS1: SDRAMs D[25:22], D[34:31] RBA[N:0]B → BA[N:0]: SDRAMs D[7:4], D[16:13], D[25:22], D[3 4:31 ]
RBA[N:0]A → BA[N:0]: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35
RRASA → RAS: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35
RCASB → CAS: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
RCASA →CAS: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35
RWEB→ WE: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
RWEA → WE: SDRAMs D[3:0], D[12:8], D[21:17], D[30:2 6], D35
RCKE0B→ CKE0: SDRAMs D[7:4], D[16:13]
RCKE0A→ CKE0: SDRAMs D[3:0], D[12:8], D17
RODT0B → ODT0: SDRAMs D[7:4], D[16:13]
RODT0A → ODT0: SDRAMs D[3:0], D[12:8], D17
PCK0B → CK: SDRAMs D[7:4], D[16:13]
PCK0A → CK: SDRAMs D[3:0], D[12:8], D17
PCK0B→ CK: SDRAMs D[7:4], D[16:13]
PCK0A→ CK: SDRAMs D[3:0], D[12:8], D17
Err_Out
RESET RST
RST : SDRAMs D[35:0]
1:2
R E G I S T E R / P
RCKE1B→ CKE1: SDRAMs D[25:22], D[34:31]
RCKE1A→ CKE1: SDRAMs D[21:18], D[30:26], D35
ODT1
RODT1A
ODT1: SDRAMs D[25:22], D[34:31]
RODT1A → ODT1: SDRAMs D[21:18], D[30:26], D35
CKE1
RA[N:0]B
A[N:0]: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
RA[N:0]A → A[N:0]: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35
PCK1B → CK: SDRAMs D[25:22], D[34:31]
PCK1A → CK: SDRAMs D[21:18], D[30:26], D35
PCK1B→ CK: SDRAMs D[25:22], D[34:31]
PCK1A→ CK: SDRAMs D[21:18], D[30:26], D35
L L
* S[3:2], CK1 and CK1 are NC
CK1 CK1
120
±5%
Rev. 1.0 / May. 2014 19
Page 20

32GB, 4Gx72 Module(4Rank of x4) - page1

ZQ
ARRASA
ARCASA
ARS0A
ARWEA
APCK0A
APCK0A
ARCKE0A
ARODT0A
ARA[N:O]A
Vtt
/ARBA[N:O]A
CB[3:0]
DQS8
DQS8
DQS DQS DM
D9
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D8
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
D7
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D6
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D5
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D4
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D3
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D2
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D1
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D0
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
BRRASA
BRCASA
BRS2A
BRWEA
BPCK0A
BPCK0A
BRCKE0A
BRODT1A
BRA[N:O]A
/BRBA[N:O]A
DQS DQS DM
D45
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D44
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D47
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D46
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D49
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D48
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D51
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D50
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D53
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D52
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSSVSSVSSVSS
ARS1A
ARCKE1A
VDD
BRS3A
BRCKE1A
VDD
DQ[27:24]
DQS3
DQS3
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQ
VSS
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQVSSVSSVSSVSS
DQ[19:16]
DQS2
DQS2
DQS DQS DM DQ [3:0]
DQS DQS DM DQ [3:0]
ZQ
VSS
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQVSSVSSVSSVSS
DQ[11:8]
DQS1
DQS1
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQ
VSS
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQVSSVSSVSSVSS
ZQ
DQ[3:0]
DQS0
DQS0
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQ
VSS
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQVSSVSSVSSVSS
Rev. 1.0 / May. 2014 20
Page 21

32GB, 4Gx72 Module(4Rank of x4) - page2

ZQ
ARRASA
ARCASA
ARS0A
ARWEA
APCK0A
APCK0A
ARCKE0A
ARODT0A
ARA[N:O]A
Vtt
/ARBA[N:O]A
CB[7:4]
DQS17
DQS17
DQS DQS DM
D27
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D26
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
D25
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D24
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D23
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D22
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D21
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D20
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D19
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D18
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
BRRASA
BRCASA
BRS2A
BRWEA
BPCK0A
BPCK0A
BRCKE0A
BRODT1A
BRA[N:O]A
/BRBA[N:O]A
DQS DQS DM
D63
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D62
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D65
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D64
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D67
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D66
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D69
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D68
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D71
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D70
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSSVSSVSSVSS
ARS1A
ARCKE1A
VDD
BRS3A
BRCKE1A
VDD
DQ[31:28]
DQS12 DQS12
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQ
VSS
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQVSSVSSVSSVSS
DQ[23:20]
DQS11 DQS11
DQS DQS DM DQ [3:0]
DQS DQS DM DQ [3:0]
ZQ
VSS
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQVSSVSSVSSVSS
DQ[11:8]
DQS10 DQS10
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQ
VSS
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQVSSVSSVSSVSS
ZQ
DQ[7:4]
DQS9
DQS9
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQ
VSS
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQVSSVSSVSSVSS
Rev. 1.0 / May. 2014 21
Page 22

32GB, 4Gx72 Module(4Rank of x4) - page3

ZQ
ARRASB
ARCASB
ARS0B
ARWEB
APCK0B
APCK0B
ARCKE0B
ARODT0B
ARA[N:O]B
Vtt
/ARBA[N:O]B
DQ[35:32]
DQS4
DQS4
DQS DQS DM
D11
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D10
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
D13
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D12
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D15
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D14
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D17
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D16
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
BRRASB
BRCASB
BRS2B
BRWEB
BPCK0B
BPCK0B
BRCKE0B
BRODT1B
BRA[N:O]B
/BRBA[N:O]B
DQS DQS DM
D13
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D42
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D41
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D40
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D39
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D38
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D37
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D36
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSSVSSVSSVSS
ARS1B
ARCKE1B
VDD
BRS3B
BRCKE1B
VDD
DQ[43:40]
DQS5
DQS5
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQ
VSS
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQVSSVSSVSSVSS
DQ[51:48]
DQS6
DQS6
DQS DQS DM DQ [3:0]
DQS DQS DM DQ [3:0]
ZQ
VSS
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQVSSVSSVSSVSS
DQ[59:56
DQS7
DQS7
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQ
VSS
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQVSSVSSVSSVSS
ZQ
Rev. 1.0 / May. 2014 22
Page 23

32GB, 4Gx72 Module(4Rank of x4) - page4

ZQ
ARRASB
ARCASB
ARS0B
ARWEB
APCK0B
APCK0B
ARCKE0B
ARODT0B
ARA[N:O]B
Vtt
/ARBA[N:O]B
DQ[39:36]
DQS13 DQS13
DQS DQS DM
D29
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D28
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSS
D31
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D30
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D33
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D32
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D35
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D34
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
BRRASB
BRCASB
BRS2B
BRWEB
BPCK0B
BPCK0B
BRCKE0B
BRODT1B
BRA[N:O]B
/BRBA[N:O]B
DQS DQS DM
D61
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
DQS DQS DM
D60
DQ [3:0]
ZQ
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D59
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D58
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D57
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D56
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D55
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
D54
RAS
CASCSWECKCK
CKE
ODT
A[N:O]/BA[N:O]
VSSVSSVSSVSS
ARS1B
ARCKE1B
VDD
BRS3B
BRCKE1B
VDD
DQ[47:44]
DQS14 DQS14
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQ
VSS
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQVSSVSSVSSVSS
DQ[55:52]
DQS15 DQS15
DQS DQS DM DQ [3:0]
DQS DQS DM DQ [3:0]
ZQ
VSS
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQVSSVSSVSSVSS
DQ[63:60]
DQS16 DQS16
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQ
VSS
DQS DQS DM DQ [3:0]
ZQ
DQS DQS DM DQ [3:0]
ZQVSSVSSVSSVSS
ZQ
D0–D71
V
DD
V
TT
V
DDSPD
D0–D71
VREFDQ
SPD
VREFCA
V
SS
D0–D71
D0–D71
Note:
1. DQ-to-I/O wiring may be change d within a nibble.
2. Unless otherwise noted, resistor values are 15 Ohms ±5%.
3. See the wiring diagrams for all resistors associated with the command, address and control bus.
4. ZQ resistors are 240 Ohms ±1%. For all other resistor values refer to the appropriate wiring diagram.
VDDSPD EVENT SCL SDA
SA0
SPD with
Integrated
TS
SA1 SA2 VSS
VDDSPD
EVENT
SCL
SDA
SA0 SA1 SA2 VSS
Plan to use SPD with Integrated TS of Class B and might be changed on customer’s requests. For more details of SPD and Thermal sensor, please contact local Hynix sales representative
Rev. 1.0 / May. 2014 23
Page 24

32GB, 4Gx72 Module(4Rank of x4) - page5

CK1 CK1
120
±5%
S2
S3
BA[N:0] A[N:0]
RAS
CAS WE
CKE0
CK0
CK0
PAR_IN
BRS2A
→CS1: SDRAMs D45,D47,D49,D51,D53
BRS2B → CS1: SDRAMs D37,D39,D41,D43,
BRS3A → CS0: SDRAMs D44.D46,D48,D50,D52,
BRRASB → RAS: SDRAMs D[43:36],D[61:54]
BRS3B → CS0: SDRAMs D36,D38,D40,D42,
BRBA[N:0]B→BA[N:0]: SDRAMs D[43:36],D[61:54]
BRBA[N:0]A→BA[N:0]: SDRAMs D[53:44],D[71:62]
BRRASA → RAS: SDRAMs D[53:44],D[71:62]
BRCASB → CAS: SDRAMs D[43:36],D[61:54]
BRCASA →CAS: SDRAMs D[53:44],D[71:62]
BRWEB→ WE: SDRAMs D[43:36],D[61:54]
BRWEA → WE: SDRAMs D[53:44],D[71:62]
BRCKE0B→ CKE1: SDRAMs D37,D39,D41,D43,
BRCKE0A→ CKE1: SDRAMs D45,D47,D49,D51,D53,
BRODT1B → ODT0: SDRAMs D37,D39,D41,D43
BRODT1A→ODT1: SDRAMs D45,D47,D49,D51,D53
BPCK0B → CK: SDRAMs D[43:36]
BPCK0A → CK: SDRAMs D[53:44]
BPCK0B→ CK: SDRAMs D[43:36]
BPCK0A→ CK: SDRAMs D[53:44]
Err_Out
RESET RST
1:2
R E G I S T E R / P
BRCKE1B→ CKE0: SDRAMs D36,D38,D40,D42,
BRCKE1A→ CKE0: SDRAMs D44.D46,D48,D50,D52,
ODT1
CKE1
BRA[N:0]B
A[N:0]: SDRAMs D[43:36],D[61:54]
BRA[N:0]A→ A[N:0]: SDRAMs D[55:44],D[71:62]
BPCK1B → CK: SDRAMs D[61:54]
BPCK1A → CK: SDRAMs D[71:62]
BPCK1B→ CK: SDRAMs D[61:54]
BPCK1A→ CK: SDRAMs D[71:62]
L L
B
D63,D65,D67,D69,D71
D55,D57,D59,D61
D62,D64,D66,D68,D70
D54,D56,D58,D60
D63,D65,D67,D69,D71
D55,D57,D59,D61
D62,D64,D66,D68,D70
D54,D56,D58,D60
D63,D65,D67,D69,D71
D55,D57,D59,D61
120
±5%
S0
S1
BA[N:0] A[N:0]
RAS
CAS WE
CKE0
CK0
CK0
PAR_IN
ARS0A
→CS1: SDRAMs D1,D3,D5,D7 D9,
ARS0B → CS1: SDRAMs D11, D13, D15, D17,
ARS1A → CS0: SDRAMs D0, D2, D4, D6, D8,
ARRASB → RAS: SDRAMs D[17:10],D[35:28]
ARS1B → CS0: SDRAMs D10, D12, D14, D16,
ARBA[N:0]B→BA[N:0]: SDRAMs D[17:10],D[35 :28]
ARBA[N:0]A→BA[N:0]: SDRAMs D[9:0],D[27:18]
ARRASA → RAS: SDRAMs D[9:0],D[27:18]
ARCASB → CAS: SDRAMs D[17:10],D[35:28]
ARCASA →CAS: SDRAMs D[9:0],D[27:18]
ARWEB→ WE: SDRAMs D[17:10],D[35:28]
ARWEA → WE: SDRAMs D[9:0],D[27:18]
ARCKE0B→ CKE1: SDRAMs D11,D13,D15,D17,
ARCKE0A→ CKE1: SDRAMs D1,D3,D5,D7,D9,
ARODT0B → ODT0: SDRAMs D11,D13,D15,D17,
ARODT0A → ODT1: SDRAMs D1,D3,D5,D7,D9,
APCK0B → CK: SDRAMs D[17:10]
APCK0A → CK: SDRAMs D[9:0]
APCK0B→ CK: SDRAMs D[17:10]
APCK0A→ CK: SDRAMs D[9:0]
Err_Out
RESET RST
RST : SDRAMs D[35:0]
1:2
R E G I S T E R / P
ARCKE1B→ CKE0: SDRAMs D10,D12,D14,D16,
ARCKE1A→ CKE0: SDRAMs D0,D2,D4,D6,D8,
ODT0
CKE1
ARA[N:0]B
A[N:0]: SDRAMs D[17:10],D[35:28]
ARA[N:0]A→ A[N:0]: SDRAMs D[9:0],D[27:18]
APCK1B → CK: SDRAMs D[35:28]
APCK1A → CK: SDRAMs D[27:18]
APCK1B→ CK: SDRAMs D[35:28]
APCK1A→ CK: SDRAMs D[27:18]
L L
A
D19, D21, D23, D25, D27
D29, D31, D33, D35
D18, D20, D22, D24, D26
D28, D30, D32, D34
D19, D21, D23, D25, D27
D29, D31, D33, D35
D18, D20, D22, D24, D26
D28, D30, D32, D34
D19, D21, D23, D25, D27
D29, D31, D33, D35
120
±5%
1. CK0 and CK0 are differentially terminated with a single
120 Ohms ±5% resistor.
2.
CK1 and CK1 are differentially terminated with a single
120 Ohms ±5% resistor, but is not used.
3. Unused register inputs ODT1 for Register A and ODT0 for Register B are tied to ground.
4. The module drawing on this page is not drawn to scale.
Rev. 1.0 / May. 2014 24
Page 25

Absolute Maximum Ratings

Absolute Maximum DC Ratings

Absolute Maximum DC Ratings
Symbol Parameter Rating Units Notes
VDD
VDDQ
, V
V
IN
T
Notes:
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rat ing conditions for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must not be greater than
0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.
Voltage on VDD pin relative to Vss Voltage on VDDQ pin relative to Vss Voltage on any pin relative to Vss
OUT
Storage Temperature
STG

DRAM Component Operating Temperature Range

Temperature Range
- 0.4 V ~ 1.80 V V 1,3
- 0.4 V ~ 1.80 V V 1,3
- 0.4 V ~ 1.80 V V 1
-55 to +100
o
C1, 2
-
Symbol Parameter Rating Units Notes
T
OPER
Notes:
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For mea­surement conditions, please refer to the JEDEC document JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. Dur­ing operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions.
3. Some applications require operation of the DRAM in the Extended Temperature Range between 85oC and 95oC case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:
Normal Operating Temperature Range Extended Temperature Range
a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It
is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Rang e. Please refer to the DIMM SPD for option availability
b. If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to use the
Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b). DDR3 SDRAMs support Extended Temperature Range and please refer to component datasheet and/or the DIMM SPD for tFEFI requirements in the Extended Temperature Range.
0 to 85
85 to 95
o
C 1,2
o
C1,3
Rev. 1.0 / May. 2014 25
Page 26

AC & DC Operating Conditions

Recommended DC Operating Conditions

Recommended DC Operating Conditions - DDR3L (1.35V) operation
Symbol Parameter
VDD
VDDQ
Notes:
1. Maximum DC value may not be greater than 1.425V. The DC value is the linear average of VDD/VDDQ (t) over a very long period of time (e.g., 1 sec).
2. If maximum limit is exceeded, input levels shall be governed by DDR3 specifications.
3. Under these supply voltages, the device operates to this DDR3L specification.
4. Once initialized for DDR3L operation, DDR3 operation may only be used if the device is in reset while VDD and VDDQ are changed for DDR3 operation (see Figure 0).
Supply Voltage Supply Voltage for Output
Min. Typ. Max.
1.283 1.35 1.45 V 1,2,3,4
1.283 1.35 1.45 V 1,2,3,4
Rating
Units Notes
Recommended DC Operating Conditions - - DDR3 (1.5V) operation
Symbol Parameter
VDD
VDDQ
Notes:
1. If minimum limit is exceeded, input levels shall be governed by DDR3L specifications.
2. Under 1.5V operation, this DDR3L device operates to the DDR3 specifications under the same speed timings as defined for this device.
3. Once initialized for DDR3 operation, DDR3L operation may only be used if the device is in reset while VDD and VDDQ are changed for DDR3L operation (see Figure 0).
Supply Voltage Supply Voltage for Output
Min. Typ. Max.
1.425 1.5 1.575 V 1,2,3
1.425 1.5 1.575 V 1,2,3
Rating
Units Notes
Rev. 1.0 / May. 2014 26
Page 27
NOTE 1: From time point “Td” until “Tk” NOP or DES commands must be applied between MRS and ZQCL commands.
Ta
CK,CK#
RESET#
Tb Tc Td Te Tf Tg Th Ti Tj Tk
MRS1) 1)MRS MRS
CKE
DONT CARE
READ MRS
T = 500us
COMMAND
ODT
BA
RTT
MR3 MR1 MR0READ MR2
READ Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW
VDD, VDDQ (DDR3)
VDD, VDDQ (DDR3L)
ZQCL VALID
VALID
VALID
VALID
Tmin = 200us
Tmin = 10ns
Tmin = 10ns
tCKSRX
Tmin = 10ns
tIS
tIS tIS
tXPR tMRD tMRD tMRD tMOD tZQinit
tDLLK
TIME BREAK
Figure 0 - VDD/VDDQ Voltage Switch Between DDR3L and DDR3
Rev. 1.0 / May. 2014 27
Page 28

AC & DC Input Measurement Levels

AC and DC Logic Input Levels for Single-Ended Signals AC and DC Input Levels for Single-Ended Command and Address Signals
Single Ended AC and DC Input Levels for Command and Address
Symbol Parameter
VIH.CA(DC90) DC input logic high Vref + 0.09 VDD Vref + 0.09 VDD Vref + 0.09 VDD V 1
VIL.CA(DC90) DC input logic low VSS Vref - 0.09 VSS Vref - 0.09 VSS Vref - 0.09 V 1
VIH.CA(AC160) AC input logic high Vref + 0. 160 Note2 Vref + 0.160 Note2 - - V 1,2,5
VIL.CA(AC160) AC input logic low Note2 Vref - 0.160 Note2 Vref - 0.160 - - V 1,2,5
VIH.CA(AC135) AC Input logic high Vref + 0.135 Note2 Vref + 0.135 Note2 Vref + 0.135 Note2 V 1,2,5
VIL.CA(AC135) AC input logic low Note2 Vref - 0.135 Note2 Vref - 0.135 Note2 Vref - 0.135 V 1,2,5
VIH.CA(AC125) AC Input logic high - - - - Vref + 0.125 Note2 V 1,2,5
VIL.CA(AC125) AC input logic low - - - - Note2 Vref - 0.125 V 1,2,5
Reference Voltage for
V
RefCA(DC
Notes:
)
ADD, CMD inputs
1. For input only pins except RESET, Vref = VrefCA (DC).
2. Refer to "Overshoot and Undershoot Specifications" on page 41.
3. The ac peak noise on V ence: approx. +/- 13.5 mV).
4. For reference: approx. VDD/2 +/- 13.5 mV
5. These levels apply for 1.35 volt (see table above) operation only. If the device is operated at 1.5V (table "Single Ended AC and DC Input Levels for DQ a nd DM" on page 29), the r espective levels in JESD7 9-3 (VIH/L.CA(DC100) , VIH/L.CA(AC175), VIH/L.CA(AC150), VIH/L.CA(AC135), VIH/L.CA(AC125) etc.) apply. The 1.5V levels (VIH/ L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), VIH/L.CA(AC135), VIH/L.CA(AC125) etc.) do not apply when the device is operated in the 1.35 voltage range.
Ref
DDR3L-800/1066 DDR3L-1333/1600 DDR3L-1866
Min Max Min Max Min Max
0.49 * VDD 0.51 * VDD 0.49 * VDD 0.51 * VDD 0.49 * VDD 0.51 * VDD V 3,4
may not allow V
to deviate from V
Ref
RefCA(DC)
by more than +/-1% VDD (for refer-
Unit Notes
Rev. 1.0 / May. 2014 28
Page 29

AC and DC Input Levels for Single-Ended Signals

DDR3 SDRAM will support two Vih/Vil AC levels for DDR3-800 and DDR3-1066s specified in table below. DDR3 SDRAM will also support corresponding tDS values (Table 43 and Table 50 in “DDR3L Device Opera-
tion”) as well as derating tables Table 46 in “DDR3L Device Operation” depending on Vih/Vil AC levels.
Single Ended AC and DC Input Levels for DQ and DM
Symbol Parameter
Unit Notes
Min Max Min Max Min Max
VIH.DQ(DC90) DC input logic high Vref + 0.09 VDD Vref + 0.09 VDD Vref + 0.09 VDD V 1 VIL.DQ(DC90) DC input logic low VSS Vref - 0.09 VSS Vref - 0.09 VSS Vref - 0.09 V 1
VIH.DQ(AC160) AC input logic high Vref + 0.160 Note2 - - - - V 1, 2, 5
VIL.DQ(AC160) AC input logic low Note2 Vref - 0.160 - - - - V 1, 2, 5
VIH.DQ(AC135) AC Input logic high Vref + 0.135 Note2 Vref + 0.135 Note2 - - V 1, 2, 5
VIL.DQ(AC135) AC input logic low Note2 Vref - 0.135 Note2 Vref - 0.135 - - V 1, 2, 5
VIH.DQ(AC130)AC Input logic high----Vref + 0.130Note2V1, 2, 5
VIL.DQ(AC130)AC input logic low----Note2Vref - 0.130V1, 2, 5
DDR3L-800/1066 DDR3L-1333/1600 DDR3L-1866
Reference Voltage
V
RefDQ(DC
)
for DQ, DM inputs
0.49 * VDD 0.51 * VDD 0.49 * VDD 0.51 * VDD 0.49 * VDD 0.51 * VDD V 3, 4
Notes:
1. Vref = VrefDQ (DC).
2. Refer to "Overshoot and Undershoot Specifications" on page 41.
3. The ac peak noise on V
may not allow V
Ref
to deviate from V
Ref
RefDQ(DC)
by more than +/-1% VDD (for reference:
approx. +/- 13.5 mV). 4. For reference: approx. VDD/2 +/- 13.5 mV
4. For reference: approx. VDD/2 +/- 13.5 mV
5. These levels apply for 1.35 volt (table "Single Ended AC and DC Input Levels for Command and Address" on page 28) operation only. If the device is operated at 1.5V (table above), the respective levels in JESD79-3 (VIH/ L.DQ(DC100), VIH/L.DQ(AC175), VIH/L.DQ(AC150), VIH/L.DQ(AC135) etc.) apply. The 1.5V levels (VIH/ L.DQ(DC100), VIH/L.DQ(AC175), VIH/L.DQ(AC150), VIH/L.DQ(AC135) etc.) do not apply when the device is operated in the 1.35 voltage range.
Rev. 1.0 / May. 2014 29
Page 30

Vref Tolerances

VDD
VSS
VDD/2
V
Ref(DC)
V
Ref
ac-noise
voltage
time
V
Ref(DC)max
V
Ref(DC)min
V
Ref
(t)
The dc-tolerance limits and ac-noise limits for the reference voltages figure below. It shows a valid reference voltage V
likewise).
V
RefDQ
(DC) is the linear average of V
V
Ref
(t) over a very long period of time (e.g. 1 sec). This average has to
Ref
(t) as a function of time. (V
Ref
VRefCA
and V
are illustrated in
RefDQ
stands for V
Ref
RefCA
and
meet the min/max requirements in the table "Differential Input Slew Rate Definition" on page 36. Further­more V
(t) may temporarily deviate from V
Ref
Illustration of V
Ref(DC)
Ref (DC)
by no more than +/- 1% VDD.
tolerance and V
ac-noise limits
Ref
The voltage levels for setup and hold time measurements V dent on V
” shall be understood as V
“V
Ref
This clarifies that dc-variations of V
Ref
.
, as defined in figure above.
Ref(DC)
affect the absolute voltage a signal has to reach to achieve a valid
Ref
IH(AC)
, V
IH(DC)
, V
IL(AC)
, and V
IL(DC)
high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for V
deviations from the optimum position within the data-eye of the input
Ref(DC)
signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and
voltage associated with V
ac-noise. Timing and voltage effects due to ac-noise on V
Ref
up to the speci-
Ref
fied limit (+/- 1% of VDD) are included in DRAM timings and their associated deratings.
Rev. 1.0 / May. 2014 30
are depen-
Page 31

AC and DC Logic Input Levels for Differential Signals

time
Differential Input Voltage(i.e.DQS - DQS#, CK - CK#)
V
IL.DIFF.AC.MAX
V
IL.DIFF.MAX
0
V
IL.DIFF.MIN
V
IL.DIFF.AC.MIN
t
DVAC
half cycle
t
DVAC

Differential signal definition

Definition of differential ac-swing and “time above ac-level” t
DVAC
Rev. 1.0 / May. 2014 31
Page 32

Differential swing requirements for clock (CK - CK) and strobe (DQS-DQS)

Differential AC and DC Input Levels
Symbol Parameter
VIHdiff Differential input high + 0.180 Note 3 V 1
VILdiff Differential input logic low Note 3 - 0.180 V 1
VIHdiff (ac) Differential input high ac 2 x (VIH (ac) - Vref) Note 3 V 2
VILdiff (ac) Differential input low ac Note 3 2 x (VIL (ac) - Vref) V 2
Notes:
1. Used to define a differential signal slew-rate.
2. For CK - CK use VIH/VIL (ac) of AADD/CMD and VREFCA; for DQS - DQS, DQSL, DQSL, DQSU, DQSU use VIH/VIL (ac) of DQs and VREFDQ; if a reduced ac-high or ac-low levels is used for a signal group, then the reduced level applies also here.
3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limita tions for overshoot and undershoot. Refer to "Overshoot and Undershoot Specifications" on page 41.
DDR3L-800, 1066, 1333, 1600
Unit Notes
Min Max
Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS
DDR3L-800/1066/1333/1600 DDR3L-1866
Slew Rate
[V/ns]
tDVAC [ps]
@ |VIH/Ldiff
(ac)| = 320mV
min max min max min max min max min max
> 4.0 189 - 201 - 163 - 168 - 176 -
4.0 189 - 201 - 163 - 168 - 176 -
3.0 162 - 179 - 140 - 147 - 154 -
2.0 109 - 134 95 105 111
1.8 91 - 119 - 80 - 91 - 97 -
1.6 69 - 100 - 62 - 74 - 78 -
1.4 40 - 76 - 3 7 - 52 - 56 -
1.2 note - 44 - 5 - 22 - 24 -
1.0 note - note - note - note - note -
< 1.0 note - note - note - note - note -
note : Rising input signal shall become equal to or greater than VIH(ac) level and Falling input signal shall become equal to or less than VIL(ac) level.
tDVAC [ps]
@ |VIH/Ldiff
(ac)| = 270mV
tDV AC [ps]
@ |VIH/Ldiff
(ac)| = 270mV
tDVAC [ps]
@ |VIH/Ldiff
(ac)| = 250mV
tDVAC [ps]
@ |VIH/Ldiff
(ac)| = 260mV
-
Rev. 1.0 / May. 2014 32
Page 33

Single-ended requirements for differential signals

VDD or VDDQ
VSEHmin
VDD/2 or VDDQ/2
VSEH
VSELmax
VSS or VSSQ
CK or DQS
VSEL
time
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, of DQSU) has also to comply with certain requirements for single-ended signals.
CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH (ac) / VIL (ac)) for ADD/CMD signals) in every half-cycle.
DQS, DQSL, DQSU, DQS / VIL (ac)) for DQ signals) in every half-cycle preceding and following a valid transition.
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g., if VIH.CA(AC150)/VIL.CA(AC150) is used for ADD/CMD signals, then these ac-levels apply also for the single­ended signals CK and CK
, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels (VIH (ac)
.
Note that, while ADD/CMD and DQ signal requirements are with respect to Vref, the single-ended compo­nents of differential signals have a requirement with respect to VDD / 2; this is nominally the same. the transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended components of differential signals the requirement to reach VSELmax, VSEHmin ha s no bearing on timing, but adds a restriction on the common mode characteristics of these signals.
Rev. 1.0 / May. 2014 33
Single-ended requirements for differential signals.
Page 34
Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU
Symbol Parameter
VSEH
VSEL
Notes:
1. For CK, CK use VIH/VIL (ac) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL (ac) of DQs.
2. VIH (ac)/VIL (ac) for DQs is based on VREFDQ; VIH (ac)/VIL (ac) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.
3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limita­tions for overshoot and undershoot. Refer to "Overshoot and Undershoot Specifications" on page 41.
Single-ended high level for strobes (VDD / 2) + 0.175 Note 3 V 1,2
Single-ended high level for Ck, CK (VDD /2) + 0.175 Note 3 V 1,2
Single-ended low level for strobes Note 3 (VDD / 2) - 0.175 V 1,2
Single-ended low level for CK, CK Note 3 (VDD / 2) - 0.175 V 1,2
DDR3L-800, 1066, 1333, 1600, 1866
Unit Notes
Min Max
Rev. 1.0 / May. 2014 34
Page 35

Differential Input Cross Point Voltage

To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK requirements in table below. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS
and DQS, DQS) must meet the
Vix Definition
Cross point voltage for differential input signals (CK, DQS)
Symbol Parameter
VIX(CK)
VIX(DQS)
Notes:
1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic with a single-ended swing VSEL / VSEH of at least VDD/2 +/-250 mV, and when the differential slew rate of CK ­CK is larger than 3 V/ns.
2. The relation between Vix Min/Max and VSEL/VSEH should satisfy following. (VDD/2) + Vix (Min) - VSEL 25mV VSEH - ((VDD/2) + Vix (Max)) 25mV
Differential Input Cross Point Voltage
relative to VDD/2 for CK,
Differential Input Cross Point Voltage
relative to VDD/2 for DQS,
CK
DQS
DDR3L-800, 1066, 1333, 1600, 1866
Unit Notes
Min Max
-150 150 mV 2
-175 175 mV 1
-150 150 mV 2
Rev. 1.0 / May. 2014 35
Page 36

Slew Rate Definitions for Single-Ended Input Signals

Delta
TFdiff
Delta
TRdiff
V
IHd iffm in
VILdiffma x
0
Differential Input Voltage (i.e. DQS-DQS; CK-CK)
See 7 .5 “ Addr ess / Command Setup, Hold and Der ating” in “DDR3 Device Oper ation” f or single-ended slew rate definitions for address and command signals.
See 7 .6 “Data Setup, Hold and Slew Rate Derating” in “DDR3 Device Oper ation” for single-ended slew r ate definition for data signals.

Slew Rate Definitions for Differential Input Signals

Input slew rate for differ ential signals (CK, CK and DQS, DQS) are defined and measur ed as shown in table and figure below.
Differential Input Slew Rate Definition
Description
Differential input slew rate for rising edge (CK-CK
and DQS-DQS)
Differential input slew rate for falling edge (CK-CK
Notes:
The differential signal (i.e. CK-CK and DQS - DQS) must be linear between these thresholds.
and DQS-DQS)
Min
V
ILdiffmax
V
IHdiffmin
Measured
V
V
Max
IHdiffmin
ILdiffmax
[V
IHdiffmin-VILdiffmax
[V
IHdiffmin-VILdiffmax
Defined by
] / DeltaTRdiff
] / DeltaTFdiff
Differential Input Slew Rate Definition for DQS, DQS and CK, CK
Rev. 1.0 / May. 2014 36
Page 37

AC & DC Output Measurement Levels

Single Ended AC and DC Output Levels

Table below shows the output levels used for measurements of single ended signals.
Single-ended AC and DC Output Levels
Symbol Parameter
DDR3L-800, 1066,
1333, 1600, 1866
V
OH(DC)
V
OM(DC)
V
OL(DC)
V
OH(AC)
V
OL(AC)
DC output high measurement level (for IV curve linearity)
DC output mid measurement level (for IV curve linearity) DC output low measurement level (for IV curve linearity)
AC output high measurement level (for output SR)
AC output low measurement level (for output SR)
0.8 x V
0.5 x V
0.2 x V + 0.1 x V
V
TT
V
- 0.1 x V
TT
DDQ DDQ DDQ
Notes:
1. The swing of ±0.1 x V a driver impedance of 40Ω and an effective test load of 25Ω to VTT = V
is based on approximately 50% of the static single ended output high or low swing with
DDQ
DDQ
/ 2.

Differential AC and DC Output Levels

Table below shows the output levels used for measurements of single ended signals.
Differential AC and DC Output Levels
Symbol Parameter
V
OHdiff (AC)
V
OLdiff (AC)
AC differential output high measurement level (for output SR)
AC differential output low measurement level (for output SR)
Notes:
1. The swing of ±0.2 x V a driver impedance of 40
is based on approximately 50% of the static differential output high or low swing with
DDQ
and an effective test load of 25 to VTT = V
DDR3L-800, 1066,
1333, 1600, 1866
+ 0.2 x V
- 0.2 x V
/2 at each of the differential outputs.
DDQ
DDQ
DDQ
DDQ
DDQ
Unit Notes
V V V V1 V1
Unit Notes
V1 V1
Rev. 1.0 / May. 2014 37
Page 38

Single Ended Output Slew Rate

Delta TFse
Delta TRse
V
OH(AC)
V
Ol(AC)
V
Single Ended Output Voltage(l.e.DQ)
When the Reference load for timing measurements, output slew rate for f alling and rising edges is defined and measured between V
OL(AC)
and V
for single ended signals are shown in table and figure below.
OH(AC)
Single-ended Output slew Rate Definition
Description
Defined by
From To
Measured
Single-ended output slew rate for rising edge Single-ended output slew rate for falling edge
V
OL(AC)
V
OH(AC)
V
OH(AC)
V
OL(AC)
[V
OH(AC)-VOL(AC)
[V
OH(AC)-VOL(AC)
Notes:
1. Output slew rate is verified by design and characterisation, and may not be subject to production test.
Single Ended Output slew Rate Definition
] / DeltaTRse ] / DeltaTFse
Output Slew Rate (single-ended)
DDR3L-800 DDR3L-1066DDR3L-1333DDR3L-1600DDR3L-1866
Parameter Symbol Min Max Min Max Min Max Min Max Min Max
Single-ended Output Slew Rate SRQse 1.75
1)
1.75
5
Description: SR; Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals For Ron = RZQ/7 setting Note 1): In two cases, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane. Case 1 is a defined for a single DQ signal within a byte lane which is switching i n to a certain direction (either from high
to low or low to high) while a ll rem aining D Q sign als in th e sam e byte lane ar e stati c (i.e. th ey sta y at eithe r high or low). Case 2 is a defined for a single DQ signal within a byte lane which is switching i n to a certain direction (either from high
to low or low to high) while all remain ing DQ sig nals in the s ame byte la ne switchin g into the op posite directio n (i.e. fr om low to high of high to low respectively). For the remaining DQ signal switching in to the opposite direction, the regular maximum limite of 5 V/ns applies.
Rev. 1.0 / May. 2014 38
1)
1.75
5
1)
1.75
5
1)
1.75
5
Units
1)
V/ns
5
Page 39

Differential Output Slew Rate

Delta
TFdiff
Delta
TRdiff
V
OHdiff(AC)
VOLdiff(AC)
O
Differential Output Voltage(i.e. DQS-DQS)
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff (AC) and VOHdiff (AC) for differential signals as shown in table and figure
below.
Differential Output Slew Rate Definition
Description
Defined by
From To
Measured
Differential output slew rate for rising edge
Differential output slew rate for falling edge
V
OLdiff (AC)
V
OHdiff (AC)
V
OHdiff (AC)
V
OLdiff (AC)
[V
OHdiff (AC)-VOLdiff (AC)
[V
OHdiff (AC)-VOLdiff (AC)
Notes:
1. Output slew rate is verified by design and characterization, and may not be subject to production test.
] / DeltaTRdiff ] / DeltaTFdiff
Differential Output slew Rate Definition
Differential Output Slew Rate
DDR3L-800 DDR3L-1066 DDR3L-1333 DDR3L-1600 DDR3L-1866
Parameter Symbol Min Max Min Max Min Max Min Max Min Max
Differential Output Slew Rate SRQdiff 3.5 12 3.5 12 3.5 12 3.5 12 3.5 12 V/ns
Description: SR; Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals For Ron = RZQ/7 setting
Rev. 1.0 / May. 2014 39
Units
Page 40

Reference Load for AC Timing and Output Slew Rate

DUT
DQ
DQS DQS
VDDQ
25 Ohm
VTT = VDDQ/2
CK, CK
Figure below represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements.
It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.
Reference Load for AC Timing and Output Slew Rate
Rev. 1.0 / May. 2014 40
Page 41

Overshoot and Undershoot Specifications

Maximum Amplitude
Overshoot Area
VDD
VSS
Maximum Amplitude
Undershoot Area
Time (ns)
Volts
(V)

Address and Control Overshoot and Undershoot Specifications

AC Overshoot/Undershoot Specification for Address and Control Pins
DDR3
DDR3
DDR3
DDR3
Parameter
Maximum peak amplitude allowed for overshoot area. (See Figure below) 0.4 0.4 0.4 0.4 0.4 V Maximum peak amplitude allowed for undershoot area. (See Figure below) 0.4 0.4 0.4 0.4 0.4 V Maximum overshoot area above VDD (See Figure below) 0.67 0.5 0.4 0.33 0.28 V-ns Maximum undershoot area below VSS (See Figure below) 0.67 0.5 0.4 0.33 0.28 V-ns
L-800
L-1066
L-1333
L-1600
(A0-A15, BA0-BA3, CS, RAS, CAS, W E, CKE, ODT)
See figure below for each parameter definition
DDR3
Units
L-1866
Address and Control Overshoot and Undershoot Definition
Rev. 1.0 / May. 2014 41
Page 42

Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications

Maximum Amplitude
Overshoot Area
VDDQ
VSSQ
Maximum Amplitude
Undershoot Area
Time (ns)
Volts
(V)
AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask
DDR3
DDR3
DDR3
DDR3
Parameter
Maximum peak amplitude allowed for overshoot area. (See Figure below) 0.4 0.4 0.4 0.4 0.4 V Maximum peak amplitude allowed for undershoot area. (See Figure below) 0.4 0.4 0.4 0.4 0.4 V Maximum overshoot area above VDD (See Figure below) 0.25 0.19 0.15 0.13 0.11 V-ns Maximum undershoot area below VSS (See Figure below) 0.25 0.19 0.15 0.13 0.11 V-ns
L-800
L-1066
L-1333
L-1600
(CK, CK, DQ, DQS, DQS, DM)
See figure below for each parameter definition
DDR3
Units
L-1866
Clock, Data, Strobe and Mask Overshoot and Undershoot Definition
Rev. 1.0 / May. 2014 42
Page 43

Refresh parameters by device density

Refresh parameters by device density
Parameter RTT_Nom Setting 512Mb 1Gb 2Gb 4Gb 8Gb Units Notes
REF command ACT or
REF command time
Average periodic refresh interval
Notes:
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to dete rmine if DDR3 SDRAM devices support the following options or requirements referred to in this materia.
tREFI
tRFC 90 110 160 260 350 ns
C T
0
85
C T
85 C 7.8 7.8 7.8 7.8 7.8 us
CASE
95 C 3.9 3.9 3.9 3.9 3.9 us 1
CASE
Rev. 1.0 / May. 2014 43
Page 44

Standard Speed Bins

DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.

DDR3L-800 Speed Bins

For specific Notes See "Speed Bin Table Notes" on page 49.
Speed Bin DDR3L-800E
CL - nRCD - nRP 6-6-6
Parameter
Symbol min max
Unit Notes
Internal read command to first data
ACT to internal read or write delay time
PRE command period
ACT to ACT or REF command period
ACT to PRE command period
CL = 6 CWL = 5
Supported CL Settings
Supported CWL Settings
t
AA
t
RCD
t
RP
t
RC
t
RAS
t
CK(AVG)
15 20 ns
15 ns
15 ns
52.5 ns
37.5 9 * tREFI ns
2.5 3.3 ns 6 5
n n
1,2,3
CK CK
Rev. 1.0 / May. 2014 44
Page 45

DDR3L-1066 Speed Bins

For specific Notes See "Speed Bin Table Notes" on page 49.
Speed Bin DDR3L-1066F
CL - nRCD - nRP 7-7-7
Parameter Symbol min max
Internal read command to
first data
t
AA
13.125 20 ns
Unit Note
ACT to internal read or
write delay time
PRE command period
ACT to ACT or REF
command period
ACT to PRE command
period
CL = 6
CL = 7
CL = 8
CWL = 5 CWL = 6 CWL = 5 CWL = 6 CWL = 5 CWL = 6
t
RCD
t
RP
t
RC
t
RAS
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
13.125 ns
13.125 ns
50.625 ns
37.5 9 * tREFI ns
2.5 3.3 ns 1,2,3,6
1.875 < 2.5 ns 1,2,3,4
1.875 < 2.5 ns 1,2,3
Supported CL Settings 6, 7, 8
Supported CWL Settings 5, 6
Reserved ns 1,2,3,4 Reserved ns 4
Reserved ns 4
n
CK
n
CK
Rev. 1.0 / May. 2014 45
Page 46

DDR3L-1333 Speed Bins

For specific Notes See "Speed Bin Table Notes" on page 49.
Speed Bin DDR3L-1333H
CL - nRCD - nRP 9-9-9
Parameter Symbol min max
Internal read
command to first data
ACT to internal read or
write delay time
PRE command period
ACT to ACT or REF
command period
t
t
RCD
t
t
AA
RP
RC
13.5
(13.125)
13.5
(13.125)
13.5
(13.125)
49.5
(49.125)
5,10
5,10
5,10
5,10
20 ns
—ns
—ns
—ns
Unit Note
ACT to PRE command
period
CWL = 5
CL = 6
CWL = 6 CWL = 7 CWL = 5
CL = 7
CWL = 6
CWL = 7 CWL = 5
CL = 8
CWL = 6 CWL = 7
CL = 9
CWL = 5, 6
CWL = 7
CWL = 5, 6
CL = 10
CWL = 7
t
RAS
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
36 9 * tREFI ns
2.5 3.3 ns 1,2,3,7
1.875 < 2.5 (Optional)
1.875 < 2.5 ns 1,2,3,7
1.5 <1.875 ns 1,2,3,4
1.5 <1.875 ns 1,2,3
Supported CL Settings 6, 7, 8, 9, 10
Supported CWL Settings 5, 6, 7
Reserved ns 1,2,3,4,7 Reserved ns 4 Reserved ns 4
5,10
ns 1,2,3,4,7
Reserved ns 1,2,3,4 Reserved ns 4
Reserved ns 1,2,3,4 Reserved ns 4
Reserved ns 4
(Optional) ns 5
n
CK
n
CK
Rev. 1.0 / May. 2014 46
Page 47

DDR3L-1600 Speed Bins

For specific Notes See "Speed Bin Table Notes" on page 49.
Speed Bin DDR3L-1600K
CL - nRCD - nRP 11-11-11
Parameter Symbol min max
Internal read
command to first data
ACT to internal read or
write delay time
PRE command period
ACT to ACT or REF
command period
ACT to PRE command
period
CWL = 5
CL = 6
CWL = 6 CWL = 7 CWL = 5
CL = 7
CWL = 6 CWL = 7
CWL = 8 CWL = 5
CL = 8
CWL = 6 CWL = 7 CWL = 8
CWL = 5, 6
CL = 9
CWL = 7 CWL = 8
CWL = 5, 6
CL = 10
CWL = 7 CWL = 8
CL = 11
CWL = 5, 6,7
CWL = 8
t
AA
t
RCD
t
RP
t
RC
t
RAS
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
Supported CL Settings 5, 6, 7, 8, 9, 10, 11
Supported CWL Settings 5, 6, 7, 8
13.75
(13.125)
13.75
(13.125)
13.75
(13.125)
48.75
(48.125)
5,10
5,10
5,10
5,10
20 ns
—ns
—ns
—ns
35 9 * tREFI ns
2.5 3.3 ns 1,2,3,8 Reserved ns 1,2,3,4,8 Reserved ns 4 Reserved ns 4
1.875 < 2.5 (Optional)
5,10
Reserved ns 1,2,3,4,8 Reserved ns 4 Reserved ns 4
1.875 < 2.5 ns 1,2,3,8
Reserved ns 1,2,3,4,8 Reserved ns 1,2,3,4 Reserved ns 4
1.5 <1.875 (Optional)
5,10
Reserved ns 1,2,3,4 Reserved ns 4
1.5 <1.875 ns 1,2,3,8
Reserved ns 1,2,3,4 Reserved ns 4
1.25 <1.5 ns 1,2,3
Unit Note
ns 1,2,3,4,8
ns 1,2,3,4,8
n
CK
n
CK
Rev. 1.0 / May. 2014 47
Page 48

DDR3L-1866 Speed Bins

For specific Notes See "Speed Bin Table Notes" on page 49.
Speed Bin DDR3L-1866M
CL - nRCD - nRP 13-13-13
Parameter Symbol min max
Internal read command
to first data
ACT to internal read or
write delay time
PRE command period
ACT to PRE command
period
ACT to ACT or PRE
command period
CWL = 5
CL = 6
CWL = 6
CWL = 7,8,9
CWL = 5
CL = 7
CWL = 6
CWL = 7,8,9
CWL = 5
CL = 8
CWL = 6 CWL = 7
CWL = 8,9
CWL = 5, 6
CL = 9
CWL = 7 CWL = 8 CWL = 9
CWL = 5, 6
CL = 10
CWL = 7 CWL = 8
CWL = 5,6,7
CL = 11
CWL = 8 CWL = 9
CL = 12
CL = 13
CWL = 5,6,7,8
CWL = 9
CWL = 5,6,7,8
CWL = 9
t
AA
t
RCD
t
RP
t
RAS
t
RC
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
t
CK(AVG)
Supported CL Settings 6, 7, 8, 9, 10, 11, 13
Supported CWL Settings 5, 6, 7, 8, 9
13.91
(13.125)
5,11
20 ns
13.91
(13.125)
5,11
—ns
13.91
(13.125)
5,11
—ns
34 9 * tREFI ns
47.91
(47.125)
5,11
-ns
2.5 3.3 ns 1,2,3,9 Reserved ns 1,2,3,4,9 Reserved ns 4 Reserved ns 4
1.875 < 2.5 ns 1,2,3,4,9 Reserved ns 4 Reserved ns 4
1.875 < 2.5 ns 1,2,3,9 Reserved ns 1,2,3,4,9 Reserved ns 4 Reserved ns 4
1.5 <1.875 ns 1,2,3,4,9 Reserved ns 1,2,3,4,9 Reserved ns 4 Reserved ns 4
1.5 <1.875 ns 1,2,3,9 Reserved ns 1,2,3,4,9 Reserved ns 4
1.25 <1.5 ns 1,2,3,4,9 Reserved ns 1,2,3,4 Reserved ns 4 Reserved ns 1,2,3,4 Reserved ns 4
1.07 <1.25 ns 1, 2, 3
Unit Note
n
CK
n
CK
Rev. 1.0 / May. 2014 48
Page 49

Speed Bin Table Notes

Absolute Specification (T
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. Wh en mak­ing a selection of tCK(AVG), both need to be fulfilled: R equir ements f rom CL set ting as well as require­ments from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchro­nized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (3.0, 2.5, 1.875, 1.5, or 1.25 ns) when calculat ing CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next ‘Supported CL’, where tCK(AVG) =
3.0 ns should only be used for CL = 5 calculation.
3. tCK(AVG).MAX limits: Calculate tCK(A VG) = tAA.MAX / CL SELECTED and round the resulting tCK(A V G) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.
4. ‘Reserved’ settings are not allowed. User must program a different value.
5. ‘Optional’ settings allow certain devices in the industry to support this setting, however, it is not a man­datory feature. Refer to DIMM data sheet and/or the DIMM SPD information if and how this setting is supported.
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
9. Any DDR3-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
10. DDR3 SDRAM d evices supporting optional down binning to CL=7 and CL=9, and tAA/tRCD/tRP must be 13.125 ns or lower. SPD settings must be programmed to match. For example, DDR3-1333H devices supporting down binning to DDR3-1066F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600K devices supporting down binning to DDR3-1333H or DDR3-1600F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin = 36 ns + 13.125 ns) for DDR3-1333H and 48.125ns (tRASmin + tRPmin = 35 ns + 13.125 ns) for DDR3-1600K.
11. DDR3 SDRAM devices supporting optional down binning to CL=11, CL=9 and CL=7, tAA/tRCD/tRPmin must be 13.125ns. SPD setting must be programed to match. For example, DDR3-1866 devices sup porting down binning to DDR3-1600 or DDR3-1333 or 1066 should program 13.125ns in SPD bytes f or tAAmin(byte 16), tRCDmin(byte 18) and tRPmin(byte 20) is programmed to 13.125ns, tRCmin(byte 21,23) also should be programmed accordingly. For example, 47.125ns (tRASmin + tRPmin = 34ns +
13.125ns)
OPER
; V
= VDD = 1.35V +0.100/- 0.067 V);
DDQ
-
-
Rev. 1.0 / May. 2014 49
Page 50

Environmental Parameters

Symbol Parameter Rating Units Notes
T H T H P
OPR
OPR
STG
STG
BAR
Operating temperature Operating humidity (relative) 10 to 90 % 1
Storage temperature -50 to +100 Storage humidity (without condensation) 5 to 95 % 1 Barometric Pressure (operating & storage) 105 to 69 K Pascal 1, 2
Note:
1. Stress greater than those listed may cause permanent damage to the device. This is a stress rating only, and device functional operation at or above the conditions indicated is not implied. Expousure to absolute maximum rating conditions for extended periods may affect reliablility.
2. Up to 9850 ft.
3. The designer must meet the case temperature specifications for individual module components.
See Note 3
o
C
1
Rev. 1.0 / May. 2014 50
Page 51

IDD and IDDQ Specification Parameters and Test Conditions

IDD and IDDQ Measurement Conditions
In this chapter, IDD and IDDQ measurement conditions such as test load and pat terns are defined. F igur e
1. shows the setup and test load for IDD and IDDQ measurements.
IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET and IDD7) are measured as time-averaged currents with all VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD currents.
IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ cur rents. Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one merged-power layer in Module PCB.
For IDD and IDDQ measurements, the following definitions apply:
-
”0” and “LOW” is defined as VIN <= V
”1” and “HIGH” is defined as VIN >= V
“MID_LEVEL” is defined as inputs are VREF = VDD/2.
Timing used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 1.
Basic IDD and IDDQ Measurement Conditions are described in Table 2.
Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 10.
IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not lim­ited to setting RON = RZQ/7 (34 Ohm in MR1); Qoff = 0B (Output Buffer enabled in MR1);
RTT_Nom = RZQ/6 (40 Ohm in MR1); RTT_Wr = RZQ/2 (120 Ohm in MR2); TDQS Feature disabled in MR1
Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started.
Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW}
Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH, HIGH, HIGH}
ILAC(max).
IHAC(max).
Rev. 1.0 / May. 2014 51
Page 52
Figure 1 - Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements
VDD
DDR3L
SDRAM
VDDQ
RESET CK/CK
DQS, DQS CS RAS, CAS, WE
A, BA ODT ZQ
VSS VSSQ
DQ, DM,
TDQS, TDQS
CKE
RTT = 25 Ohm
VDDQ/2
IDD
IDDQ (optional)
Application specific
memory channel
environment
Channel
IO Power
Simulation
IDDQ
Simulation
IDDQ
Simulation
Channel IO Power
Number
IDDQ
Test Load
Correction
[Note: DIMM level Output test load condition may be different from above
Rev. 1.0 / May. 2014 52
Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported
by IDDQ Measurement
Page 53
Table 1 -Timings used for IDD and IDDQ Measurement-Loop Patterns
Symbol
t
CK
DDR3L-1066 DDR3L-1333 DDR3L-1600 DDR3L-1866
7-7-7 9-9-9 11-11-11 13-13-13
1.875 1.5 1.25 1.07 ns
Unit
CL 7 9 11 13 nCK
n
RCD
n
RC
n
RAS
n
RP
1KB page size 20 20 24 26 nCK
n
FAW
2KB page size 27 30 32 33 nCK 1KB page size 4 4 5 5 nCK
n
RRD
2KB page size 6 5 6 6 nCK
n
-512Mb 48 60 72 85 nCK
RFC
n
-1 Gb 59 74 88 103 nCK
RFC
n
- 2 Gb 86 107 128 150 nCK
RFC
n
- 4 Gb 139 174 208 243 nCK
RFC
n
- 8 Gb 187 234 280 328 nCK
RFC
7 9 11 13 nCK 27 33 39 45 nCK 20 24 28 32 nCK
7 9 11 13 nCK
Table 2 -Basic IDD and IDDQ Measurement Conditions
Symbol Description
Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT and
I
PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 3; Data IO: MID-LEVEL;
DD0
DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 3); Output Buf-
b)
fer and RTT: Enabled in Mode Registers
; ODT Signal: stable at 0; Pattern Details: see Table 3.
Operating One Bank Active-Precharge Current
a)
; AL: 0; CS: High between ACT,
I
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: 8 RD and PRE; Command, Address; Bank Address Inputs, Data IO: pa rtially toggling according to Table 4; DM:
DD1
stable at 0; Bank Activity: Cycling with on bank active at a time: 0,0,1,1,2,2,... (see Table 4); Output Buffer and
b)
RTT: Enabled in Mode Registers
Rev. 1.0 / May. 2014 53
; ODT Signal: stable at 0; Pattern Details: see Table 4.
Page 54
Symbol Description
Precharge Standby Current
I
DD2N
I
DD2NT
I
DD2P0
I
DD2P1
CKE: High; External clock: On; tCK, CL: see T able 1; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all
b)
banks closed; Output Buffer and RTT: Enabled in Mode Registers
; ODT Signal: stable at 0; Pattern Details: see Table 5. Precharge Standby ODT Current
CKE: High; External clock: On; tCK, CL: see T able 1; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: partially toggling according to Table 6; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all
b)
banks closed; Output Buffer and RTT: Enabled in Mode Registers
; ODT Signal: toggling according to Table 6; Pattern Details: see Table 6. Precharge Power-Down Current Slow Exit
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buf­fer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exit
c)
Precharge Power-Down Current Fast Exit CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8
a)
; AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buf­fer and RTT: Enabled in Mode Registers
b)
; ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit
c)
Precharge Quiet Standby Current
a)
; AL: 0; CS: stable at 1; Command, Address, Bank
I
DD2Q
CKE: High; External clock: On; tCK, CL: see T able 1; BL: 8 Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all ba nks closed; Output Buf-
b)
fer and RTT: Enabled in Mode Registers
; ODT Signal: stable at 0
Active Standby Current
a)
; AL: 0; CS: stable at 1; Command, Address, Bank
b)
; ODT Signal: stable at 0; Pattern Details: see
I
DD3N
CKE: High; External clock: On; tCK, CL: see T able 1; BL: 8 Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all
banks open; Output Buffer and RTT: Enabled in Mode Registers Table 5. Active Power-Down Current
I
DD3P
Rev. 1.0 / May. 2014 54
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8 Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer
b)
and RTT: Enabled in Mode Registers
; ODT Signal: stable at 0
a)
; AL: 0; CS: stable at 1; Command, Address, Bank
Page 55
Symbol Description
Operating Burst Read Current
I
DD4R
I
DD4W
I
DD5B
CKE: High; External clock: On; tCK, CL: see T able 1; BL: 8
a)
; AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling according to Table 7; Data IO: seamless read data burst with different data between one burst and the next one according to Table 7; DM: stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,...(see Table 7); Output Buffer and RTT: Enabled in Mode
b)
Registers
; ODT Signal: stable at 0; Pattern Details: see Table 7.
Operating Burst Write Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8
a)
; AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially toggling according to Table 8; Data IO: seamless read data burst with different data between one burst and the next one according to Table 8; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,...(see Table 8); Output Buffer and RTT: Enabled in Mode
b)
Registers
; ODT Signal: stable at HIGH; Pattern Details: see Table 8.
Burst Refresh Current CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: 8
Address, Bank Address Inputs: partially toggling according to Table 9; Data IO: MID_LEVEL; DM: stable at 0;
a)
; AL: 0; CS: High between REF; Command,
Bank Activity: REF command every nREF (see Table 9); Output Buffer and RTT: Enabled in Mode Reg isters ODT Signal: stable at 0; Pattern Details: see Table 9. Self-Refresh Current: Normal Temperature Range
b)
;
T
: 0 - 85 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Normale); CKE:
CASE
I
DD6
Low; External clock: Off; CK and CK
: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank
Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Self-Refresh operation; Output Buffer
b)
and RTT: Enabled in Mode Registers
; ODT Signal: MID_LEVEL
Self-Refresh Current: Extended Temperature Range (optional)
T
: 0 - 95 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Extendede);
CASE
I
DD6ET
CKE: Low; External clock: Off; CK and CK
: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank
Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Extended Temperature Self-Refresh
b)
operation; Output Buffer and RTT: Enabled in Mode Registers
Rev. 1.0 / May. 2014 55
; ODT Signal: MID_LEVEL
Page 56
Symbol Description
Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL: see Table 1; BL: 8
a),f)
; AL: CL-1; CS:
High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling according to Table
I
10; Data IO: read data burst with different data between one burst and the next one according to Table 10;
DD7
DM: stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1,...7) with different address-
b)
ing, wee Table 10; Output Buffer and RTT: Enabled in Mode Registers
; ODT Signal: stable at 0; Pattern
Details: see Table 10.
a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B;
RTT_Wr enable: set MR2 A[10,9] = 10B c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12 = 1B for Fast Exit d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable e) Self-Refresh Temperature Range (SRT): set MR2 A7 = 0B for normal or 1B for extended temperature range f) Read Burst Type: Nibble Sequential, set MR0 A[3] = 0B
Rev. 1.0 / May. 2014 56
Page 57
Table 3 - IDD0 Measurement-Loop Pattern
CK, CK
toggling
CKE
Sub-Loop
0
Static High
1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead
Cycle
Number
0
1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 ­3,4 D ... repeat pattern 1...4 until nRAS - 1, truncate if necessary nRAS PRE 0 0 1 0 0 0 00 0 0 0 0 ­... repeat pattern 1...4 until nRC - 1, truncate if necessary 1*nRC+0 ACT 0 0 1 1 0 0 00 0 0 F 0 ­1*nRC+1, 2 D, D 1 0 0 0 0 0 00 0 0 F 0 ­1*nRC+3, 4 D ... repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary 1*nRC+nRAS PRE 0 0 1 0 0 0 00 0 0 F 0 ­... repeat pattern 1...4 until 2*nRC - 1, truncate if necessary
ACT 0 0 1 1 0 0 00 0 0 0 0 -
, D 1111000000 00 -
, D 1111000000 F0 -
CS
Command
RAS
CAS
a)
WE
b)
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
Data
A[2:0]
a) DM must be driven LOW all the time. DQS, DQS are MID-LEV EL. b) DQ signals are MID-LEVEL.
Rev. 1.0 / May. 2014 57
Page 58
Table 4 - IDD1 Measurement-Loop Pattern
CK, CK
toggling
CKE
Sub-Loop
0
Static High
1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead
Cycle
Number
0
1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 ­3,4 D ... repeat pattern 1...4 until nRCD - 1, truncate if necessary nRCD RD 0 1 0 1 0 0 00 0 0 0 0 00000000 ... repeat pattern 1...4 until nRAS - 1, truncate if necessary nRAS PRE001000000000 ­... repeat pattern 1...4 until nRC - 1, truncate if necessary 1*nRC+0 ACT 0 0 1 1 0 0 00 0 0 F 0 ­1*nRC+1,2 D, D 1 0 0 0 0 0 00 0 0 F 0 ­1*nRC+3,4 D ... repeat pattern nRC + 1,...4 until nRC + nRCE - 1, truncate if necessary 1*nRC+nRCD RD 0 1 0 1 0 0 00 0 0 F 0 00110011 ... repeat pattern nRC + 1,...4 until nRC + nRAS - 1, truncate if necessary 1*nRC+nRAS PRE 0 0 1 0 0 0 00 0 0 F 0 ­... repeat pattern nRC + 1,...4 until *2 nRC - 1, truncate if necessary
ACT001100000000 -
, D 111100000000 -
, D 1111000000F0 -
CS
Command
RAS
CAS
a)
WE
b)
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
Data
A[2:0]
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID_LEVEL.
Rev. 1.0 / May. 2014 58
Page 59
Table 5 - IDD2N and IDD3N Measurement-Loop Pattern
CKE
CK, CK
toggling
a) DM must be driven LOW all the time. DQS, DQS are MID-LEV EL. b) DQ signals are MID-LEVEL.
Sub-Loop
0
1 4-7 repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 8-11 repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 12-15 repeat Sub-Loop 0, use BA[2:0] = 3 instead
Static High
4 16-19 repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 20-23 repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 24-17 repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 28-31 repeat Sub-Loop 0, use BA[2:0] = 7 instead
Cycle
Number
0
1D10000000000­2D 3D
D10000000000 -
CS
RAS
Command
1111 0000 0F0 ­1111 0000 0F0 -
CAS
WE
ODT
BA[2:0]
A[15:11]
a)
b)
Data
A[10]
A[9:7]
A[6:3]
A[2:0]
Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Pattern
CKE
CK, CK
toggling
a) DM must be driven LOW all the time. DQS, DQS are MID-LEV EL. b) DQ signals are MID-LEVEL.
Sub-Loop
0
1 4-7 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1 2 8-11 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2 3 12-15 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3
Static High
4 16-19 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4 5 20-23 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5 6 24-17 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6 7 28-31 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7
Cycle
Number
0
1D10000000000­2D 3D
D10000000000 -
CS
RAS
Command
1111000 00 F0 ­1111000 00 F0 -
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
a)
A[9:7]
A[2:0]
A[6:3]
Data
b)
Rev. 1.0 / May. 2014 59
Page 60
A[15:11]
a)
A[10]
A[9:7]
A[6:3]
A[2:0]
Data
b)
Table 7 - IDD4R and IDDQ4R Measurement-Loop Pattern
CKE
CK, CK
toggling
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.
Sub-Loop
0
1 8-15 repeat Sub-Loop 0, but BA[2:0] = 1 2 16-23 repeat Sub-Loop 0, but BA[2:0] = 2
Static High
3 24-31 repeat Sub-Loop 0, but BA[2:0] = 3 4 32-39 repeat Sub-Loop 0, but BA[2:0] = 4 5 40-47 repeat Sub-Loop 0, but BA[2:0] = 5 6 48-55 repeat Sub-Loop 0, but BA[2:0] = 6 7 56-63 repeat Sub-Loop 0, but BA[2:0] = 7
Cycle
Number
0
1D100000000000­2,3 D 4 RD 0 1 0 1 0 0 00 0 0 F 0 00110011 5D1000000000F0­6,7 D
RD 0 1 0 1 0 0 00 0 0 0 0 00000000
,D 111100000 0 00 -
,D 111100000 0 F0 -
CS
Command
RAS
Table 8 - IDD4W Measurement-Loop Pattern
CAS
WE
ODT
BA[2:0]
a)
b)
CKE
CK, CK
toggling
a) DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.
Rev. 1.0 / May. 2014 60
Sub-Loop
0
1 8-15 repeat Sub-Loop 0, but BA[2:0] = 1 2 16-23 repeat Sub-Loop 0, but BA[2:0] = 2
Static High
3 24-31 repeat Sub-Loop 0, but BA[2:0] = 3 4 32-39 repeat Sub-Loop 0, but BA[2:0] = 4 5 40-47 repeat Sub-Loop 0, but BA[2:0] = 5 6 48-55 repeat Sub-Loop 0, but BA[2:0] = 6 7 56-63 repeat Sub-Loop 0, but BA[2:0] = 7
Cycle
Number
0
1D100010000000­2,3 D 4 WR 0 1 0 0 1 0 00 0 0 F 0 00110011 5D1000100000F0­6,7 D
WR 0 1 0 0 1 0 00 0 0 0 0 00000000
CS
RAS
Command
,D 111110000 0 00 -
,D 111110000 0 F0 -
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
Data
A[2:0]
Page 61
Table 9 - IDD5B Measurement-Loop Pattern
CKE
CK, CK
toggling
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL.
Sub-Loop
0
11.2 D, D 1 0 0 0 0 0 00 0 0 0 0 -
Static High
2 33...nRFC-1 repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.
Cycle
Number
0
3,4 D
5...8 repeat cycles 1...4, but BA[2:0] = 1
9...12 repeat cycles 1...4, but BA[2:0] = 2
13...16 repeat cycles 1...4, but BA[2:0] = 3
17...20 repeat cycles 1...4, but BA[2:0] = 4
21...24 repeat cycles 1...4, but BA[2:0] = 5
25...28 repeat cycles 1...4, but BA[2:0] = 6
29...32 repeat cycles 1...4, but BA[2:0] = 7
REF 0 0 0 1 0 0 0 0 0 0 0 -
, D 111100000 0 F0 -
CS
Command
RAS
CAS
WE
a)
b)
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
Data
A[2:0]
Rev. 1.0 / May. 2014 61
Page 62
Table 10 - IDD7 Measurement-Loop Pattern
a)
ATTENTION! Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9
CK, CK
toggling
Command
CS
RAS
CKE
Sub-Loop
0 0 ACT 0 0 1 1 0 0 00 0 0 0 0 -
1 RDA 0 1 0 1 0 0 00 1 0 0 0 00000000 2 D 1 0 0 0 0 0 00 0 0 0 0 ­... repeat above D Command until nRRD - 1 nRRD ACT 0 0 1 1 0 1 00 0 0 F 0 ­nRRD+1 RDA 0 1 0 1 0 1 00 1 0 F 0 00110011
1
nRRD+2 D 1 0 0 0 0 1 00 0 0 F 0 -
... repeat above D Command until 2* nRRD - 1 2 2*nRRD repeat Sub-Loop 0, but BA[2:0] = 2 3 3*nRRD repeat Sub-Loop 1, but BA[2:0] = 3
4*nRRD 4
5 nFAW repeat Sub-Loop 0, but BA[2:0] = 4 6 nFAW+nRRD repeat Sub-Loop 1, but BA[2:0] = 5 7 nFAW+2*nRRD repeat Sub-Loop 0, but BA[2:0] = 6 8 nFAW+3*nRRD repeat Sub-Loop 1, but BA[2:0] = 7
nFAW+4*nRRD 9
2*nFAW+0 ACT 0 0 1 1 0 0 00 0 0 F 0 -
Static High
2*nFAW+1 RDA 0 1 0 1 0 0 00 1 0 F 0 00110011
10
2&nFAW+2
2*nFAW+nRRD ACT 0 0 1 1 0 1 00 0 0 0 0 -
2*nFAW+nRRD+1 RDA 0 1 0 1 0 1 00 1 0 0 0 00000000
11
2&nFAW+nRRD+2
12 2*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 2 13 2*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 3
14 2*nFAW+4*nRRD 15 3*nFAW repeat Sub-Loop 10, but BA[2:0] = 4
16 3*nFAW+nRRD repeat Sub-Loop 11, but BA[2:0] = 5 17 3*nFAW+2*nRRD repeat Sub-Loop 10, but BA[2:0] = 6 18 3*nFAW+3*nRRD repeat Sub-Loop 11, but BA[2:0] = 7
19 3*nFAW+4*nRRD
Cycle
Number
D 1 0 0 0 0 3 00 0 0 F 0 -
Assert and repeat above D Command until nFAW - 1, if necessary
D 1 0 0 0 0 7 00 0 0 F 0 -
Assert and repeat above D Command until 2* nFAW - 1, if necessary
D 1 0 0 0 0 0 00 0 0 F 0 -
Repeat above D Command until 2* nFAW + nRRD - 1
D 1 0 0 0 0 1 00 0 0 0 0 -
Repeat above D Command until 2* nFAW + 2* nRRD - 1
D 1 0 0 0 0 3 00 0 0 0 0 ­Assert and repeat above D Command until 3* nFAW - 1, if necessary
D 1 0 0 0 0 7 00 0 0 0 0 ­Assert and repeat above D Command until 4* nFAW - 1, if necessary
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data
b)
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.
Rev. 1.0 / May. 2014 62
Page 63

IDD Specifications (Tcase: 0 to 95oC)

* Module IDD values in the datasheet are only a calculation based on the component IDD spec and r egister power. The actual measurements may vary according to DQ loading cap.

4GB, 512M x 72 R-DIMM: HMT451R7BFR8A

Symbol DDR3L 1333 DDR3L 1600 DDR3L 1866 Unit note
IDD0 998 998 1016 mA IDD1 1070 1070 1088 mA
IDD2N 881 890 899 mA
IDD2NT 908 926 935 mA
IDD2P0 300 300 309 mA IDD2P1 300 300 309 mA
IDD2Q 872 881 890 mA IDD3N 917 917 935 mA IDD3P 327 327 336 mA IDD4R 1349 1394 1502 mA
IDD4W 1394 1439 1529 mA
IDD5B 1889 1889 1889 mA
IDD6 318 318 318 mA
IDD6ET 345 345 345 mA
IDD7 1799 1844 1934 mA

8GB, 1G x 72 R-DIMM: HMT41GR7BFR4A

Symbol DDR3L 1333 DDR3L 1600 DDR3L 1866 Unit note
IDD0 1232 1232 1268 mA IDD1 1376 1376 1412 mA
IDD2N 998 1016 1034 mA
IDD2NT 1052 1088 1106 mA
IDD2P0 372 372 390 mA IDD2P1 372 372 390 mA
IDD2Q 980 998 1016 mA IDD3N 1070 1070 1106 mA IDD3P 426 426 444 mA IDD4R 1844 1934 2168 mA
IDD4W 1934 2024 2204 mA
IDD5B 3014 3014 3014 mA
IDD6 408 408 408 mA
IDD6ET 462 462 462 mA
IDD7 2834 2924 3104 mA
Rev. 1.0 / May. 2014 63
Page 64

8GB, 1G x 72 R-DIMM: HMT41GR7BFR8A

Symbol DDR3L 1333 DDR3L 1600 DDR3L 1866 Unit note
IDD0 1115 1151 1187 mA IDD1 1187 1223 1259 mA
IDD2N 998 1016 1034 mA
IDD2NT 1052 1088 1106 mA
IDD2P0 372 372 390 mA IDD2P1 372 372 390 mA
IDD2Q 980 998 1016 mA IDD3N 1070 1070 1106 mA IDD3P 426 426 444 mA IDD4R 1466 1547 1673 mA
IDD4W 1511 1592 1700 mA
IDD5B 2006 2042 2060 mA
IDD6 408 408 408 mA
IDD6ET 462 462 462 mA
IDD7 1916 1997 2105 mA

16GB, 2G x 72 R-DIMM: HMT42GR7BFR4A

Symbol DDR3L 1333 DDR3L 1600 DDR3L 1866 Unit note
IDD0 1466 1538 1610 mA IDD1 1610 1682 1754 mA
IDD2N 1232 1268 1304 mA
IDD2NT 1340 1412 1448 mA
IDD2P0 516 516 552 mA IDD2P1 516 516 552 mA
IDD2Q 1196 1232 1268 mA IDD3N 1376 1376 1448 mA IDD3P 624 624 660 mA IDD4R 2078 2240 2510 mA
IDD4W 2168 2330 2546 mA
IDD5B 3248 3320 3356 mA
IDD6 588 588 660 mA
IDD6ET 696 696 696 mA
IDD7 3068 3230 3446 mA
Rev. 1.0 / May. 2014 64
Page 65

32GB, 4G x 72 R-DIMM: HMT84GR7BMR4A

Symbol DDR3L 1066 DDR3L 1333 DDR3L 1600 Unit note
IDD0 1916 1934 2150 mA IDD1 2060 2078 2294 mA
IDD2N 1700 1700 1772 mA
IDD2NT 1916 1916 2060 mA
IDD2P0 804 804 804 mA IDD2P1 804 804 804 mA
IDD2Q 1628 1628 1700 mA IDD3N 1916 1988 1988 mA IDD3P 1020 1020 1020 mA IDD4R 2456 2546 2852 mA
IDD4W 2546 2636 2942 mA
IDD5B 3716 3716 3932 mA
IDD6 948 948 948 mA
IDD6ET 1164 1164 1164 mA
IDD7 3356 3536 3842 mA
Rev. 1.0 / May. 2014 65
Page 66

Module Dimensions

5.175
Detail C
2.10±0.15
47.00
71.00
2X3.00±0.10
Front
1
30.00
9.50
17.30
120
5.0
1
1
240
121
Back
133.35
128.95
Registering
Clock Driver
SPD/TS
4X3.00±0.10
1.27
±010
mm
Side
max
3.64mm max
0.35
2.50
±
0.20
1.00
0.80± 0.05
Detail of Contacts B
1.50 ±0.10
Detail of Contacts C
0.3
±
0.15
0.3~0.1
5.00
3.80
2.50
2.50
±
0.20
3± 0.1
1.20
±
0.15
Detail of Contacts A
Detail B
Detail A
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
2x R0.75 Max

512Mx72 - HMT451R7BFR8A

Rev. 1.0 / May. 2014 66
Page 67

1Gx72 - HMT41GR7BFR4A

5.175
Detail B
Detail C
2.10±0.15
47.00
71.00
2X3.00±0.10
Front
1
4X3.00±0.10
120
5.0
1
1
240
121
Back
133.35
128.95
Registering
Clock Driver
SPD/TS
1.27
±010
mm
Side
max
3.64mm max
0.35
2.50
±
0.20
1.00
0.80± 0.05
Detail of Contacts B
1.50 ±0.10
Detail of Contacts C
0.3
±
0.15
0.3+0.1
5.00
3.80
2.50
2.50
±
0.20
3± 0.1
1.20
±
0.15
Detail of Contacts A
Detail A
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
30.00
9.50
17.30
23.30
2x R0.75 Max
Rev. 1.0 / May. 2014 67
Page 68

1Gx72 - HMT41GR7BFR8A

5.175
Detail B
Detail C
2.10±0.15
47.00
71.00
2X3.00±0.10
Front
1
4X3.00±0.10
120
5.0
1
1
240
121
Back
133.35
128.95
Registering
Clock Driver
SPD/TS
1.27
±010
mm
Side
max
3.64mm max
0.35
2.50
±
0.20
1.00
0.80± 0.05
Detail of Contacts B
1.50 ±0.10
Detail of Contacts C
0.3
±
0.15
0.3+0.1
5.00
3.80
2.50
2.50
±
0.20
3± 0.1
1.20
±
0.15
Detail of Contacts A
Detail A
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
30.00
9.50
17.30
23.30
2x R0.75 Max
Rev. 1.0 / May. 2014 68
Page 69
30.00
9.50
17.30
23.30
5.175 Detail C
Detail D
2.10±0.15
47.00
71.00
2X3.00±0.10
Front
1
120
5.0
1
1
240
121
Back
133.35
128.95
Registering
Clock Driver
SPD/TS
4X3.00±0.10
1.27
±010
mm
Side
max
3.64mm max
0.20
2.50
±
0.20
1.00
0.80± 0.05
Detail of Contacts C
1.50 ±0.10
Detail of Contacts D
0.3
±
0.15
0.3~0.1
5.00
3.80
2.50
2.50
±
0.20
3± 0.1
1.20
±
0.15
0.4
13.60
14.90
Detail of Contacts A
Detail of Contacts B
Detail B
Detail A
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
2x R0.75 Max

2Gx72 - HMT42GR7BFR4A

Rev. 1.0 / May. 2014 69
Page 70

2Gx72 - HMT42GR7BFR4A - Heat Spreader

Front
30.20
120
Back
133.35
22.00
Registering
Clock Driver
127
121
Registering
Clock Driver
1.27
±010
mm
Side
max
7.65mm max
1
240
133.75
14.214
2.786
6.35
36.7
42.7
20.9
10
33.4 33.4
3.69
5.39
6.3
7.36
46.46
80.54
2.15
57.2
7.74
119.64
2.7
15.36
22.00
8
Note:
1. tolerance on all dimensions unless otherwise stated.
2.In order to uninstall FDHS, please contact sales administrator.
0.13
Units: millimeters
2x R0.75 Max
Rev. 1.0 / May. 2014 70
Page 71
30.00
9.50
17.30
23.30
5.175 Detail C
Detail D
±
0.15
47.00
71.00
±
0.10
Front
1
120
5.0
1
1
240
121
Back
133.35
128.95
Registering
Clock Driver
SPD/TS
Registering
Clock Driver
4X3.00±0.10
1.27
±010
mm
Side
max
3.64mm max
0.20
2.50
±
0.20
1.00
0.80± 0.05
Detail of Contacts C
1.50 ±0.10
Detail of Contacts D
0.3
±
0.15
0.3~0.1
5.00
3.80
2.50
2.50
±
0.20
3± 0.1
1.20
±
0.15
0.4
13.60
14.90
Detail of Contacts A
Detail of Contacts B
Detail A
Detail B
DDP DDP DDP DDP DDP
DDP DDP DDP DDP DDP
DDP DDP DDP DDP
DDP DDP DDP DDP
DDP DDP DDP
DDP
DDP DDP DDP DDP
DDP DDP DDP DDP DDP
DDP DDP DDP DDP DDP
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
SPD/TS
2x R0.75 Max

4Gx72 - HMT84GR7BMR4A

Rev. 1.0 / May. 2014 71
Page 72

4Gx72 - HMT84GR7BMR4A - Heat Spreader

Front
30.20
120
Back
133.35
22.00
Registering
Clock Driver
127
121
Registering
Clock Driver
1.27
±010
mm
Side
max
7.65mm max
1
240
133.75
14.214
2.786
6.35
36.7
42.7
20.9
10
33.4 33.4
3.69
5.39
6.3
7.36
46.46
80.54
2.15
57.2
7.74
119.64
2.7
15.36
22.00
8
Note:
1. tolerance on all dimensions unless otherwise stated.
2.In order to uninstall FDHS, please contact sales administrator.
0.13
Units: millimeters
2x R0.75 Max
Rev. 1.0 / May. 2014 72
Loading...