SK hynix HMA851S6CJR6N, HMA81GS6CJR8N, HMA81GS7CJR8N, HMA82GS6CJR8N, HMA82GS7CJR8N User Manual

Page 1
260pin DDR4 SDRAM SODIMM
DDR4 SDRAM SO-DIMM
Based on 8Gb C-die
HMA851S6CJR6N HMA81GS6CJR8N HMA81GS7CJR8N HMA82GS6CJR8N HMA82GS7CJR8N
*SK hynix reserves the right to change products or specifications without notice.
Rev. 1.5 / Jun.2018 1
Page 2
Revision No. History Draft Date Remark
0.1 Initial Release Jul.2017
1.0 IDD spec update Aug.2017
1.1 Changed features (Temperature s for ECC SODIMM)
CS released for 2666 non-ECC SODIMM
1.2 Corrected module dimensions P/N Feb.2018
1.3 Updated JEDEC Specification Apr.2018
1.4 Speed bin table note update Apr.2018
1.5 Define IDD specification(2666)
Modify IDD specification table /
Updated JEDEC specification
ensor with integrated SPD
Sep.2017
Jun.2018
Rev. 1.5 / Jun.2018 2
Page 3

Description

SK hynix Unbuffered Small Outline DDR4 SDRAM DIMMs (Unbuffered Small Outine Double Data Rate Syn­chronous DRAM Dual In-Line Memory Modules) are low power, high-speed operation memory modules that use DDR4 SDRAM devices. These DDR4 SDRAM Unbuffered Small Outline DIMMs are intended for use as main memory when installed in systems such as micro servers and mobile personal computres.

Features

• Power Supply: VDD=1.2V (1.14V to 1.26V)
• VDDQ = 1.2V (1.14V to 1.26V)
• VPP - 2.5V (2.375V to 2.75V)
• VDDSPD=2.25V to 3.6V
• Functionality and operations comply with the DDR4 SDRAM datasheet
• 16 internal banks
• Bank Grouping is applied, and CAS to CAS latency (tCCD_L, tCCD_S) for the banks in the same or dif­ferent bank group accesses are available
• Data transfer rates: PC4-3200, PC4-2933, PC4-2666, PC4-2400, PC4-2133, PC4-1866, PC4-1600
• Bi-Directional Differential Data Strobe
• 8 bit pre-fetch
• Burst Length (BL) switch on-the-fly BL8 or BC4(Burst Chop)
• Supports ECC error correction and detection
• On-Die Termination (ODT)
• Temperature sensor with integrated SPD for ECC SODIMM
• This product is in compliance with the RoHS directive.
• Per DRAM Addressability is supported
• Internal Vref DQ level generation is available

Ordering Information

Part Number Density Organization Component Composition
HMA851S6CJR6N- UH/VK 4GB 512Mx64 512Mx16(H5AN8G6NCJR)*4 1
HMA81GS6CJR8N-UH/VK 8GB 1Gx64 1Gx8(H5AN8G8NCJR)*8 1
HMA81GS7CJR8N-VK 8GB 1Gx72 1Gx8(H5AN8G8NCJR)*9 1
HMA82GS6CJR8N-UH/VK 16GB 2Gx64 1Gx8(H5AN8G8NCJR)*16 2
HMA82GS7CJR8N-VK 16GB 2Gx72 1Gx8(H5AN8G8NCJR)*18 2
Rev. 1.5 / Jun.2018 3
# of
ranks
Page 4

Key Parameters

MT/s Grade
DDR4-1600 -PB 1.25 11
DDR4-1866 -RD 1.071 13
DDR4-2133 -TF 0.937 15
DDR4-2400 -UH 0.833 17
DDR4-2666 -VK 0.75 19
DDR4-2933 -WM 0.682 21
DDR4-3200 -XN 0.625 22 13.75 13.75 32 47.0 22-22-22
*SK hynix DRAM devices support optional downbinning to CL21, CL19, CL17, CL15, CL13 and CL11. SPD setting is pro­grammed to match.
tCK
(ns)
CAS
Latency
(tCK)
tRCD
(ns)
13.75
(13.50)*
13.92
(13.50)*
14.06
(13.50)*
14.16
(13.75)*
14.25
(13.75)*
14.32
(13.75)*
tRP
(ns)
13.75
(13.50)*
13.92
(13.50)*
14.06
(13.50)*
14.16
(13.75)*
14.25
(13.75)*
14.32
(13.75)*
tRAS
(ns)
35
34
33
32
32
32
tRC
(ns)
48.75
(48.50)*
47.92
(47.50)*
47.06
(46.50)*
46.16
(45.75)*
46.25
(45.75)*
46.32
(45.75)*
CL-tRCD-tRP
11-11-11
13-13-13
15-15-15
17-17-17
19-19-19
21-21-21

Address Table

4GB(1Rx16) 8GB(1Rx8) 16GB(2Rx8)
# of Bank Groups 244
Bank Address
Row Address A0~A15 A0~A15 A0~A15
Column Address A0~ A9 A0~ A9 A0~ A9
Page size 2KB 1 KB 1 KB
Rev. 1.5 / Jun.2018 4
BG Address BG0 BG0~BG1 BG0~BG1
Bank Address in a BG BA0~BA1 BA0~BA1 BA0~BA1
Page 5

Pin Descriptions

Pin Name Description Pin Name Description
A0-A16
SDRAM address bus SCL
BA0, BA1 SDRAM bank select SDA
BG0, BG1 SDRAM bank group select SA0-SA2
1
RAS_n
2
CAS_n
3
WE_n
CS0_n, CS1_n,
CS2_n, CS3_n
SDRAM row address strobe PARITY SDRAM parity input
SDRAM column address strobe VDD SDRAM I/O & core power supply
SDRAM write enable VPP SDRAM activating power supply
Rank Select Lines C0, C1 Chip ID lines for 3DS components
CKE0, CEK1 SDRAM clock enable lines VREFCA
2
C serial bus clock for SPD/TS
I
2
C serial bus data line for SPD/TS
I
2
I
C slave address select for SPD/TS
SDRAM command/address reference supply
ODT0, ODT1 SDRAM on-die termination control lines VSS Power supply return (ground)
ACT_n SDRAM activate VDDSPD Serial SPD/TS positive power supply
DQ0-DQ63 DIMM memory data bus ALERT_n SDRAM ALERT_n
CB0-CB7 DIMM ECC check bits
DQS0_t-DQS8_t
DQS0_c-DQS8_c
DM0_n-DM8_n, DBI0_n-DBI8_n
CK0_t, CK1_t
CK0_c, CK1_c
SDRAM data strobes
(positive line of differential pair)
SDRAM data strobes
(negative line of differential pair)
SDRAM data masks/data bus inversion
(x8-based x72 DIMMs)
SDRAM clocks (positive line of differen­tial pair)
SDRAM clocks (negative line of differ­ential pair)
RESET_n Set SDRAMs to a Known State
EVENT_n
VTT
SPD signals a thermal event has occurred
Termination supply for the Address, Command and Control bus
NC No connection
1. RAS_n is a multiplexed function with A16.
2. CAS_n is a multiplexed function with A15.
3. WE_n is a multiplexed function with A14.
Rev. 1.5 / Jun.2018 5
Page 6

Input/Output Functional Descriptions

Symbol Type Function
CK0_t, CK0_c,
CK1_t, CK1_c
CKE0, CKE1 Input
CS0_n, CS1_n,
CS2_n, CS3_n
C0, C1
ODT0, ODT1
ACT_n
Input
Input
Input
Input
Input
Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK_t and negative edge of CK_c.
Clock Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals and device input buffers and output drivers. Taking CKE LOW provides Precharge Power­Down and Self-Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is synchronous for Self-Refresh exit. After VREFCA and Internal DQ Vref have become stable during the power on and initialization sequence, they must be maintained during all operations (including Self-Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK_t, CK_c, ODT and CKE, are disabled during power-down. Input buffers, excluding CKE, are disabled during Self­Refresh.
Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank selection on systems with multiple Ranks. CS_n is considered part of the command code.
Chip ID: Chip ID is only used for 3DS for 2 and 4 high stack via TSV to select each slice of stacked component. Chip ID is considered part of the command code.
On-Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance internal to the DDR4 SDRAM. When enabled, ODT is only applied to each DQ, DQS_t, DQS_c and DM_n/DBI_n, signal. The ODT pin will be ignored if MR1 is programmed to disable RTT_NOM.
Activation Command Input: ACT_n defines the Activation command being entered along with CS_n. The input into RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as Row Address A16, A15, and A14.
Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the RAS_n/A16, CAS_n/A15,
WE_n/A14
DM_n/DBI_n
BG0-BG1
BA0-BA1
Rev. 1.5 / Jun.2018 6
Input
Input/
Output
Input
Input
command being entered. Those pins have multi function. For example, for activation
with ACT_n Low, these are Addresses like A16, A15, and A14 but for non-activation
command with ACT_n High, these are Command pins for Read, Write, and other
command defined in command truth table.
Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data.
Input data is masked when DM_n is sampled LOW coincident with that input data during
a Write access. DM_n is sampled on both edges of DQS. DM is muxed with DBI function.
DBI_n is an input/output identifying wherther to store/output the true or inverted data.
If DBI_n is LOW, the data will be stored/output after inversion inside the DDR4 SDRAM
and not inverted if DBI_n is HIGH.
Bank Group Inputs: BG0 - BG1 define which bank group an Active, Read, Write, or
Precharge command is being applied. BG0 also determines which mode register is to be
accessed during a MRS cycle. For x4/8 based SDRAMs, BG0 and BG1 are valid. For x16
based SDRAM components, only BG0 is valid.
Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write, or
Precharge command is being applied. Bank address also determines which mode
register is to be accessed during a MRS cycle.
Page 7
Symbol Type Function
Address Inputs: Provide the row address for ACTIVATE Commands and the column
address for Read/Write commands to select one location out of the memory array in the
A0 - A16
Input
respective bank. A10/AP, A12/BC_n, RAS_n/A16, CAS_n/A15, and WE_n/A14 have
additional functions. See other rows. The address inputs also provide the op-code during
Mode Register Set commands.
Auto-precharge: A10 is sampled during Read/Write commands to determine whether
Autoprecharge should be performed to the accessed bank after the Read/Write
A10 / AP
Input
operation. (HIGH: Autoprecharge; LOW: no Autoprecharge). A10 is sampled during a
Precharge command to determine whether the Precharge applies to one bank (A10
LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected
by bank addresses.
Burst Chop: A12/BC_n is sampled during Read and Write commands to determine if
A12 / BC_n
Input
burst chop (on-the-fly) will be performed. (HIGH, no burst chop; LOW: burst chopped).
See command truth table for details.
RESET_n
DQ
DQS_t, DQS_c,
PARITY
ALERT_n
SA0-SA1
CMOS
Input
Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive
when RESET_n is HIGH. RESET_n must be HIGH during normal operation.
Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then
Input / Output
CRC code is added at the end of Data Burst. Any DQ from DQ0-DQ3 may indicate the
internal Vref level during test via Mode Register Setting MR4 A4=High. Refer to vendor
specific data sheets to determine which DQ is used.
Input / Output
Data Strobe: output with read data, input with write data. Edge-aligned with read data,
centered in write data. DDR4 SDRAMs support differential data strobe only and does not
support single-ended.
Command and Address Parity Input : DDR4 Supports Even Parity check in DRAMs with
MR setting. Once it’s enabled via Register in MR5, then DSRAM calculates Parity with
Input
ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, BG0-BG1, BA0-BA1, A16-A0. Input parity
should be maintained at the rising edge of the clock and at the same time with
command & address with CS_n LOW.
ALERT: It has multiple functions, such as CRC error flag or Command and Address Parity
error flag, as an Output signal. If there is an error in CRC, then ALERT_n goes LOW for
the period time interval and goes back HIGH. If there is an error in Command Address
Output
Parity Check, then ALERT_n goes LOW for relatively long period until on going DRAM
internal recovery transaction is complete.
During Connectivity Test mode, this pin functions as an input.
Use of this signal or not is dependent on the system.
Input Device address for the SPD.
RFU
NC
1
VDD
VSS
2
VTT
Rev. 1.5 / Jun.2018 7
Supply
Supply
Supply
Reserved for Future Use. No on DIMM electrical connection is present.
No Connect: No on DIMM electrical connection is present.
Power Supply: 1.2 V +/- 0.06 V
Ground
Power Supply : 0.6V
Page 8
Symbol Type Function
VPP
VREFCA
VDDSPD
Supply
Supply
Supply
DRAM Activating Power Supply: 2.5V (2.375V min , 2.75V max)
Reference voltage for CA
Power supply used to power the I2C bus on the SPD.
Note:
1. For PC4, VDD 1.2V. For PC4L VDD is TBD.
2. For PC4, VTT is 0.6V. For PC4L VTT is TBD.
Rev. 1.5 / Jun.2018 8
Page 9

Pin Assignments

Pin
1 VSS 2 VSS 131 A3 132 A2
3DQ54
5
7 DQ1 8 DQ0 137 CK0_t 138 CK1_t
9VSS10
11
13 DQS0_t 14 VSS 143 PARITY 144 A0
15
17 DQ7 18 VSS
19 VSS 20
21
23 VSS 24 DQ12 149 CS0_n 150 BA0
25 DQ13 26
27
29 DQ9 30 VSS 155 ODT0 156 A15/CAS_n
31 VSS 32
33 DM1_n, DBI1_n 34 DQS1_t 159 VDD 160 VDD
35 VSS 36 VSS 161 ODT1 162 C0, CS2_n, NC
37 DQ15 38
39
41 DQ10 42 DQ11 167 VSS 168 VSS
43 VSS 44
45
47 VSS 48 VSS 173 DQ33 174 DQ32
49 DQ17 50
51
53 DQS2_c 54 DM2_n, DBI2_n 179 DQS4_t 180 VSS
55 DQS2_t 56
57
59 DQ23 60 VSS 185 VSS 186 DQ35
61 VSS 62
63
65 VSS 66 DQ28 191 DQ44 192 VSS
67 DQ29 68
69
71 DQ25 72 VSS 197 VSS 198 DQS5_c
73 VSS 74
75 DM3_n, DBI3_n 76 DQS3_t 201
Front Side
Pin Label
VSS
DQS0_
C
VSS
DQ3
VSS
VSS
DQ21
VSS
VSS
DQ19
VSS
Pin
6 VSS 135
12 DM0_n, DBI0_n 141
16 DQ6
22 VSS 147 VDD 148 VDD
28 DQ8 153 VDD 154 VDD
40 VSS 165
46 DQ20 171
52 VSS 177
58 DQ22 183
64 VSS 189
70 DQ24 195
Back Side
Pin Label
DQ4
VSS
DQ2
VSS
DQS1_
C
DQ14
VSS
DQ16
VSS
DQ18
VSS
DQS3_c
Pin
133 A1 134
139 CK0_c 140
145 BA1 146 A10/AP
151 A14/WE_n 152 A16/RAS_n
157 CS1_n 158 A13
163 VDD 164
169 DQ37 170
175 VSS 176
181 VSS 182
187 DQ34 188
193 VSS 194
199 DM5_n, DBI5_n 200
Front Side
Pin Label
VDD
VDD
C1, CS3
_n, NC
VSS
DQS4_
C
DQ38
VSS
DQ40
VSS
Pin
136 VDD
142 VDD
KEY
166 SA2
172 VSS
178 DM4_n, DBI4_n
184 VSS
190 DQ45
196 VSS
202 VSS
Back Side
Pin Label
EVENT_
n
CK1_
C
VREFCA
DQ36
VSS
DQ39
VSS
DQ41
DQS5
_t
Rev. 1.5 / Jun.2018 9
Page 10
Pin
77 VSS 78 VSS 203 DQ46 204 DQ47
79 DQ30 80
81
83 DQ26 84 DQ27 209 VSS 210 VSS
85 VSS 86
87
89 VSS 90 VSS 215 DQ49 216 DQ48
91 CB1, NC 92
93
95 DQS8_c 96 DM8_n, DBI8_n 221 DQS6_t 222 VSS
97 DQS8_t 98 VSS 223 VSS 224 DQ54
99 VSS 100 CB6, NC 225
101 CB2, NC 102 VSS 227 VSS 228 DQ50
103 VSS 104 CB7, NC 229 DQ51 230
105 CB3, NC 106 VSS 231
107 VSS 108 RESET_n 233 DQ61 234 VSS
109 CKE0 110 CKE1 235 VSS 236
111 VDD 112 VDD 237
113 BG1 114 ACT_n 239 VSS 240 DQS7_c
115 BG0 116 ALERT_n 241 DM7_n, DBI7_n 242 DQS7_t
117 VDD 118 VDD 243
119 A12 120 A11 245 DQ62 246 DQ63
121 A9 122 A7 247 VSS 248 VSS
123 VDD 124 VDD 249 DQ58 250 DQ59
125 A8 126 A5 251 VSS 252 VSS
127 A6 128 A4 253 SCL 254 SDA
129 VDD 130 VDD 255 VDDSPD 256 SA0
Front Side
Pin Label
VSS
CB5, NC
VSS
Pin
82 VSS 207
88 CB4, NC 213
94 VSS 219
Back Side
Pin Label
DQ31
VSS
CB0, NC
Pin
205 VSS 206
211 DQ52 212
217 VSS 218
257 VPP 258 VTT
259 VPP 260 SA1
Front Side
Pin Label
DQ42
VSS
DQS6_
C
DQ55
VSS
DQ56
VSS
Pin
208 DQ43
214 VSS
220 DM6_n, DBI6_n
226 VSS
232 DQ60
238 VSS
244
Back Side
Pin Label
VSS
DQ53
VSS
VSS
DQ57
VSS
Rev. 1.5 / Jun.2018 10
Page 11

Functional Block Diagram

VSS
CK0_t, CK0_c
A[16:0], BA[1:0]
CS0_n
ACT_n, PARITY,BG[0]
ODT0
CKE0
D0–D4
V
PP
V
DD
V
DDSPD
D0–D4
VREFCA
SPD
V
TT
V
SS
D0–D4
D0–D4
Note:
1. Unless otherwize noted, resistor values are 15Ω±5%.
2. ZQ resistors are 240
Ω±1%.For all other resistor values refer to the appropriate wiring diagram.
3. CK1_t, CK1_c terminated with 75
Ω±5% resistor.
D0
ZQ
CKE
ODT
CS_n
Address
CK
DQS0_t
DQS0_c
DQ [7:0]
DQSL_t DQSL_c DQL[7:0]
DM1_n/DBI1_n DM_n/DBI_n
DM0_n/DBI0_n DM_n/DBI_n
DQS1_t
DQS1_c
DQ [15:8]
DQSU_t DQSU_c DQU[7:0]
VSS
D1
ZQ
CKE
ODT
CS_n
Address
CK
DQS2_t
DQS2_c
DQ [23:16]
DQSL_t DQSL_c DQL[7:0]
DM3_n/DBI3_n DM_n/DBI_n
DM2_n/DBI2_n DM_n/DBI_n
DQS3_t
DQS3_c
DQ [15:8]
DQSU_t DQSU_c DQU[7:0]
VSS
D2
ZQ
CKE
ODT
CS_n
Address
CK
DQS4_t
DQS4_c
DQ [39:32]
DQSL_t DQSL_c DQL[7:0]
DM5_n/DBI5_n DM_n/DBI_n
DM4_n/DBI4_n DM_n/DBI_n
DQS5_t
DQS5_c
DQ [47:40]
DQSU_t DQSU_c DQU[7:0]
VSS
D3
ZQ
CKE
ODT
CS_n
Address
CK
DQS6_t
DQS6_c
DQ [55:48]
DQSL_t DQSL_c DQL[7:0]
DM7_n/DBI7_n DM_n/DBI_n
DM6_n/DBI6_n DM_n/DBI_n
DQS7_t
DQS7_c
DQ [63:56]
DQSU_t DQSU_c DQU[7:0]
A0
Serial PD
A1
SA0 SA1
SDA
SCL
NC
A2
SA2

4GB, 512Mx64 Module(1Rank of x16)

Rev. 1.5 / Jun.2018 11
Page 12

8GB, 1Gx64 Module(1Rank of x8)

DQS2_t
DQS2_c
DQ [23:16]
DQS_t DQS_c DQ [7:0]
D1
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM2_n/DBI2_n DM_n/DBI_n
DQS0_t
DQS0_c
DQ [7:0]
DQS_t DQS_c DQ [7:0]
D0
ZQ
CKE
ODT
CS_n
VSS
Addressr
CK
DM0_n/DBI0_n DM_n/DBI_n
DQS1_t
DQS1_c
DQ [15:8]
DQS_t DQS_c DQ [7:0]
D7
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM1_n/DBI1_n DM_n/DBI_n
DQS3_t
DQS3_c
DQ [31:24]
DQS_t DQS_c DQ [7:0]
D6
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM3_n/DBI3_n DM_n/DBI_n
CK0_t, CK0_c
A[16:0], BA[1:0]
CS0_n
ACT_n, PARITY,BG[1:0]
ODT0
CKE0
D0–D7
V
PP
V
DD
V
DDSPD
D0–D7
VREFCA
SPD
V
TT
V
SS
D0–D7
D0–D7
Note:
1. Unless otherwize noted, resistor values are 15Ω±5%.
2. ZQ resistors are 240
Ω±1%.For all other resistor values refer to the appropriate wiring diagram.
3. To connect the SPD A2 input to the edge connector pin 166 install R1. To tie the SPD input A2 to ground install R2. Do not install both R1 and R2. The values for R1 and R2 are not critical. Any value less than 100 Ohms may be used.
A0
Serial PD
A1
SA0 SA1
SDA
SCL
NC
SA2 (pin 166)
A2
EVENT_n
DQS4_t
DQS4_c
DQ [39:32]
DQS_t DQS_c DQ [7:0]
D5
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM4_n/DBI4_n DM_n/DBI_n
DQS6_t
DQS6_c
DQ [55:48]
DQS_t DQS_c DQ [7:0]
D4
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM6_n/DBI6_n DM_n/DBI_n
DQS7_t
DQS7_c
DQ [63:56]
DQS_t DQS_c DQ [7:0]
D3
ZQ
CKE
ODT
CS_n
VSS
Addressr
CK
DM7_n/DBI7_n DM_n/DBI_n
DQS5_t
DQS5_c
DQ [47:40]
DQS_t DQS_c DQ [7:0]
D2
ZQ
CKE
ODT
CS_n
VSS
Addressr
CK
DM5_n/DBI5_n DM_n/DBI_n
VSS
R1
R2
Rev. 1.5 / Jun.2018 12
Page 13

8GB, 1Gx72 Module(1Rank of x8)

DQS8_t DQS8_c CB[7:0]
DQS_t DQS_c DQ [7:0]
D6
ZQ
D0–D8
V
PP
V
DD
V
DDSPD
D0–D8
VREFCA
SPD
V
TT
V
SS
D0–D8
D0–D8
Note:
1. Unless otherwize noted, resistor values are 15Ω±5%.
2. ZQ resistors are 240
Ω±1%.For all other resistor values refer to the appropriate wiring diagram.
3. To connect the SPD A2 input to the edge connector pin 166 install R1. To tie the SPD input A2 to ground install R2. Do not install both R1 and R2. The values for R1 and R2 are not critical. Any value less than 100 Ohms may be used.
CKE
ODT
CS_n
VSS
CK1_t, CK1_c
A[16:0], BA[1:0]
CS0_n
A,BA,BG,Par
CK
DM8_n/DBI8_n DM_n/DBI_n
DQS4_t DQS4_c
DQ [39:32]
DQS_t DQS_c DQ [7:0]
D5
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
CK
DM4_n/DBI4_n DM_n/DBI_n
DQS6_t DQS6_c
DQ [55:48]
DQS_t DQS_c DQ [7:0]
D4
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
CK
DM6_n/DBI6_n DM_n/DBI_n
DQS7_t DQS7_c
DQ [63:56]
DQS_t DQS_c DQ [7:0]
D3
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
CK
DM7_n/DBI7_n DM_n/DBI_n
ACT_n, PARITY,BG[1:0]
ODT0
CKE0
DQS2_t
DQS2_c
DQ [23:16]
DQS_t DQS_c DQ [7:0]
D1
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
CK
DM2_n/DBI2_n DM_n/DBI_n
DQS0_t
DQS0_c
DQ [7:0]
DQS_t DQS_c DQ [7:0]
D0
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
CK
DM0_n/DBI0_n DM_n/DBI_n
DQS1_t
DQS1_c
DQ [15:8]
DQS_t DQS_c DQ [7:0]
D8
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
CK
DM1_n/DBI1_n DM_n/DBI_n
DQS3_t
DQS3_c
DQ [31:24]
DQS_t DQS_c DQ [7:0]
D7
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
CK
DM3_n/DBI3_n DM_n/DBI_n
DQS5_t DQS5_c
DQ [47:40]
DQS_t DQS_c DQ [7:0]
D2
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
CK
DM5_n/DBI5_n DM_n/DBI_n
CK0_t, CK0_c
A[16:0], BA[1:0]
CS0_n
ACT_n, PARITY,BG[1:0]
ODT0
CKE0
A0
Serial PD with Thermal sensor
A1
SA0 SA1
SDA
SCL
EVENT_n/NC
pin 166
A2
EVENT_n
VSS
R1
R2
Rev. 1.5 / Jun.2018 13
Page 14

16GB, 2Gx64 Module(2Rank of x8) - page1

DQS2_t DQS2_c
DQ [23:16]
DQS_t DQS_c DQ [7:0]
D5
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM2_n/DBI2_n DM_n/DBI_n
DQS0_t DQS0_c
DQ [7:0]
DQS_t DQS_c DQ [7:0]
D4
ZQ
CKE
ODT
CS_n
VSS
Addressr
CK
DM0_n/DBI0_n DM_n/DBI_n
DQS1_t DQS1_c
DQ [15:8]
DQS_t DQS_c DQ [7:0]
D0
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM1_n/DBI1_n DM_n/DBI_n
DQS3_t DQS3_c
DQ [31:24]
DQS_t DQS_c DQ [7:0]
D1
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM3_n/DBI3_n DM_n/DBI_n
CK0_t, CK0_c
A[16:0], BA[1:0]
CS0_n
ACT_n, PARITY,BG[1:0]
ODT0
CKE0
DQS_t DQS_c DQ [7:0]
D14
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM_n/DBI_n
DQS_t DQS_c DQ [7:0]
D15
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM_n/DBI_n
DQS_t DQS_c DQ [7:0]
D11
ZQ
CKE
ODT
CS_n
VSS
Addressr
CK
DM_n/DBI_n
DQS_t DQS_c DQ [7:0]
D10
ZQ
CKE
ODT
CS_n
VSS
Addressr
CK
DM_n/DBI_n
CK1_t, CK1_c
A[16:0], BA[1:0]
CS1_n
ACT_n, PARITY,BG[1:0]
ODT1
CKE1
Rev. 1.5 / Jun.2018 14
Page 15

16GB, 2Gx64 Module(2Rank of x8) - page2

DQS4_t DQS4_c
DQ [39:32]
DQS_t DQS_c DQ [7:0]
D2
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM4_n/DBI4_n DM_n/DBI_n
DQS6_t DQS6_c
DQ [55:48]
DQS_t DQS_c DQ [7:0]
D3
ZQ
CKE
ODT
CS_n
VSS
Addressr
CK
DM6_n/DBI6_n DM_n/DBI_n
DQS7_t DQS7_c
DQ [63:56]
DQS_t DQS_c DQ [7:0]
D7
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM7_n/DBI7_n DM_n/DBI_n
DQS5_t DQS5_c
DQ [47:40]
DQS_t DQS_c DQ [7:0]
D6
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM5_n/DBI5_n DM_n/DBI_n
CK0_t, CK0_c
A[16:0], BA[1:0]
CS0_n
ACT_n, PARITY,BG[1:0]
ODT0
CKE0
D0–D15
V
PP
V
DD
V
DDSPD
D0–D15
VREFCA
SPD
V
TT
V
SS
D0–D15
D0–D15
Note:
1. Unless otherwize noted, resistor values are 15Ω±5%.
2. ZQ resistors are 240
Ω±1%.For all other resistor values refer to the appropriate wiring diagram.
3. SDRAMs for ODD ranks (D8 to D15), which are placed on the back side of the module use the address mirroing for A4-A3, A6-A5, A8-A7, A13-A11, BA1-BA0 and BG1-BG0. More detail can be found in the DDR4 SODIMM Common Section of the Design Specification.
A0
Serial PD
A1
SA0 SA1
SDA
SCL
A2
DQS_t DQS_c DQ [7:0]
D9
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM_n/DBI_n
DQS_t DQS_c DQ [7:0]
D8
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM_n/DBI_n
DQS_t DQS_c DQ [7:0]
D12
ZQ
CKE
ODT
CS_n
VSS
Addressr
CK
DM_n/DBI_n
DQS_t DQS_c DQ [7:0]
D13
ZQ
CKE
ODT
CS_n
VSS
Addressr
CK
DM_n/DBI_n
CK1_t, CK1_c
A[16:0], BA[1:0]
CS1_n
ACT_n, PARITY,BG[1:0]
ODT1
CKE1
SA2
Rev. 1.5 / Jun.2018 15
Page 16

16GB, 2Gx72 Module(2Rank of x8)

DQS0_t
DQS0_c
DQ [7:0]
DQS_t DQS_c DQ [7:0]
D1
ZQ
D0–D17
V
PP
V
DD
V
DDSPD
D0–D17
VREFCA
SPD
V
TT
V
SS
D0–D17
D0–D17
Note:
1. DQ-to-I/O wiring is shown as recommended but may be changed.
2. Unless otherwize noted, resistor values are 15
Ω±5%.
3. See the Net Structure diagrams for all resistors associated with the command, address and control bus.
4. ZQ resistors are 240
Ω±1%.For all other resistor values refer to the appropriate wiring diagram.
CKE
ODT
CS_n
VSS
CK0_t, CK0_c
PARITY
CS0_n
A,BA,BGACT
PAR
DM0_n/DBI0_n DM_n/DBI_n
DQS1_t
DQS1_c
DQ [15:8]
DQS_t DQS_c DQ [7:0]
D2
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM1_n/DBI1_n DM_n/DBI_n
DQS2_t
DQS2_c
DQ [23:16]
DQS_t DQS_c DQ [7:0]
D0
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM2_n/DBI2_n DM_n/DBI_n
DQS3_t
DQS3_c
DQ [31:24]
DQS_t DQS_c DQ [7:0]
D3
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM3_n/DBI3_n DM_n/DBI_n
A[16:0],BA[1:0],BG[1:0],ACT_n
ODT0
CKE0
DQS4_t
DQS4_c
DQ [39:32]
DQS_t DQS_c DQ [7:0]
D5
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM4_n/DBI4_n DM_n/DBI_n
CK1_t, CK1_c
CS1_n
ODT1
CKE1
CK CK CK CK CK
A0
Serial PD with Thermal sensor
A1
SA0 SA1
SDA
SCL
EVENT_n
A2
SA2
DQS5_t
DQS5_c
DQ [47:40]
DQS_t DQS_c DQ [7:0]
D8
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM5_n/DBI5_n DM_n/DBI_n
DQS6_t
DQS6_c
DQ [55:48]
DQS_t DQS_c DQ [7:0]
D6
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM6_n/DBI6_n DM_n/DBI_n
DQS7_t
DQS7_c
DQ [63:56]
DQS_t DQS_c DQ [7:0]
D7
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM7_n/DBI7_n DM_n/DBI_n
DQS8_t
DQS8_c CB [7:0]
DQS_t DQS_c DQ [7:0]
D4
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM8_n/DBI8_n DM_n/DBI_n
CK CK CK CK
DQS_t DQS_c DQ [7:0]
D10
ZQ
CKE
ODT
CS_n
VSS
A,BA,BGACT
PAR
DM_n/DBI_n
DQS_t DQS_c DQ [7:0]
D11
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM_n/DBI_n
DQS_t DQS_c DQ [7:0]
D9
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM_n/DBI_n
DQS_t DQS_c DQ [7:0]
D12
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM_n/DBI_n
DQS_t DQS_c DQ [7:0]
D14
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM_n/DBI_n
CK CK CK CK CK
DQS_t DQS_c DQ [7:0]
D17
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM_n/DBI_n
DQS_t DQS_c DQ [7:0]
D15
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM_n/DBI_n
DQS_t DQS_c DQ [7:0]
D16
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM_n/DBI_n
DQS_t DQS_c DQ [7:0]
D13
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM_n/DBI_n
CK CK CK CK
EVENT_n
Rev. 1.5 / Jun.2018 16
Page 17

Absolute Maximum Ratings

Absolute Maximum DC Ratings

Absolute Maximum DC Ratings
Symbol Parameter Rating Units NOTE
VDD
VDDQ
VPP
V
IN, VOUT
T
STG
NOTE :
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indi­cated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300 mV of each other at all times;and VREFCA must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500 mV; VREFCA may be equal to or less than 300 mV
4. VPP must be equal or greater than VDD/VDDQ at all times
5. Overshoot area above 1.5V is specified in DDR4 Device Operation.
Voltage on VDD pin relative to Vss
Voltage on VDDQ pin relative to Vss
Voltage on VPP pin relative to Vss
Voltage on any pin except VREFCA relative to Vss
Storage Temperature
-0.3 ~ 1.5 V 1,3
-0.3 ~ 1.5 V 1,3
-0.3 ~ 3.0 V 4
-0.3 ~ 1.5 V 1,3,5
-55 to +100 °C 1,2

DRAM Component Operating Temperature Range

Temperature Range
Symbol Parameter Rating Units Notes
T
OPER
NOTE:
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measure­ment conditions, please refer to the JEDEC document JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0 - 85 tions.
3. Some applications require operation of the DRAM in the Extended Temperature Range between 85 case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:
Normal Operating Temperature Range
Extended Temperature Range
a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It is
also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range. Please refer to the DIMM SPD for option availability
b. If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use
the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b).
0 to 85
85 to 95
o
C under all operating condi-
o
C 1,2
o
C1,3
o
C and 95oC
Rev. 1.5 / Jun.2018 17
Page 18

AC & DC Operating Conditions

Recommended DC Operating Conditions

Recommended DC Operating Conditions
Symbol Parameter
VDD Supply Voltage 1.14 1.2 1.26 V 1,2,3
VDDQ Supply Voltage for Output 1.14 1.2 1.26 V 1,2,3
VPP Supply Voltage for DRAM Activating 2.375 2.5 2.75 V 3
NOTE:
Min. Typ. Max.
1. Under all conditions VDDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.
3. DC bandwidth is limited to 20MHz.
Rating
Unit NOTE
Rev. 1.5 / Jun.2018 18
Page 19

AC & DC Input Measurement Levels

AC & DC Logic input levels for single-ended signals

Single-ended AC & DC input levels for Command and Address
DDR4-1600/1866/2133/
Symbol Parameter
2400
Min. Max. Min. Max.
+
V
V
V
IH.CA
V
IL.CA
IH.CA
IL.CA
(DC75)
(DC75)
(AC100)
(AC100)
DC input logic
high
DC input logic low VSS
AC input logic
high
AC input logic low Note 2
V
V
REF
REFCA
0.075
+ 0.1
VDD
V
REFCA
0.075
Note 2
V
REF
-
- 0.1
Reference Volt-
V
REFCA
(DC)
age for ADD, CMD
0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V 2,3
inputs
NOTE :
1. See “Overshoot and Undershoot Specifications”
2. The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD (for reference : approx. ± 12mV)
3. For reference : approx. VDD/2 ± 12mV
DDR4-2666/3200
V
+
REFCA
0.065
VSS
V
+ 0.09
REF
Note 2
Unit NOTE
VDD V
V
-
REFCA
0.065
V
Note 2 V 1
V
REF
- 0.09
V1
Rev. 1.5 / Jun.2018 19
Page 20
AC and DC Input Measurement Levels: V
voltage
V
DD
V
SS
time
Tolerances
REF
The DC-tolerance limits and ac-noise limits for the reference voltages V It shows a valid reference voltage V
(DC) is the linear average of V
V
REF
meet the min/max requirement in Table X. Furthermore V no more than ± 1% V
DD
.
(t) as a function of time. (V
REF
(t) over a very long period of time (e.g. 1 sec). This average has to
REF
REF
REF
(t) may temporarily deviate from V
is illustrated in Figure below.
REFCA
stands for V
REFCA
).
REF
(DC) by
Illustration of V
(DC) tolerance and V
REF
The voltage levels for setup and hold time measurements V dependent on V
" shall be understood as V
"V
REF
This clarifies, that DC-variations of V
REF
.
(DC), as defined in Figure above.
REF
affect the absolute voltage a signal has to reach to achieve a valid
REF
(AC), VIH(DC), VIL(AC) and VIL(DC) are
IH
AC-noise limits
REF
high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for V
(DC) deviations from the optimum position within the data-eye of the
REF
input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V
ified limit (+/-1% of V
AC-noise. Timing and voltage effects due to AC-noise on V
REF
) are included in DRAM timings and their associated deratings.
DD
up to the spec-
REF
Rev. 1.5 / Jun.2018 20
Page 21

AC and DC Logic Input Levels for Differential Signals

0.0
tDVAC
V
IH
.DIFF.MIN
half cycle
Differential Input Voltage (CK-CK)
time
tDVAC
VIH.DIFF.AC.MIN
V
IL
.DIFF.MAX
V
IL
.DIFF.AC.MAX
(CK_t - CK_c)

Differential signal definition

NOTE:
1. Differential signal rising edge from VIL.DIFF.MAX to VIH.DIFF.MIN must be monotonic slope.
2. Differential signal falling edge from VIH.DIFF.MIN to VIL.DIFF.MAX must be monotonic slope.
Definition of differential ac-swing and “time above ac-level” t
DVAC
Rev. 1.5 / Jun.2018 21
Page 22

Differential swing requirements for clock (CK_t - CK_c)

Differential AC and DC Input Levels
DDR4 -
Symbol Parameter
ILdiff
differential
input high
differential
input low
V
IHdiff
V
NOTE :
1600,1866,21
33
min max min max min max min max min max
+0.150 NOTE 3 +0.135 NOTE 3 +0.135 NOTE 3 +0.125 NOTE 3 +0.110 NOTE 3 V 1
NOTE 3 -0.150 NOTE 3 -0.135 NOTE 3 -0.135 NOTE 3 -0.125 NOTE 3 -0.110 V 1
1. Used to define a differential signal slew-rate.
2. for CK_t - CK_c use V
IH.CA/VIL.CA
3. These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits (V
(DC) max, V
IH.CA
overshoot and undershoot.
Allowed time before ringback (tDVAC) for CK_t - CK_c
DDR4 -2400 DDR4 -2666 DDR4 -2933 DDR4 -3200
(AC) of ADD/CMD and V
(DC)min) for single-ended signals as well as the limitations for
IL.CA
REFCA
;
unitNO
TE
Slew Rate [V/ns]
> 4.0 120 - TBD -
4.0 115 - TBD -
3.0 110 - TBD -
2.0 105 - TBD -
1.8 100 - TBD -
1.6 95 - TBD -
1.4 90 - TBD -
1.2 85 - TBD -
1.0 80 - TBD -
< 1.0 80 - TBD -
tDVAC [ps] @ |V
min max min max
(AC)| = 200mV tDVAC [ps] @ |V
IH/Ldiff
(AC)| = TBDmV
IH/Ldiff
Rev. 1.5 / Jun.2018 22
Page 23

Single-ended requirements for differential signals

VDD or V
DDQ
V
SEH
min
V
DD
/2 or V
DDQ
/2
V
SEL
max
V
SEH
VSS or V
SSQ
V
SEL
CK
time
Each individual component of a differential signal (CK_t, CK_c) has also to comply with certain require­ments for single-ended signals.
CK_t and CK_c have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH.CA(AC) / VIL.CA(AC) ) for ADD/CMD signals) in every half-cycle.
Note that the applicable ac-levels for ADD/CMD might be different per speed-bin etc. E.g., if Different value than VIH.CA(AC100)/VIL.CA(AC100) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK_t and CK_c
Single-ended requirement for differential signals
Note that, while ADD/CMD signal requirements are with respect to VrefCA, the single-ended components of differential signals have a requirement with respect to VDD / 2; this is nominally the same. The transi­tion of single-ended signals through the ac-levels is used to measure setup time. For single-ended compo­nents of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals.
Rev. 1.5 / Jun.2018 23
Page 24
Single-ended levels for CK_t, CK_c
Sym
Parameter
bol
Single-ended
V
high-level for
SEH
CK_t , CK_c
Single-ended
V
low-level for
SEL
CK_t , CK_c
NOTE :
1. For CK_t - CK_c use V
(AC)/VIL(AC) for ADD/CMD is based on V
2. V
IH
DDR4-1600/
1866/2133
Min Max Min Max Min Max Min Max Min Max
(VDD/
2)
NOTE3
+0.100
(VDD/
NOTE3
2)-
0.100
IH.CA/VIL.CA
DDR4-2400 DDR4-2666 DDR4-2933 DDR4-3200
(VDD/
2)
+0.095
NOTE3
NOTE3
(VDD/
0.095
2)-
(VDD/
2)
+0.095
NOTE3
NOTE3
(VDD/
2)-
0.095
(VDD/
2)
+0.085
NOTE3
NOTE3
(VDD/
2)-
0.085
(VDD/
2)
+0.085
NOTE3
NOTE3 V 1, 2
(VDD/
(AC) of ADD/CMD;
;
REFCA
2)-
0.085
3. These values are not defined, however the single-ended signals CK_t - CK_c need to be within the respective limits (V
(DC) max, V
IH.CA
(DC)min) for single-ended signals as well as the limitations for
IL.CA
overshoot and undershoot.
U
NO
ni
TE
t
V1, 2
Rev. 1.5 / Jun.2018 24
Page 25

Address and Control Overshoot and Undershoot specifications

Overshoot Area Between
V
DD
Undershoot Area below VSS
VDD Absolute Max
V
SS
Volts
(V)
1 tCK
VDD Absolute Max and VDD Max
Overshoot Area above VDD Absolute Max
AC overshoot/undershoot specification for Address, Command and Control pins
Specification
Parameter
Maximum peak amplitude above VDD Abso­lute Max allowed for overshoot area
Delta value between VDD Absolute Max and VDD Max allowed for overshoot area
Maximum peak amplitude allowed for under­shoot area
Maximum overshoot area per 1tCK Above Absolute Max
Maximum overshoot area per 1tCK Between Absolute Max
Maximum undershoot area per 1tCK Below VSS
(A0-A13,A17,BG0-BG1,BA0-BA1,ACT_n,RAS_n/A16,CAS_n/A15,WE_n/A14,CS_n,CKE,ODT,C2-C0)
DDR4-
1600
0.0083 0.0071 0.0062 0.0055 0.0055
0.2550 0.2185 0.1914 0.1699 0.1699
0.2644 0.2265 0.1984 0.1762 0.1762
DDR4-
1866
DDR4-
2133
0.06 0.06 V
VDD + 0.24 VDD + 0.24 V
0.30 0.30
DDR4-
2400
DDR4-
2666
DDR4-
2933
DDR4-
3200
Uni
t
V­ns
V­ns
V­ns
V­ns
Address,Command and Control Overshoot and Undershoot Definition
Rev. 1.5 / Jun.2018 25
Page 26

Clock Overshoot and Undershoot Specifications

Overshoot Area Between
V
DD
Undershoot Area below VSS
VDD Absolute Max
V
SS
Volts
(V)
1 UI
VDD Absolute Max and VDD Max
Overshoot Area above VDD Absolute Max
AC overshoot/undershoot specification for Clock
Parameter
Maximum peak amplitude above VDD Abso­lute Max allowed for overshoot area
Delta value between VDD Absolute Max and VDD Max allowed for overshoot area
Maximum peak amplitude allowed for under­shoot area
Maximum overshoot area per 1UI Above Absolute Max
Maximum overshoot area per 1UI Between Absolute Max
Maximum undershoot area per 1UI Below VSS
Specification
DDR4-
1600
0.0038 0.0032 0.0028 0.0025 0.0025
0.1125 0.0964 0.0844 0.0750 0.0750
0.1144 0.0980 0.0858 0.0762 0.0762
DDR4-
1866
(CK_t, Ck_c)
DDR4-
2133
0.06 0.06 V
VDD + 0.24 VDD + 0.24 V
0.30 0.30 V
DDR4-
2400
DDR4-
2666
DDR4-
2933
DDR4-
3200
Uni
t
V­ns
V­ns
V­ns
Clock Overshoot and Undershoot Definition
Rev. 1.5 / Jun.2018 26
Page 27

Data, Strobe and Mask Overshoot and Undershoot Specifications

Overshoot Area Between
VDDQ
Undershoot Area below Min absolute level of Vin, Vout
Max absolute level of Vin,Vout
VSSQ
Volts
(V)
1 UI
Max absolute level of Vin,Vout and VDDQ
Overshoot Area above Max absolute level of Vin,Vout
Undershoot Area Between Min absolute level of Vin,Vout and VSSQ
Min absolute level of Vin,Vout
AC overshoot/undershoot specification for Data, Strobe and Mask
Parameter
Maximum peak amplitude above Max abso­lute level of Vin,Vout
Overshoot area Between Max Absolute level of Vin, Vout and VDDQ Max
Undershoot area Between Min absolute level of Vin,Vout and VDDQ Max
Maximum peak amplitude below Min absolute level of Vin,Vout
Maximum overshoot area per 1UI Above Max absolute level of Vin,Vout
Maximum overshoot area per 1UI Between Max absolute level of Vin,Vout and VDDQ Max
Maximum undershoot area per 1UI Between Min absolute level of Vin,Vout and VSSQ
Maximum undershoot area per 1UI Below Min absolute level of Vin,Vout
(DQ, DQS_t, DQS_c, DM_n, DBI_n, TDQS_t, TDQS_c)
Specification
DDR4-
1600
0.16 0.16 0.16 0.16 0.16 V
0.30 0.30 0.30 0.30 0.30 V
0.10 0.10 0.10 0.10 0.10 V
0.0150 0.0129 0.0113 0.0100 0.0100
0.1050 0.0900 0.0788 0.0700 0.0700
0.1050 0.0900 0.0788 0.0700 0.0700
0.0150 0.0129 0.0113 0.0100 0.0100
DDR4-
1866
VDDQ + 0.24 VDDQ+0.24 V
DDR4-
2133
DDR4-
2400
DDR4-
2666
DDR4-
2933
DDR4-
3200
Uni
t
V­ns
V­ns
V­ns
V­ns
Rev. 1.5 / Jun.2018 27
Data, Strobe and Mask Overshoot and Undershoot Definition
Page 28

Slew Rate Definitions

Delta TRdiff
Delta TFdiff
V
IHdiffmin
0
V
ILdiffmax
Differential Input Voltage(i,e, CK_t - CK_c)

Slew Rate Definitions for Differential Input Signals (CK)

Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Table and Fig­ure below.
Differential Input Slew Rate Definition
Description Defined by
Differential input slew rate for rising edge(CK_t -
CK_c)
Differential input slew rate for falling edge(CK_t -
CK_c)
NOTE: The differential signal (i,e.,CK_t - CK_c) must be linear between these thresholds.
from to
V
ILdiffmaxVIHdiffmin
V
IHdiffminVILdiffmax
V
[
IHdiffmin - VILdiffmax
V
[
IHdiffmin - VILdiffmax
] / DeltaTR-
diff
] / DeltaTF-
diff
Differential Input Slew Rate Definition for CK_t, CK_c
Rev. 1.5 / Jun.2018 28
Page 29

Slew Rate Definition for Single-ended Input Signals (CMD/ADD)

Delta TRsingle
Delta TFsingle
V
IHCA(AC) Min
V
IHCA(DC) Min
VREFCA(DC)
V
ILCA(DC) Max
V
ILCA(AC) Max
Single-ended Input Slew Rate definition for CMD and ADD
NOTE :
1. Single-ended input slew rate for rising edge = { VIHCA(AC)Min - VILCA(DC)Max } / Delta TR single
2. Single-ended input slew rate for falling edge = { VIHCA(DC)Min - VILCA(AC)Max } / Delta TF single
3. Single-ended signal rising edge from VILCA(DC)Max to VIHCA(DC)Min must be monotonic slope.
4. Single-ended signal falling edge from VIHCA(DC)Min to VILCA(DC)Max must be monotonic slope
Rev. 1.5 / Jun.2018 29
Page 30

Differential Input Cross Point Voltage

Vix
CK_t
VDD/2
VSS
VDD
CK_c
Vix
VSEL
VSEH
To guarantee tight setup and hold times as well as output skew parameters with respect to clock, each cross point voltage of differential input signals (CK_t, CK_c) must meet the requirements in Table. The dif­ferential input cross point voltage VIX is measured from the actual cross point of true and complement sig­nals to the midlevel between of VDD and VSS.
Vix Definition (CK)
Cross point voltage for differential input signals (CK)
Symbol Parameter
- Area of VSEH, VSEL
VSEL =<
VDD/2 - 145mV
min max
Differential Input Cross
VlX(CK)
Point Voltage relative to
-120mV
VDD/2 for CK_t, CK_c
Rev. 1.5 / Jun.2018 30
DDR4-1600/1866/2133
VDD/2 -
145mV =<
VSEL =< VDD/
2 - 100mV
- (VDD/2 -
VSEL) + 25mV
VDD/2 + 100mV
=< VSEH =<
VDD/2 + 145mV
(VSEH - VDD/2)
- 25mV
VDD/2 +
145mV =<
VSEH
120mV
Page 31
Symbol Parameter
- Area of VSEH, VSEL
Differential Input Cross
VlX(CK)
Point Voltage relative to
VDD/2 for CK_t, CK_c
VSEL =<
VDD/2 - 145mV
-120mV
DDR4-2400/2666/3200
min max
VDD/2 -
145mV =<
VSEL =< VDD/
2 - 100mV
- (VDD/2 -
VSEL) + 25mV
VDD/2 + 100mV
=< VSEH =<
VDD/2 + 145mV
(VSEH - VDD/2)
- 25mV
VDD/2 +
145mV =<
VSEH
120mV
Rev. 1.5 / Jun.2018 31
Page 32

CMOS rail to rail Input Levels

0.8*VDD
TR_RESET
tPW_RESET
0.7*VDD
0.3*VDD
0.2*VDD

CMOS rail to rail Input Levels for RESET_n

CMOS rail to rail Input Levels for RESET_n
Parameter Symbol Min Max Unit NOTE
AC Input High Voltage VIH(AC)_RESET 0.8*VDD VDD V 6
DC Input High Voltage VIH(DC)_RESET 0.7*VDD VDD V 2
DC Input Low Voltage VIL(DC)_RESET VSS 0.3*VDD
AC Input Low Voltage VIL(AC)_RESET VSS 0.2*VDD
Rising time TR_RESET - 1.0 us 4
RESET pulse width tPW_RESET 1.0 - us 3,5
NOTE :
1. After RESET_n is registered LOW, RESET_n level shall be maintained below VIL(DC)_RESET during tPW_RESET,
otherwise, SDRAM may not be reset.
2. Once RESET_n is registered HIGH, RESET_n level must be maintained above VIH(DC)_RESET, otherwise, SDRAM
operation will not be guaranteed until it is reset asserting RESET_n signal LOW.
3. RESET is destructive to data contents.
4. No slope reversal(ringback) requirement during its level transition from Low to High.
5. This definition is applied only “Reset Procedure at Power Stable”.
6. Overshoot might occur. It should be limited by the Absolute Maximum DC Ratings.
7. Undershoot might occur. It should be limited by Absolute Maximum DC Ratings
V 1
V 7
RESET_n Input Slew Rate Definition
Rev. 1.5 / Jun.2018 32
Page 33
AC and DC Logic Input Levels for DQS Signals Differential signal definition
Definition of differential DQS Signal AC-swing Level

Differential swing requirements for DQS (DQS_t - DQS_c)

Differential AC and DC Input Levels for DQS
Symbol Parameter
VIHDiffPeak VIH.DIFF.Peak Voltage 186 Note2 160 Note2 140 Note2 mV 1
VILDiffPeak VIL.DIFF.Peak Voltage Note2 -186 Note2 -160 Note2 -140 mV 1
NOTE :
1. Used to define a differential signal slew-rate.
2. These values are not defined; however, the differential signals DQS_t - DQS_c, need to be within the respective limits Overshoot, Undershoot Specification for single-ended signals.
Rev. 1.5 / Jun.2018 33
DDR4-1600,1866,2133 DDR4-2400 DDR4-2666,3200
Min Max Min Max Min Max
Unit Note
Page 34

Peak voltage calculation method

The peak voltage of Differential DQS signals are calculated in a following equation.
VIH.DIFF.Peak Voltage = Max(f(t)) VIL.DIFF.Peak Voltage = Min(f(t)) f(t) = VDQS_t - VDQS_c
The Max(f(t)) or Min(f(t)) used t o determine the midpoint which to reference the +/-35% window of the exempt non-monotonic signaling shall be the samllest peak voltage observed in all ui’s.
Definition of differential DQS Peak Voltage and rage of exempt non-monotonic signaling
Rev. 1.5 / Jun.2018 34
Page 35

Differential Input Cross Point Voltage

To achieve tight RxMask input requirements as well as output skew parameters with respect to strobe, the cross point voltage of differential input signals (DQS_t, DQS_c) must meet the requirements in Tabel below. The differential input cross point voltage VIX_DQS (VIX_DQS_FR and VIX_DQS_RF) ins measured from the actual cross point of DQS_t, DQS_c relative to the VDQSmid fo the DQS_t and DQS_c signals.
VDQSmid is the midpoint of the minimum levels achieved by the transitioning DQS_t and DQS_c signals, and noted by VDQS_trans. VDQS_trans is the difference between the lowest horizontal tangent above VDQSmid of the transitioning DQS signals and the highest horizontal tangent below VDQSmid of the tran­sitioning DQS signals.
A non-monotonic transitioning signal’s ledge is exempt or not used in determination of a horizontal tangent provieded the said ledge occurs within +/- 30% of the midpoint of either VID.DIFF.Peak Voltage (DQS_t rising) of VIL.DIFF.Peak Voltage (DQS_c rising), refer to Furure Definition of differential DQS Peak Voltage and rage of exempt non-monotonic signaling. A secondary horizontal tangent resulting from a ring-back transition is also exempt in determination of a horizontal tangent. Thath is, a falling transition’s horizontal tangent is derived from its negative slope to zero slope transition (point A in Fugure bloew) and a ring­back’s horizontal tangent derived from its positive slope to zero slope transition (point B in Figure below) is not a valid horizontal tangent; and a rising transition’s horizontal tangent is derived from its positive slope to zero slope transition (point C in Figure below) and a ring-back’s horizontal tangent derived from its neg­ative slope to zero slope transition (point D in Figure below) is not a valid horizontal tangent.
Vix Definition (DQS)
Rev. 1.5 / Jun.2018 35
Page 36
Cross point voltage for differential input signals
DDR4-
Symbol Parameter
Vix_DOS_ ratio
VDQSmid_to_ Vcent
NOTE :
1. Vix_DQS_Ratio is DQS VIX crossing (Vix_DQS_FR or Vix_DQS_RF) divided by VDQS_trans. VDQS_trans is the
difference between the lowest horizontal tangent above VDQSmid of the transitioning DQS signals and the highest
horizontal tangent below VDQSmid of the transitioning DQS signals.
2. VDQSmid will be similar to the VREFDQ internal setting value obtained during Vref Training if the DQS and DQs
drivers and paths are matched.
3. Teh maximum limite shall not exceed the smaller of VIHdiff minimum limit or 50mV.
4. VIX measurements are only applicable for transitioning DQS_t and DQS_c signals when toggling data, preamble and
high-z states are not applicable conditions.
5. The parameter VDQSmid is defined for simulation and ATE testing purposes, it is not expected to be tested in a
system.
DQS_t and DQS_c crossing relative to the midpoint of the DQS_t and DQS_c signal swings
VDQSmid offset relative to Vcent_DQ(midpoint)
1600,1866,2133,2400
Min Max Min Max
-25-25%1,2
-
min(VIH-
diff, 50)
DDR4-
2666,2933,3200
-
min(VIH-
diff, 50)
Unit Note
mV 3,4,5
Rev. 1.5 / Jun.2018 36
Page 37

Differential Input Slew Rate Definition

Input slew rate for differential signals (DQS_t, DQS_c) are defined and measured as shown in Figure below.
NOTE :
1. Differential signal rising edge from VILDiff_DQS to VIHDiff_DQS must be monotonic slope.
2. Differential signal falling edge from VIHDiff_DQS to VILDiff_DQS must be monotonic slope.
Differential Input Slew Rate Definition for DQS_t, DQS_c
Differential Input Slew Rate Definition for DQS_t, DQS_c
Description Defined by
Differential input slew rate for rising edge(DQS_t - DQS_c)
Differential input slew rate for falling edge(DQS_t - DQS_c)
Rev. 1.5 / Jun.2018 37
From To
VILDiff_DQS VIHDiff_DQS |VILDiff_DQS - VIHDiff_DQS|/DeltaTRdiff
VIHDiff_DQS VILDiff_DQS |VILDiff_DQS - VIHDiff_DQS|/DeltaTFdiff
Page 38
Symbol Parameter
VIHDif­f_DQS
VILDif­f_DQS
Differential Input High
Differential Input Low
Differential Input Level for DQS_t, DQS_c
DDR4-
1600,1866,
2133
Min Max Min Max Min Max Min Max Min Max
136 - 130 - 130 - 115 - 110 -
- -136 - -130 - -130 - -115 - -110
DDR4-2400 DDR4-2666 DDR4-2933 DDR4-3200
Differential Input Slew Rate for DQS_t, DQS_c
ni
m
m
U
N
ot
t
e
V
V
Symbol Parameter
Differential
SRIdiff
Input Slew Rate
DDR4-
1600,1866,21
33
Min Max Min Max Min Max Min Max Min Max
3 18 3 18 2.5 18 2.5 18 2.5 18
DDR4-2400 DDR4-2666 DDR4-2933 DDR4-3200
U
ni
V/ ns
No
te
t
Rev. 1.5 / Jun.2018 38
Page 39

AC and DC output Measurement levels

Single-ended AC & DC Output Levels

Single-ended AC & DC output levels
Symbol Parameter
V
(DC) DC output high measurement level (for IV curve linearity) 1.1 x V
OH
V
(DC) DC output mid measurement level (for IV curve linearity) 0.8 x V
OM
(DC) DC output low measurement level (for IV curve linearity) 0.5 x V
V
OL
V
(AC) AC output high measurement level (for output SR) (0.7 + 0.15) x V
OH
(AC) AC output low measurement level (for output SR) (0.7 - 0.15) x V
V
OL
DDR4-1600/1866/2133/
2400/2666/3200
DDQ
DDQ
DDQ
DDQ
DDQ
NOTE :
1. The swing of ± 0.15 × V
is based on approximately 50% of the static single-ended output peak-to-
DDQ
peak swing with a driver impedance of RZQ/7 and an effective test load of 50 to V

Differential AC & DC Output Levels

Differential AC & DC output levels
Symbol Parameter
V
(AC) AC differential output high measurement level (for output SR) +0.3 x V
OHdiff
V
(AC) AC differential output low measurement level (for output SR) -0.3 x V
OLdiff
NOTE :
1. The swing of ± 0.3 × V
a driver impedance of RZQ/7 and an effective test load of 50 to V
is based on approximately 50% of the static differential output peak-to-peak swing with
DDQ
TT
DDR4-1600/1866/
2133/2400/2666/3200
= V
at each of the differential outputs.
DDQ
DDQ
DDQ
TT
= V
Units NOTE
V
V
V
V1
V1
.
DDQ
Units NOTE
V1
V1
Rev. 1.5 / Jun.2018 39
Page 40

Single-ended Output Slew Rate

V
OH(AC)
V
OL(AC)
delta TRsedelta TFse
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between V
OL(AC)
and V
for single ended signals as shown in Table and Figure below.
OH(AC)
Single-ended output slew rate definition
Description
Single ended output slew rate for rising edge
Single ended output slew rate for falling edge
Measured
From To
(AC) VOH(AC)
V
OL
(AC) VOL(AC)
V
OH
Defined by
[V
(AC)-VOL(AC)] /
OH
Delta TRse
[V
(AC)-VOL(AC)] /
OH
Delta TFse
NOTE :
1. Output slew rate is verified by design and characterization, and may not be subject to production test.
Single-ended Output Slew Rate Definition
Single-ended output slew rate
Parameter Symbol
Single ended output slew rate SRQse49494949494949V/ns
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933 DDR4-3200
Min Max Min Max Min Max Min Max Min Max Min Max Min Max
Units
Description: SR: Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals For Ron = RZQ/7 setting
NOTE:
1. In two cases, a maximum slew rate of 12 V/ns applies for a single DQ signal within a byte lane.
-Case 1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high
to low or low to high) while all remaining DQ signals in the same byte lane are static (i.e. they stay at either high or low).
-Case 2 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high
to low or low to high) while all remaining DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the regular maximum limit of 9 V/ns applies
Rev. 1.5 / Jun.2018 40
Page 41

Differential Output Slew Rate

V
OHdiff
(AC)
V
OLdiff
(AC)
delta TRdiffdelta TFdiff
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in Table and Figure below.
Differential output slew rate definition
Description
Differential output slew rate for rising edge
Differential output slew rate for falling edge
V
V
Measured
From To
(AC) V
OLdiff
(AC) V
OHdiff
OHdiff
OLdiff
(AC)
(AC)
[V
[V
OHdiff
OHdiff
Defined by
(AC)-V
OLdiff
Delta TRdiff
(AC)-V
OLdiff
Delta TFdiff
NOTE :
1. Output slew rate is verified by design and characterization, and may not be subject to production test.
Differential Output Slew Rate Definition
Differential output slew rate
(AC)] /
(AC)] /
Parameter Symbol
Differential output slew rate SRQdiff818818818818818818818V/ns
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933 DDR4-3200
Min Max Min Max Min Max Min Max Min Max Min Max Min Max
Units
Description: SR: Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) diff: Differential Signals For Ron = RZQ/7 setting
Rev. 1.5 / Jun.2018 41
Page 42

Single-ended AC & DC Output Levels of Connectivity Test Mode

VOH(AC)
TR_output_CT
VTT 0.5 * VDDQ
VOL(AC)
TF_output_CT
Following output parameters will be applied for DDR4 SDRAM Output Signal during Connectivity Test Mode.
Single-ended AC & DC output levels of Connectivity Test Mode
Symbol Parameter
V
(DC) DC output high measurement level (for IV curve linearity) 1.1 x V
OH
(DC) DC output mid measurement level (for IV curve linearity) 0.8 x V
V
OM
V
(DC) DC output low measurement level (for IV curve linearity) 0.5 x V
OL
(DC) DC output below measurement level (for IV curve linearity) 0.2 x V
V
OB
V
(AC) AC output high measurement level (for output SR) VTT + (0.1 x V
OH
(AC) AC output below measurement level (for output SR) VTT - (0.1 x V
V
OL
DDR4-1600/1866/2133/
2400/2666/3200
NOTE :
1. The effective test load is 50 terminated by VTT = 0.5 * VDDQ.
Differential Output Slew Rate Definition of Connectivity Test Mode
Unit Note
DDQ
DDQ
DDQ
DDQ
)V1
DDQ
)V1
DDQ
V
V
V
V
Single-ended output slew rate of Connectivity Test Mode
Parameter Symbol
Output signal Falling time TF_output_CT - 10 ns/V
Output signal Rising time TR_output_CT - 10 ns/V
Rev. 1.5 / Jun.2018 42
DDR4-1600/1866/2133/2400/2666/3200
Min Max
Unit Note
Page 43

Standard Speed Bins

DDR4-1600 Speed Bins and Operations
Speed Bin DDR4-1600K
Unit NOTECL-nRCD-nRP 11-11-11
Parameter Symbol min max
14
Internal read command to first
data
Internal read command to first
data with read DBI enabled
ACT to internal read or write
delay time
tAA
tAA_DBI tAA(min) + 2nCK tAA(max) +2nCK ns 12
tRCD
PRE command period tRP
ACT to PRE command period tRAS 35 9 x tREFI ns 12
ACT to ACT or REF command
period
tRC
Normal Read DBI
CL = 11
CWL = 9
CL = 9
(Optional)
tCK(AVG) 1.5 1.6 ns
5
CL = 10 CL = 12 tCK(AVG) Reserved ns
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4
CWL =
9,11
CL = 11 CL = 13 tCK(AVG) 1.25 <1.5 ns 1,2,3,4
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3
Supported CL Settings (9),11,12 nCK 13,14
Supported CL Settings with read DBI (11),13,14 nCK 13
Supported CWL Settings 9,11 nCK
13.75
(13.50)
13.75
(13.50)
13.75
(13.50)
48.75
(48.50)
5,12
5,12
5,12
5,12
18.00 ns 12
- ns 12
- ns 12
- ns 12
1,2,3,4,
11, 14
1,2,3,4,
11
Rev. 1.5 / Jun.2018 43
Page 44
DDR4-1866 Speed Bins and Operations
Speed Bin DDR4-1866M
Parameter Symbol min max
Internal read command to first
data
Internal read command to first
data with read DBI enabled
ACT to internal read or write
delay time
PRE command period tRP
ACT to PRE command period tRAS
ACT to ACT or REF command
period
Normal Read DBI
CL = 9
CWL = 9
CL = 11
(Optional)
CL = 10 CL = 12 tCK(AVG)
CL = 10 CL = 12 tCK(AVG)
CWL =
9,11
CL = 11 CL = 13 tCK(AVG)
CL = 12 CL = 14 tCK(AVG)
CL = 12 CL = 14 tCK(AVG)
CWL =
10,12
CL = 13 CL = 15 tCK(AVG)
CL = 14 CL = 16 tCK(AVG)
Supported CL Settings
Supported CL Settings with read DBI
Supported CWL Settings
tAA
tAA_DBI
tRCD
tRC
tCK(AVG)
5
Unit NOTECL-nRCD-nRP 13-13-13
14
13.92
5,12
(13.50)
tAA(min) + 2nCK tAA(max) +2nCK ns
13.92
5,12
(13.50)
13.92
5,12
(13.50)
34 9 x tREFI ns
47.92
5,12
(47.50)
1.5
Reserved ns
Reserved ns
1.25 <1.5 ns
1.25 <1.5 ns
Reserved ns
1.071 <1.25 ns
1.071 <1.25 ns
9,11,12,13,14 nCK
11,13,14 15,16 nCK
9,10,11,12 nCK
18.00 ns
12
12
- ns
- ns
12
12
12
- ns
1.6
ns
12
1,2,3,4,
11, 14
1,2,3,4,
11
4
1,2,3,4,
6
1,2,3,6
1,2,3,4
1,2,3,4
1,2,3
13,14
13
Rev. 1.5 / Jun.2018 44
Page 45
DDR4-2133 Speed Bins and Operations
Speed Bin DDR4-2133P
Unit NOTECL-nRCD-nRP 15-15-15
Parameter Symbol min max
14
Internal read command to first
data
Internal read command to first
data with read DBI enabled
ACT to internal read or write delay
time
tAA
tAA_DBI tAA(min) + 3nCK tAA(max) + 3nCK ns 12
tRCD
PRE command period tRP
ACT to PRE command period tRAS 33 9 x tREFI ns 12
ACT to ACT or REF command
period
tRC
Normal Read DBI
CWL = 9
CWL = 9,11
CWL =
10,12
CWL =
11, 14
CL = 9 CL = 11
CL = 10 CL = 12
CL = 11 CL = 13
CL = 12 CL = 14
CL = 13 CL = 15
CL = 14 CL = 16
CL = 14 CL = 17
CL = 15 CL = 18
CL = 16 CL = 19
tCK(AVG) 1.5 1.6 ns
tCK(AVG) Reserved ns 1,2,3,11
tCK(AVG) 1.25 <1.5 ns
tCK(AVG) 1.25 <1.5 ns 1,2,3,7
tCK(AVG) 1.071 <1.25 ns
tCK(AVG) 1.071 <1.25 ns 1,2,3,7
tCK(AVG) Reserved ns 1,2,3,4
tCK(AVG) 0.937 <1.071 ns 1,2,3,4
tCK(AVG) 0.937 <1.071 ns 1,2,3
Supported CL Settings (9),(11),12,(13),14,15,16 nCK 13,14
Supported CL Settings with read DBI (11),(13),14,(15),16,18,19 nCK
Supported CWL Settings 9,10,11,12,14 ns 12
14.06
(13.50)
14.06
(13.50)
14.06
(13.50)
47.06
(46.50)
5,12
5,12
5,12
5,12
18.00 ns 12
- ns 12
- ns 12
- ns 12
1,2,3,4,
11, 14
1,2,3,4,
7
1,2,3,4,
7
Rev. 1.5 / Jun.2018 45
Page 46
DDR4-2400 Speed Bins and Operations
Speed Bin DDR4-2400T
Unit NOTECL-nRCD-nRP 17-17-17
Parameter Symbol min max
Internal read command to first
data
Internal read command to first
data with read DBI enabled
ACT to internal read or write
delay time
tAA
tAA_DBI tAA(min) + 3nCK tAA(max) + 3nCK ns 12
tRCD
PRE command period tRP
ACT to PRE command period tRAS 32 9 x tREFI ns 12
ACT to ACT or REF command
period
tRC
Normal Read DBI
CL = 11
(Optional)
5
tCK(AVG)
tCK(AVG) Reserved ns 4
tCK(AVG) 1.25 <1.5 ns 1,2,3,4,8
tCK(AVG) 1.25 <1.5 ns 1,2,3,8
tCK(AVG) Reserved ns 4
tCK(AVG) 1.071 <1.25 ns 1,2,3,4,8
tCK(AVG) 1.071 <1.25 ns 1,2,3,8
tCK(AVG) Reserved ns 4
tCK(AVG) 0.937 <1.071 ns 1,2,3,4,8
tCK(AVG) 0.937 <1.071 ns 1,2,3,8
tCK(AVG) Reserved ns 1,2,3,4
tCK(AVG) Reserved ns 1,2,3,4
tCK(AVG) 0.833 <0.937
tCK(AVG) 0.833 <0.937 ns 1,2,3
CWL = 9
CWL = 9,11
CWL =
10,12
CWL =
11, 14
CWL =
12,16
CL = 9
CL = 10 CL = 12
CL = 10 CL = 12
CL = 11 CL = 13
CL = 12 CL = 14
CL = 12 CL = 14
CL = 13 CL = 15
CL = 14 CL = 16
CL = 14 CL = 17
CL = 15 CL = 18
CL = 16 CL = 19
CL = 15 CL = 18
CL = 16 CL = 19
CL = 17 CL = 20
CL = 18 CL = 21
Supported CL Settings 10,11,12,13,14,15,16,17,18 nCK 13
Supported CL Settings with read DBI 12,13,14,15,16,18,19,20,21 nCK
Supported CWL Settings 9,10,11,12,14,16 nCK
14.16
(13.75)
14.16
(13.75)
14.16
(13.75)
46.16
(45.75)
5,12
5,12
5,12
5,12
Reserved ns
18.00 ns 12
- ns 12
- ns 12
-ns 12
1,2,3,4,11
1.5 1.6 ns 1,2,3,4,11
Rev. 1.5 / Jun.2018 46
Page 47
DDR4-2666 Speed Bins and Operations
Speed Bin DDR4-2666V
Unit NOTECL-nRCD-nRP 19-19-19
Parameter Symbol min max
Internal read command to
first data
tAA
Internal read command to
first data with read DBI
tAA_DBI tAA(min) + 3nCK tAA(max) + 3nCK ns 12
enabled
ACT to internal read or write
delay time
PRE command period
ACT to PRE command
period
ACT to ACT or REF com-
mand period
tRCD
tRP
tRAS 32 9 x tREFI ns 12
tRC
Normal Read DBI
CWL = 9 CL = 9 CL = 11 tCK(AVG) Reserved ns 1,2,3,4,11
CL = 10 CL = 12 tCK(AVG) 1.5 1.6 ns 1,2,3,11
CWL =
CL = 10 CL = 12 tCK(AVG) Reserved ns 4
9,11
CL = 11 CL = 13 tCK(AVG) 1.25 <1.5 ns 1,2,3,4,9
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,9
CWL =
10,12
CL = 12 CL = 14 tCK(AVG) Reserved ns 4
CL = 13 CL = 15 tCK(AVG) 1.071 <1.25 ns 1,2,3,4,9
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3,9
CWL =
CL = 14 CL = 17 tCK(AVG) Reserved ns 4
11, 14
CL = 15 CL = 18 tCK(AVG) 0.937 <1.071 ns 1,2,3,4,9
CL = 16 CL = 19 tCK(AVG) 0.937 <1.071 ns 1,2,3,9
CWL =
12.16
CL = 15 CL = 18 tCK(AVG) Reserved ns 4
CL = 16 CL = 19 tCK(AVG) Reserved ns 1,2,3,4,9
CL = 17 CL = 20 tCK(AVG) 0.833 <0.937 ns 1,2,3,4,9
CL = 18 CL = 21 tCK(AVG) 0.833 <0.937 ns 1,2,3
CWL =
14,18
CL = 17 CL = 20 tCK(AVG) Reserved ns 1,2,3,4
CL = 18 CL = 21 tCK(AVG) Reserved ns 1,2,3,4
CL = 19 CL = 22 tCK(AVG) 0.75 <0.833 ns 1,2,3,4
CL = 20 CL = 23 tCK(AVG) 0.75 <0.833 ns 1,2,3
Supported CL Settings 10,(11),12,(13),14,(15),16,(17),18,19,20 nCK 13
Supported CL Settings with read DBI 12,(13),14,(15),17,(18),19,(20),21,22,23 nCK
Supported CWL Settings 9,10,11,12,14,16,18 nCK
14.25
(13.75)
14.25
(13.75)
14.25
(13.75)
46.25
(45.75)
14
5,12
5,12
5,12
5,12
18.00 ns 12
-ns 12
-ns 12
-ns 12
Rev. 1.5 / Jun.2018 47
Page 48
DDR4-2933 Speed Bins and Operations
Speed Bin DDR4-2933Y
Parameter Symbol min max
Internal read command to
first data
tAA
14.32
(13.75)
14
5,12
Internal read command to
first data with read DBI
tAA_DBI tAA(min) + 4nCK tAA(max) + 4nCK ns 12
enabled
ACT to internal read or write
delay time
PRE command period tRP
ACT to PRE command
period
ACT to ACT or REF com-
mand period
Read
DBI
CWL =
9
CWL =
9,11
Normal
CL = 9 CL = 11 tCK(AVG) Reserved ns 1,2,3,4,11
CL = 10 CL = 12 tCK(AVG) 1.5 1.6 ns 1,2,3,11
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4
CL = 11 CL = 13 tCK(AVG) 1.25 <1.5 ns 1,2,3,4,13
tRCD
tRAS 32 9 x tREFI ns 12
tRC
14.32
(13.75)
14.32
(13.75)
46.32
(45.75)
5,12
5,12
5,12
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,15
CWL =
10,12
CL = 12 CL = 14 tCK(AVG) Reserved ns 1,2,3,4
CL = 13 CL = 15 tCK(AVG) 1.071 <1.25 ns 1,2,3,4,15
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3,15
CWL =
11, 14
CL = 14 CL = 17 tCK(AVG) Reserved ns 1,2,3,4
CL = 15 CL = 18 tCK(AVG) 0.937 <1.071 ns 1,2,3,4,15
CL = 16 CL = 19 tCK(AVG) 0.937 <1.071 ns 1,2,3,15
CWL =
12.16
CL = 15 CL = 18 tCK(AVG) Reserved ns 1,2,3,4
CL = 16 CL = 19 tCK(AVG) Reserved ns 1,2,3,4,15
CL = 17 CL = 20 tCK(AVG) 0.833 0.937 ns 1,2,3,4,15
CL = 18 CL = 21 tCK(AVG) 0.833 0.937 ns 1,2,3,15
CWL =
14,18
CL = 17 CL = 20 tCK(AVG) Reserved ns 1,2,3,4
CL = 18 CL = 21 tCK(AVG) Reserved ns 1,2,3,4,15
CL = 19 CL = 22 tCK(AVG) 0.75 <0.833 ns 1,2,3,4,15
CL = 20 CL = 23 tCK(AVG) 0.75 <0.833 ns 1,2,3,15
CWL =
16,20
CL = 19 CL = 23 tCK(AVG) Reserved ns 1,2,3,4
CL = 20 CL = 24 tCK(AVG) Reserved ns 1,2,3,4
CL = 21 CL = 26 tCK(AVG) 0.682 <0.75 ns 1,2,3,4
CL = 22 CL = 26 tCK(AVG) 0.682 <0.75 ns 1,2,3
Supported CL Settings 10,(11),12,(13),14,(15),16,(17),18,(19),20,
21,22
Supported CL Settings with read DBI 12,(13),14,(15),16,(18),19,(20),21,(22),23,
25,26
Supported CWL Settings 9,10,11,12,14,15,16,18,20 nCK
18.00 ns 12
-ns 12
-ns 12
-ns 12
Unit NOTECL-nRCD-nRP 21-21-21
nCK 13
nCK 13
Rev. 1.5 / Jun.2018 48
Page 49
DDR4-3200 Speed Bins and Operations
Speed Bin DDR4-3200AA
Unit NOTECL-nRCD-nRP 22-22-22
Parameter Symbol min max
Internal read command to
first data
Internal read command to
first data with read DBI
enabled
ACT to internal read or
write delay time
PRE command period tRP 13.75 - ns 12
ACT to PRE command
period
ACT to ACT or REF com-
mand period
Normal
CWL =
CWL =
CWL =
10,12
CWL =
11, 14
CWL =
12.16
CWL =
14,18
CWL =
16,20
Supported CL Settings with read DBI 12,13,14,15,16,18, 19,20,21,22,23,24,
CL = 9 CL = 11 tCK(AVG) Reserved ns 1,2,3,4,11
9
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4,11
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4
9,11
CL = 11 CL = 13 tCK(AVG) 1.25 <1.5 ns 1,2,3,4,10
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,10
CL = 12 CL = 14 tCK(AVG) Reserved ns 1,2,3,4
CL = 13 CL = 15 tCK(AVG) 1.071 <1.25 ns 1,2,3,4,10
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3,10
CL = 14 CL = 17 tCK(AVG) Reserved ns 1,2,3,4
CL = 15 CL = 18 tCK(AVG) 0.937 <1.071 ns 1,2,3,4,10
CL = 16 CL = 19 tCK(AVG) 0.937 <1.071 ns 1,2,3,10
CL = 15 CL = 18 tCK(AVG) Reserved ns 1,2,3,4
CL = 16 CL = 19 tCK(AVG) Reserved ns 1,2,3,4,10
CL = 17 CL = 20 tCK(AVG) 0.833 <0.937 ns 1,2,3,4,10
CL = 18 CL = 21 tCK(AVG) 0.833 <0.937 ns 1,2,3,10
CL = 17 CL = 20 tCK(AVG) Reserved ns 1,2,3,4
CL = 18 CL = 21 tCK(AVG) Reserved ns 1,2,3,4,10
CL = 19 CL = 22 tCK(AVG) 0.75 <0.833 ns 1,2,3,4,10
CL = 20 CL = 23 tCK(AVG) 0.75 <0.833 ns 1,2,3,10
CL = 20 CL = 24 tCK(AVG) Reserved ns 1,2,3,4
CL = 22 CL = 26 tCK(AVG) 0.625 <0.75 ns 1,2,3,4
CL = 24 CL = 28 tCK(AVG) 0.625 <0.75 ns 1,2,3
Supported CL Settings 10,11,12,13,14,15, 16,17,18,19,20,22,
Supported CWL Settings 9,10,11,12,14,16,
Read
DBI
tAA 13.75 18.00 ns 12
tAA_DBI
tRCD 13.75 - ns 12
tRAS 32 9 x tREFI ns 12
tRC 45.75 - ns 12
tAA(min)
+ 4nCK
24
26, 28
18,20
tAA(max) + 4nCK ns 12
nCK 13
nCK
nCK
 
Rev. 1.5 / Jun.2018 49
Page 50
Speed Bin Table Note
Absolute Specification
- VDDQ = VDD = 1.20V +/- 0.06 V
- VPP = 2.5V +0.25/-0.125 V
- The values defined with above-mentioned table are DLL ON case.
- DDR4-1600, 1866, 2133, 2400, 2933 and 3200 Speed Bin Tables are valid only when Geardown Mode is
disabled.
1. The CL setting and CWL setting result in tCK(avg).MIN and tCK(avg).MAX requirements. When making a selection of tCK(avg), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting.
2. tCK(avg).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL
- all possible intermediate frequencies may not be guaranteed. CL in clock cycle is calculated from tAA following rounding algorithm defined in
3. tCK(avg).MAX limits: Calculate tCK(avg) = tAA.MAX / CL SELECTED and round the resulting tCK(avg) down to the next valid speed bin (i.e. 1.5ns or 1.25ns or 1.071 ns or 0.937 ns or 0.833 ns). This result is tCK(avg).MAX corre­sponding to CL SELECTED.
4. ‘Reserved’ settings are not allowed. User must program a different value.
5. 'Optional' settings allow certain devices in the industry to support this setting, however, it is not a mandatory fea­ture. Refer to supplier's data sheet and/or the DIMM SPD information if and how this setting is supported.
6. Any DDR4-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
7. Any DDR4-2133 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
8. Any DDR4-2400 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
9. Any DDR4-2666 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
10. Any DDR4-3200 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
11. DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate.
12. DDR4-2400,2666,2933 and 3200Mbps speed bin support CL=10 if DRAM operate at 1333MT/s data rate.
13. Parameters apply from tCK(avg)min to tCK(avg)max at all standard JEDEC clock period values as stated in the Speed Bin Tables.
14. CL number in parentheses, it means that these numbers are optional.
15. DDR4 SDRAM supports CL=9 as long as a system meets tAA(min).
16. Each speed bin lists the timing requirements that need to be supported in order for a given DRAM to be JEDEC compliant. JEDEC compliance does not require support for all speed bins within a given speed. JEDEC compliance requires meeting the parameters for a least one of the listed speed bins.
Section 13.5.
Rev. 1.5 / Jun.2018 50
Page 51

IDD and IDDQ Specification Parameters and Test Conditions

IDD, IPP and IDDQ Measurement Conditions

In this chapter, IDD, IPP and IDDQ measurement conditions such as test load and patterns are defined. Figure shows the setup and test load for IDD, IPP and IDDQ measurements.
IDD currents (such as IDD0, IDD0A, IDD1, IDD1A, IDD2N, IDD2NA, IDD2NL, IDD2NT, IDD2P, IDD2Q, IDD3N, IDD3NA, IDD3P, IDD4R, IDD4RA, IDD4W, IDD4WA, IDD5B, IDD5F2, IDD5F4, IDD6N, IDD6E, IDD6R, IDD6A, IDD7 and IDD8) are measured as time-averaged currents with all VDD balls of the DDR4 SDRAM under test tied together. Any IPP or IDDQ current is not included in IDD currents.
IPP currents have the same definition as IDD except that the current on the VPP supply is measured.
IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR4 SDRAM under test tied together. Any IDD current is not included in IDDQ cur rents. Attention: IDDQ values cannot be directly used to calculate IO power of the DDR4 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one merged-power layer in Module PCB.
For IDD, IPP and IDDQ measurements, the following definitions apply:
“0” and “LOW” is defined as VIN <= VILAC(max).
“1” and “HIGH” is defined as VIN >= VIHAC(min).
“MID-LEVEL” is defined as inputs are VREF = VDD / 2.
Timings used for IDD, IPP and IDDQ Measurement-Loop Patterns are provided in Table 1.
Basic IDD, IPP and IDDQ Measurement Conditions are described in Table 2.
Detailed IDD, IPP and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 11.
IDD Measurements are done after properly initializing the DDR4 SDRAM. This includes but is not lim­ited to setting RON = RZQ/7 (34 Ohm in MR1); RTT_NOM = RZQ/6 (40 Ohm in MR1); RTT_WR = RZQ/2 (120 Ohm in MR2); RTT_PARK = Disable; Qoff = 0B (Output Buffer enabled) in MR1;
TDQS_t disabled in MR1; CRC disabled in MR2; CA parity feature disabled in MR5;
Gear down mode disabled in MR3 Read/Write DBI disabled in MR5; DM disabled in MR5
Attention: The IDD, IPP and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started.
Define D = {CS_n, ACT_n, RAS_n, CAS_n, WE_n } := {HIGH, LOW, LOW, LOW, LOW} ; apply BG/BA changes when directed.
Define D# = {CS_n, ACT_n, RAS_n, CAS_n, WE_n } := {HIGH, HIGH, HIGH, HIGH, HIGH} ; apply invert of BG/BA changes when directed above.
-
Rev. 1.5 / Jun.2018 51
Page 52
NOTE:
RESET CK_t/CK_c
CKE CS
ACT,RAS,CAS,WE
A,BG,BA
C
ODT
ZQ
DQS_t/DQS_c
DQ
DM
DDR4 SDRAM
V
SS
V
SSQ
V
DD
V
PP
V
DDQ
I
DD
I
PP
I
DDQ
X
Application specific
memory channel
environment
Channel
IO Powe
Simulatin
X
Channel IO Power
Number
IDDQ
TestLad
IDDQ
Simuaion
IDDQ
Measurement
Correlation
1. DIMM level Output test load condition may be different from above
Figure 1 - Measurement Setup and Test Load for IDD, IPP and IDDQ Measurements
Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ
Measurement
Rev. 1.5 / Jun.2018 52
Page 53
Table 1-Timings used for IDD, IPP and IDDQ Measurement-Loop Patterns
Symbol
tCK 1.25
CL 11 13 15 17 19 21 22 nCK
CWL 11 12 14 16 18 20 20 nCK
nRCD 11 13 15 17 19 21 22 nCK
nRC 39 45 51 56 62 68 74 nCK
nRAS 28 32 36 39 43 47 52 nCK
nRP 11 13 15 17 19 21 22 nCK
nFAW
nRRDS
nRRDL
tCCD_S 4 4 4 4 4 4 4 nCK
tCCD_L5566788nCK
tWTR_S 2 3 3 3 4 4 4 nCK
tWTR_L 6 7 8 9 10 11 12 nCK
nRFC 2Gb 128 150 171 193 214 235 256 nCK
nRFC 4Gb 208 243 278 313 347 382 416 nCK
nRFC 8Gb 280 327 374 421 467 514 560 nCK
nRFC 16Gb 440 514 587 661 734 807 880 nCK
TBD nCK
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933 DDR4-3200
11-11- 11 13-13-13 15-15-15 17-17-17 19-19-19 21-21-21 22-22-22
1.071 0.937 0.833 0.75 0.682 0.625 ns
x4 16 16 16 16 16 16 16 nCK
x8 20 22 23 26 28 31 34 nCK
x16 28 28 32 36 40 44 48 nCK
x4 4 4 4 4 4 4 4 nCK
x8 4 4 4 4 4 4 4 nCK
x165567889nCK
x4 5 5 6 6 7 8 8 nCK
x8 5 5 6 6 7 8 8 nCK
x16 6 6 7 8 9 10 11 nCK
Unit
Rev. 1.5 / Jun.2018 53
Page 54
Table 2 -Basic IDD, IPP and IDDQ Measurement Conditions
Symbol Description
Operating One Bank Active-Precharge Current (AL=0)
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 81; AL: 0; CS_n: High
IDD0
IDD0A
IPP0
IDD1
IDD1A
IPP1
IDD2N
IDD2NA
IPP2N
IDD2NT
IDDQ2NT
(Optional)
IDD2NL
IDD2NG
IDD2ND
between ACT and PRE; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 3; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 3); Output Buffer and RTT: Enabled in Mode Regis-
2
; ODT Signal: stable at 0; Pattern Details: see Table 3
ters
Operating One Bank Active-Precharge Current (AL=CL-1) AL = CL-1, Other conditions: see IDD0
Operating One Bank Active-Precharge IPP Current Same condition with IDD0
Operating One Bank Active-Read-Precharge Current (AL=0) CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: 8
between ACT, RD and PRE; Command, Address, Bank Group Address, Bank Address Inputs, Data IO: partially toggling according to Table 4; DM_n: stable at 1; Bank Activity: Cycling with one
bank active at a time: 0,0,1,1,2,2,... (see Table 4); Output Buffer and RTT: Enabled in Mode Regis­ters2; ODT Signal: stable at 0; Pattern Details: see Table 4
Operating One Bank Active-Read-Precharge Current (AL=CL-1) AL = CL-1, Other conditions: see IDD1
Operating One Bank Active-Read-Precharge IPP Current Same condition with IDD1
Precharge Standby Current (AL=0) CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8
1
; AL: 0; CS_n: stable at 1; Command,
Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 5; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in
Mode Registers
2
; ODT Signal: stable at 0; Pattern Details: see Table 5
Precharge Standby Current (AL=CL-1) AL = CL-1, Other conditions: see IDD2N
Precharge Standby IPP Current Same condition with IDD2N
Precharge Standby ODT Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8
1
; AL: 0; CS_n: stable at 1; Command,
Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 6; Data IO: VSSQ; DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in
Mode Registers
2
; ODT Signal: toggling according to Table 6; Pattern Details: see Table 6
Precharge Standby ODT IDDQ Current
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current
Precharge Standby Current with CAL enabled
Same definition like for IDD2N, CAL enabled
3
Precharge Standby Current with Gear Down mode enabled
Same definition like for IDD2N, Gear Down mode enabled
3,5
Precharge Standby Current with DLL disabled
Same definition like for IDD2N, DLL disabled
3
1
; AL: 0; CS_n: High
Rev. 1.5 / Jun.2018 54
Page 55
IDD2N_par
IDD2P
IPP2P
IDD2Q
IDD3N
IDD3NA
IPP3N
IDD3P
IPP3P
IDD4R
IDD4RA
IDD4RB
IPP4R
IDDQ4R
(Optional)
IDDQ4RB
(Optional)
Precharge Standby Current with CA parity enabled
Same definition like for IDD2N, CA parity enabled
Precharge Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8
3
1
; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT:
2
Enabled in Mode Registers
; ODT Signal: stable at 0
Precharge Power-Down IPP Current Same condition with IDD2P
Precharge Quiet Standby Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8 Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable
at 1;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
1
; AL: 0; CS_n: stable at 1; Command,
2
; ODT
Signal: stable at 0
Active Standby Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8
1
; AL: 0; CS_n: stable at 1; Command,
Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 5; Data IO: VDDQ; DM_n: stable at 1;Bank Activity: all banks open; Output Buffer and RTT: Enabled in
Mode Registers
2
; ODT Signal: stable at 0; Pattern Details: see Table 5
Active Standby Current (AL=CL-1) AL = CL-1, Other conditions: see IDD3N
Active Standby IPP Current Same condition with IDD3N
Active Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8
1
; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2; ODT Signal: stable at 0
Active Power-Down IPP Current Same condition with IDD3P
Operating Burst Read Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8
2
; AL: 0; CS_n: High between RD; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 7; Data IO: seamless read data burst with different data between one burst and the next one according to Table 7; DM_n: stable at 1; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 7); Output Buffer and RTT: Enabled in Mode Registers
2
; ODT Signal:
stable at 0; Pattern Details: see Table 7
Operating Burst Read Current (AL=CL-1) AL = CL-1, Other conditions: see IDD4R
Operating Burst Read Current with Read DBI Read DBI enabled
3
, Other conditions: see IDD4R
Operating Burst Read IPP Current Same condition with IDD4R
Operating Burst Read IDDQ Current
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current
Operating Burst Read IDDQ Current with Read DBI
Same definition like for IDD4RB, however measuring IDDQ current instead of IDD current
Rev. 1.5 / Jun.2018 55
Page 56
IDD4W
IDD4WA
IDD4WB
IDD4WC
IDD4W_par
IPP4W
IDD5B
IPP5B
IDD5F2
IPP5F2
IDD5F4
IPP5F4
IDD6N
IPP6N
IDD6E
IPP6E
Operating Burst Write Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8
1
; AL: 0; CS_n: High between WR; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 8; Data IO: seamless write data burst with different data between one burst and the next one according to Table 8; DM_n: stable at 1; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 8); Output Buffer and RTT: Enabled in Mode Registers
2
; ODT Signal:
stable at HIGH; Pattern Details: see Table 8
Operating Burst Write Current (AL=CL-1) AL = CL-1, Other conditions: see IDD4W
Operating Burst Write Current with Write DBI Write DBI enabled
Operating Burst Write Current with Write CRC Write CRC enabled
Operating Burst Write Current with CA Parity CA Parity enabled
3
, Other conditions: see IDD4W
3
, Other conditions: see IDD4W
3
, Other conditions: see IDD4W
Operating Burst Write IPP Current Same condition with IDD4W
Burst Refresh Current (1X REF) CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: 8
1
; AL: 0; CS_n: High between REF; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 9; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: REF command every nRFC (see Table 9); Output Buffer and RTT: Enabled in Mode Registers
2
; ODT Signal: stable at 0; Pattern Details: see
Table 9
Burst Refresh Write IPP Current (1X REF) Same condition with IDD5B
Burst Refresh Current (2X REF) tRFC=tRFC_x2, Other conditions: see IDD5B
Burst Refresh Write IPP Current (2X REF) Same condition with IDD5F2
Burst Refresh Current (4X REF) tRFC=tRFC_x4, Other conditions: see IDD5B
Burst Refresh Write IPP Current (4X REF) Same condition with IDD5F4
Self Refresh Current: Normal Temperature Range
T
: 0 - 85°C; Low Power Array Self Refresh (LP ASR) : Normal4; CKE: Low; External clock:
CASE
Off; CK_t and CK_c#: LOW; CL: see Table 1; BL: 81; AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n: stable at 1; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers
2
; ODT Signal: MID-LEVEL
Self Refresh IPP Current: Normal Temperature Range Same condition with IDD6N
Self-Refresh Current: Extended Temperature Range
T
: 0 - 95°C; Low Power Array Self Refresh (LP ASR) : Extended4; CKE: Low; External clock:
CASE
Off; CK_t and CK_c: LOW; CL: see Table 1; BL: 8
1
; AL: 0; CS_n, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers
)
2
; ODT Signal: MID-LEVEL
Self Refresh IPP Current: Extended Temperature Range Same condition with IDD6E
Rev. 1.5 / Jun.2018 56
Page 57
IDD6R
IPP6R
IDD6A
IPP6A
IDD7
IPP7
IDD8
IPP8
Self-Refresh Current: Reduced Temperature Range
T
: 0 - TBD (~35-45)°C; Low Power Array Self Refresh (LP ASR) : Reduced4; CKE: Low;
CASE
External clock: Off; CK_t and CK_c#: LOW; CL: see Table 1; BL: 8
1
; AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2;
ODT Signal: MID-LEVEL
Self Refresh IPP Current: Reduced Temperature Range Same condition with IDD6R
Auto Self-Refresh Current
T
: 0 - 95°C; Low Power Array Self Refresh (LP ASR) : Auto4; CKE: Low; External clock: Off;
CASE
CK_t and CK_c#: LOW; CL: see Table 1; BL: 8 Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Auto Self-Refresh
operation; Output Buffer and RTT: Enabled in Mode Registers
1
; AL: 0; CS_n#, Command, Address, Bank Group
2
; ODT Signal: MID-LEVEL
Auto Self-Refresh IPP Current Same condition with IDD6A
Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 1; BL: 8
1
; AL: CL-1; CS_n: High between ACT and RDA; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 10; Data IO: read data bursts with different data between one burst and the next one according to Table 10; DM_n: stable at 1; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 10; Output Buffer and RTT: Enabled in Mode Registers
2
; ODT Signal: stable at 0; Pattern Details: see Table 10
Operating Bank Interleave Read IPP Current Same condition with IDD7
Maximum Power Down Current TBD
Maximum Power Down IPP Current Same condition with IDD8
Rev. 1.5 / Jun.2018 57
Page 58
NOTE :
1. Burst Length: BL8 fixed by MRS: set MR0 [A1:0=00].
2. Output Buffer Enable
- set MR1 [A12 = 0] : Qoff = Output buffer enabled
- set MR1 [A2:1 = 00] : Output Driver Impedance Control = RZQ/7 RTT_Nom enable
- set MR1 [A10:8 = 011] : RTT_NOM = RZQ/6 RTT_WR enable
- set MR2 [A10:9 = 01] : RTT_WR = RZQ/2 RTT_PARK disable
- set MR5 [A8:6 = 000]
3. CAL enabled : set MR4 [A8:6 = 001] : 1600MT/s 010] : 1866MT/s, 2133MT/s 011] : 2400MT/s Gear Down mode enabled :set MR3 [A3 = 1] : 1/4 Rate DLL disabled : set MR1 [A0 = 0] CA parity enabled :set MR5 [A2:0 = 001] : 1600MT/s,1866MT/s, 2133MT/s 010] : 2400MT/s Read DBI enabled : set MR5 [A12 = 1] Write DBI enabled : set :MR5 [A11 = 1]
4. Low Power Array Self Refresh (LP ASR) : set MR2 [A7:6 = 00] : Normal 01] : Reduced Temperature range 10] : Extended Temperature range 11] : Auto Self Refresh
5. IDD2NG should be measured after sync pulse(NOP) input.
Rev. 1.5 / Jun.2018 58
Page 59
Table 3 - IDD0, IDD0A and IPP0 Measurement-Loop Pattern
2
3
CKE
Sub-Loop
CK_t /CK_c
Cycle
Number
Command
00 ACT 000000000000000 -
1,2 D, D 100000000000000 -
3,4
D_#,
D_#
... repeat pattern 1...4 until nRAS - 1, truncate if necessary
nRAS PRE 010100000000000 -
... repeat pattern 1...4 until nRC - 1, truncate if necessary
1
1*nRC
2
2*nRC
3
3*nRC
4
4*nRC
5
5*nRC
toggling
6
10
11
12
13
14
15
6*nRC
7
7*nRC
8
8*nRC
9
9*nRC
10*nRC
11*nRC
12*nRC
13*nRC
14*nRC
15*nRC
Static High
NOTE:
1 .DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. DQ signals are VDDQ.
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
CS_n
ACT_n
CAS_n/ A15
RAS_n/ A16
1111100
ODT
WE_n/ A14
C[2:0]
2
= 1, BA[1:0] = 1 instead
2
= 0, BA[1:0] = 2 instead
2
= 1, BA[1:0] = 3 instead
2
= 0, BA[1:0] = 1 instead
2
= 1, BA[1:0] = 2 instead
2
= 0, BA[1:0] = 3 instead
2
= 1, BA[1:0] = 0 instead
2
= 2, BA[1:0] = 0 instead
2
= 3, BA[1:0] = 1 instead
2
= 2, BA[1:0] = 2 instead
2
= 3, BA[1:0] = 3 instead
2
= 2, BA[1:0] = 1 instead
2
= 3, BA[1:0] = 2 instead
2
= 2, BA[1:0] = 3 instead
2
= 3, BA[1:0] = 0 instead
BA[1:0]
BG[1:0]
2
30007F0 -
3
A12/BC_n
1
4
Data
A[9:7]
A[6:3]
A[2:0]
A[17,13,11]
A[10]/AP
For x4 and x8
only
Rev. 1.5 / Jun.2018 59
Page 60
A[17,13,11]
a)
A[9:7]
A[10]/AP
A[6:3]
A[2:0]
Table 4 - IDD1, IDD1A and IPP1 Measurement-Loop Pattern
2
3
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
C[2:0]
BA[1:0]
BG[1:0]
A12/BC_n
0 0 WR 011001000000000D0=00, D1=FF
D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF
1 D 100001000000000-
2,3 D#, D# 1111110
2
30007F 0 -
3
1 4 WR 0110010110007 F0 D0=FF, D1=00
D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00
5 D 100001000000000-
2
30007F 0 -
3
For x4 and x8 only
toggling
6,7 D#, D# 1111110
28-11
3 12-15
4 16-19
5 20-23
6 24-27
7 28-31
8 32-35
9 36-39
10 40-43
11 44-47
12 48-51
13 52-55
14 56-59
15 60-63
Static High
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
2
= 0, BA[1:0] = 2 instead
2
= 1, BA[1:0] = 3 instead
2
= 0, BA[1:0] = 1 instead
2
= 1, BA[1:0] = 2 instead
2
= 0, BA[1:0] = 3 instead
2
= 1, BA[1:0] = 0 instead
2
= 2, BA[1:0] = 0 instead
2
= 3, BA[1:0] = 1 instead
2
= 2, BA[1:0] = 2 instead
2
= 3, BA[1:0] = 3 instead
2
= 2, BA[1:0] = 1 instead
2
= 3, BA[1:0] = 2 instead
2
= 2, BA[1:0] = 3 instead
2
= 3, BA[1:0] = 0 instead
NOTE:
1. DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4.Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ.
Data
4
Rev. 1.5 / Jun.2018 60
Page 61
Table 5 - IDD2N, IDD2NA, IDD2NL, IDD2NG, IDD2ND, IDD2N_par, IPP2,IDD3N, IDD3NA and IDD3P
Measurement-Loop Pattern1
2
3
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
00 D, D 1000000000000000
1 D, D 1000000000000000
2D#,
D#
3D#,
D#
14-7
28-11
312-15
416-19
520-23
toggling
624-27
Static High
728-31
832-35
936-39
10 40-43
11 44-47
12 48-51
13 52-55
14 56-59
15 60-63
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. DQ signals are VDDQ.
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 3 instead
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 2 instead
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 0 instead
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead
repeat Sub-Loop 0, use BG[1:0]
CS_n
Command
ACT_n
CAS_n/A15
RAS_n/A16
1111100
1111100
ODT
WE_n/A14
C[2:0]
2
= 1, BA[1:0] = 1 instead
2
= 0, BA[1:0] = 1 instead
2
= 0, BA[1:0] = 3 instead
2
= 3, BA[1:0] = 1 instead
2
= 2, BA[1:0] = 1 instead
2
= 3, BA[1:0] = 0 instead
BA[1:0]
BG[1:0]
2
3 0007F00
3
2
3 0007F00
3
A[9:7]
A12/BC_n
A[10]/AP
A[17,13,11]
A[6:3]
Data
A[2:0]
4
Rev. 1.5 / Jun.2018 61
Page 62
Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Pattern1
2
3
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
00 D, D 100000000000000-
1 D, D 1000 00000000000-
2 D#, D# 1111100
3 D#, D# 1111100
14-7
28-11
3 12-15
4 16-19
5 20-23
6 24-27
toggling
7 28-31
Static High
8 32-35
9 36-39
10 40-43
11 44-47
12 48-51
13 52-55
14 56-59
15 60-63
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. DQ signals are VDDQ.
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 2 instead
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 1 instead
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 2 instead
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 0 instead
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 0 instead
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 2 instead
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 3 instead
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 2 instead
repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 3 instead
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]
CS_n
Command
ACT_n
RAS_n/A16
CAS_n/A15
ODT
WE_n/A14
C[2:0]
BA[1:0]
BG[1:0]
2
3 0007F0-
3
2
3 0007F0-
3
2
= 1, BA[1:0] = 1 instead
2
= 1, BA[1:0] = 3 instead
2
= 0, BA[1:0] = 3 instead
2
= 3, BA[1:0] = 1 instead
2
= 2, BA[1:0] = 1 instead
2
= 3, BA[1:0] = 0 instead
4
Data
A[9:7]
A[6:3]
A12/BC_n
A[10]/AP
A[17,13,11]
A[2:0]
For x4
and x8
only
Rev. 1.5 / Jun.2018 62
Page 63
Table 7 - IDD4R, IDDR4RA, IDD4RB and IDDQ4R Measurement-Loop Pattern
2
3
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
CS_n
Command
ACT_n
RAS_n/A16
CAS_n/A15
ODT
WE_n/A14
C[2:0]
00 RD 011010000000000 D0=00, D1=FF
1 D 100000000000000-
2,3 D#, D# 1111100
3
14 RD 0110100110007F0 D0=FF, D1=00
5 D 100000000000000-
6,7 D#, D# 1111100
28-11
312-15
416-19
toggling
Static High
520-23
624-27
728-31
832-35
936-39
10 40-43
11 44-47
12 48-51
13 52-55
14 56-59
15 60-63
NOTE :
1. DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. Burst Sequence driven on each DQ signal by Read Command.
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead
3
2
= 0, BA[1:0] = 2 instead
2
= 1, BA[1:0] = 2 instead
2
= 2, BA[1:0] = 0 instead
2
= 3, BA[1:0] = 3 instead
2
= 2, BA[1:0] = 1 instead
2
= 2, BA[1:0] = 3 instead
A[9:7]
A[6:3]
BA[1:0]
BG[1:0]
2
2
A12/BC_n
3 0007F0-
3 0007F0-
A[10]/AP
A[17,13,11]
A[2:0]
Data
D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF
D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00
For x4 and x8 only
1
4
Rev. 1.5 / Jun.2018 63
Page 64
Table 8 - IDD4W, IDD4WA, IDD4WB and IDD4W_par Measurement-Loop Pattern
2
3
4
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
CS_n
Command
ACT_n
RAS_n/A16
CAS_n/A15
ODT
WE_n/A14
C[2:0]
00 WR 011011000000000 D0=00, D1=FF
1 D 100001000000000-
2,3 D#, D# 1111110
2
3
14 WR 0110110110007F0 D0=FF, D1=00
5 D 100001000000000-
6,7 D#, D# 1111110
28-11
312-15
416-19
toggling
Static High
520-23
624-27
728-31
832-35
936-39
10 40-43
11 44-47
12 48-51
13 52-55
14 56-59
15 60-63
NOTE :
1. DQS_t, DQS_c are used according to WR Commands, otherwise VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. Burst Sequence driven on each DQ signal by Write Command.
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead
2
2
2
2
2
2
2
3
= 0, BA[1:0] = 2 instead
= 1, BA[1:0] = 2 instead
= 2, BA[1:0] = 0 instead
= 3, BA[1:0] = 3 instead
= 2, BA[1:0] = 1 instead
= 2, BA[1:0] = 3 instead
A[9:7]
A[6:3]
BA[1:0]
BG[1:0]
A12/BC_n
A[10]/AP
A[17,13,11]
A[2:0]
3 0007F0-
3 0007F0-
Data
D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF
D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00
For x4 and x8 only
1
Rev. 1.5 / Jun.2018 64
Page 65
Table 9 - IDD4WC Measurement-Loop Pattern
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
CS_n
Command
ACT_n
RAS_n/A16
CAS_n/A15
00 WR 011011000000000 D0=00, D1=FF
1,2 D, D 100001000000000-
3,4 D#, D#1111110
5 WR 0110110110007F0 D0=FF, D1=00
6,7 D, D 100001000000000-
8,9 D#, D#1111110
2 10-14
3 15-19
toggling
4 20-24
Static High
5 25-29
6 30-34
7 35-39
8 40-44
9 45-49
10 50-54
11 55-59
12 60-64
13 65-69
14 70-74
15 75-79
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device.
3. C[2:0] are used only for 3DS device.
4. Burst Sequence driven on each DQ signal by Write Command.
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead
repeat Sub-Loop 0, use BG[1:0]
repeat Sub-Loop 1, use BG[1:0]
ODT
WE_n/A14
2
= 0, BA[1:0] = 2 instead
2
= 1, BA[1:0] = 3 instead
2
= 0, BA[1:0] = 3 instead
2
= 3, BA[1:0] = 1 instead
2
= 2, BA[1:0] = 2 instead
2
= 3, BA[1:0] = 3 instead
2
= 2, BA[1:0] = 1 instead
2
= 2, BA[1:0] = 3 instead
2
= 3, BA[1:0] = 0 instead
1
b
c
A[9:7]
A[6:3]
C[2:0]
BG[1:0]
BA[1:0]
A12/BC_n
A[10]/AP
A[17,13,11]
A[2:0]
D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF
D8=CRC
2
3 0007F0-
3
D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00
D8=CRC
2
3 0007F0-
3
For x4 and x8 only
Data
d
Rev. 1.5 / Jun.2018 65
Page 66
Table 10 - IDD5B Measurement-Loop Pattern
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
00 REF 100000000000000-
11 D 100000000000000-
2 D 100000000000000-
3 D#, D#1111100
4 D#, D#1111100
toggling
Static High
4-7
8-11
12-15
16-19
20-23
24-27
28-31
32-35
36-39
40-43
44-47
48-51
52-55
56-59
60-63
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 1 instead
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 3 instead
repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 0 instead
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 1 instead
repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 2 instead
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 1 instead
repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 2 instead
repeat pattern 1...4, use BG[1:0]
repeat pattern 1...4, use BG[1:0]
2 64 ... nRFC - 1 repeat Sub-Loop 1, Truncate, if necessary
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device.
3. C[2:0] are used only for 3DS device.
4. DQ signals are VDDQ.
CS_n
Command
ACT_n
RAS_n/A16
WE_n/A14
CAS_n/A15
1
2
3
ODT
C[2:0]
2
= 1, BA[1:0] = 1 instead
2
= 0, BA[1:0] = 2 instead
2
= 1, BA[1:0] = 3 instead
2
= 1, BA[1:0] = 2 instead
2
= 2, BA[1:0] = 0 instead
2
= 3, BA[1:0] = 3 instead
2
= 2, BA[1:0] = 3 instead
2
= 3, BA[1:0] = 0 instead
BA[1:0]
3
3
BG[1:0]
2
2
A12/BC_n
A[17,13,11]
3 0007F0-
3 0007F0-
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
4
Data
For x4 and x8
only
Rev. 1.5 / Jun.2018 66
Page 67
Table 11 - IDD7 Measurement-Loop Pattern
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
00 ACT 000000000000000 -
1 RDA 011010 00001000 D0=00, D1=FF
2 D 100000000000000­3 D# 1111100
... repeat pattern 2...3 until nRRD - 1, if nRRD > 4. Truncate if necessary
1 nRRD ACT 000000011000000 -
nRRD + 1 RDA 011010 11001000 D0=FF, D1=00
... repeat pattern 2 ... 3 until 2*nRRD - 1, if nRRD > 4. Truncate if necessary
2 2*nRRD 3 3*nRRD
repeat Sub-Loop 0, use BG[1:0] repeat Sub-Loop 1, use BG[1:0]
4 4*nRRD repeat pattern 2 ... 3 until nFAW - 1, if nFAW > 4*nRRD. Truncate if necessary
CS_n
Command
ACT_n
RAS_n/A16
WE_n/A14
CAS_n/A15
1
2
3
ODT
C[2:0]
2
= 0, BA[1:0] = 2 instead
2
= 1, BA[1:0] = 3 instead
BA[1:0]
2
3
BG[1:0]
A12/BC_n
3 0007F0-
4
Data
A[9:7]
A[6:3]
A[10]/AP
A[17,13,11]
A[2:0]
D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF
D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00
2
= 0, BA[1:0] = 1 instead
2
= 1, BA[1:0] = 2 instead
2
= 0, BA[1:0] = 3 instead
2
= 1, BA[1:0] = 0 instead
toggling
5nFAW 6 nFAW + nRRD 7 nFAW + 2*nRRD
Static High
8 nFAW + 3*nRRD
repeat Sub-Loop 0, use BG[1:0] repeat Sub-Loop 1, use BG[1:0] repeat Sub-Loop 0, use BG[1:0] repeat Sub-Loop 1, use BG[1:0]
9 nFAW + 4*nRRD repeat Sub-Loop 4
10 2*nFAW 11 2*nFAW + nRRD 12 2*nFAW + 2*nRRD 13 2*nFAW + 3*nRRD
repeat Sub-Loop 0, use BG[1:0] repeat Sub-Loop 1, use BG[1:0] repeat Sub-Loop 0, use BG[1:0] repeat Sub-Loop 1, use BG[1:0]
2
= 2, BA[1:0] = 0 instead
2
= 3, BA[1:0] = 1 instead
2
= 2, BA[1:0] = 2 instead
2
= 3, BA[1:0] = 3 instead
14 2*nFAW + 4*nRRD repeat Sub-Loop 4
15 3*nFAW 16 3*nFAW + nRRD 17 3*nFAW + 2*nRRD 18 3*nFAW + 3*nRRD
repeat Sub-Loop 0, use BG[1:0] repeat Sub-Loop 1, use BG[1:0] repeat Sub-Loop 0, use BG[1:0] repeat Sub-Loop 1, use BG[1:0]
2
= 2, BA[1:0] = 1 instead
2
= 3, BA[1:0] = 2 instead
2
= 2, BA[1:0] = 3 instead
2
= 3, BA[1:0] = 0 instead
19 3*nFAW + 4*nRRD repeat Sub-Loop 4
20 4*nFAW repeat pattern 2 ... 3 until nRC - 1, if nRC > 4*nFAW. Truncate if necessary
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device.
3. C[2:0] are used only for 3DS device.
4. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ
For x4 and x8
only
Rev. 1.5 / Jun.2018 67
Page 68

IDD Specifications (Tcase: 0 to 95oC)

4GB, 512Mx 64 SO-DIMM: HMA851S6CJR6N

IDD
Symbol 2400 2666 2933 3200 Symbol 2400 2666 2933 3200
IDD0 176 180 TBD TBD mA IPP0 38 38 TBD TBD mA
IDD0A 176 184 TBD TBD mA
IDD1 236 244 TBD TBD mA IDD1A 248 256 TBD TBD mA IPP2P 13 13 TBD TBD mA IDD2N 108 112 TBD TBD mA
IDD2NA 108 112 TBD TBD mA IDD2NT 128 132 TBD TBD mA IPP4R 88 88 TBD TBD mA
IDD2NL 80 84 TBD TBD mA IDD2NG 108 112 TBD TBD mA IDD2ND 104 108 TBD TBD mA IPP5F2 160 164 TBD TBD mA IDD2NP 108 112 TBD TBD mA
IDD2P 76 80 TBD TBD mA
IDD2Q 100 100 TBD TBD mA IPP6E 28 28 TBD TBD mA
IDD3N 148 152 TBD TBD mA
IDD3NA 148 152 TBD TBD mA
IDD3P 120 124 TBD TBD mA IPP7 92 96 TBD TBD mA
IDD4R 736 800 TBD TBD mA IDD4RA 756 816 TBD TBD mA IDD4RB 756 812 TBD TBD mA
IDD4W 588 640 TBD TBD mA IDD4WA 608 664 TBD TBD mA IDD4WB 560 604 TBD TBD mA IDD4WC 580 628 TBD TBD mA IDD4WP 648 708 TBD TBD mA
IDD5B 784 788 TBD TBD mA IDD5F2 568 576 TBD TBD mA IDD5F4 508 516 TBD TBD mA
IDD6N 84 84 TBD TBD mA
IDD6E 112 112 TBD TBD mA
IDD6R 56 56 TBD TBD mA
IDD6A 112 112 TBD TBD mA
IDD7 736 756 TBD TBD mA IDD8 48 48 TBD TBD mA
unitnot
e
IPP1 42 42 TBD TBD mA
IPP2N 13 13 TBD TBD mA
IPP3N 64 64 TBD TBD mA
IPP3P 64 64 TBD TBD mA
IPP4W 88 88 TBD TBD mA
IPP5B 252 252 TBD TBD mA
IPP5F4 140 140 TBD TBD mA
IPP6N 20 20 TBD TBD mA
IPP6R 16 20 TBD TBD mA IPP6A 28 28 TBD TBD mA
IPP8 13 13 TBD TBD mA
IPP
unitno
te
Rev. 1.5 / Jun.2018 68
Page 69

8GB, 1Gx 64 SO-DIMM: HMA81GS6CJR8N

IDD
Symbol 2400 2666 2933 3200 Symbol 2400 2666 2933 3200
IDD0 288 296 TBD TBD mA
IDD0A 288 304 TBD TBD mA
IDD1 360 376 TBD TBD mA IDD1A 384 400 TBD TBD mA IDD2N 216 224 TBD TBD mA
IDD2NA 216 224 TBD TBD mA IDD2NT 256 264 TBD TBD mA
IDD2NL 160 168 TBD TBD mA IDD2NG 216 224 TBD TBD mA IDD2ND 208 216 TBD TBD mA
IDD2NP 216 224 TBD TBD mA
IDD2P 152 160 TBD TBD mA IDD2Q 200 200 TBD TBD mA IPP6E 56 56 TBD TBD mA IDD3N 296 304 TBD TBD mA
IDD3NA 296 304 TBD TBD mA
IDD3P 240 248 TBD TBD mA IPP7 136 144 TBD TBD mA IDD4R 928 1008 TBD TBD mA
IDD4RA 952 1032 TBD TBD mA IDD4RB 952 1024 TBD TBD mA
IDD4W 800 864 TBD TBD mA IDD4WA 824 896 TBD TBD mA IDD4WB 760 816 TBD TBD mA IDD4WC 784 848 TBD TBD mA IDD4WP 920 1000 TBD TBD mA
IDD5B 1568 1576 TBD TBD mA IDD5F2 1136 1152 TBD TBD mA IDD5F4 1016 1032 TBD TBD mA
IDD6N 168 168 TBD TBD mA
IDD6E 224 224 TBD TBD mA IDD6R 112 112 TBD TBD mA IDD6A 224 224 TBD TBD mA
IDD7 1120 1168 TBD TBD mA IDD8 96 96 TBD TBD mA
unitnot
e
IPP0 44 44 TBD TBD mA IPP1 52 52 TBD TBD mA
IPP2N 26 26 TBD TBD mA
IPP2P 26 26 TBD TBD mA
IPP3N 128 128 TBD TBD mA
IPP3P 128 128 TBD TBD mA IPP4R 152 152 TBD TBD mA
IPP4W 152 152 TBD TBD mA
IPP5B 504 504 TBD TBD mA IPP5F2 320 328 TBD TBD mA IPP5F4 280 280 TBD TBD mA
IPP6N 40 40 TBD TBD mA
IPP6R 33 33 TBD TBD mA
IPP6A 56 56 TBD TBD mA
IPP8 26 26 TBD TBD mA
IPP
unitno
te
Rev. 1.5 / Jun.2018 69
Page 70

8GB, 1Gx 72 SO-DIMM: HMA81GS7CJR8N

IDD
Symbol 2400 2666 Symbol 2400 2666
IDD0 324 333 mA
IDD0A 324 342 mA
IDD1 405 423 mA IDD1A 432 450 mA IDD2N 243 252 mA
IDD2NA 243 252 mA IDD2NT 288 297 mA
IDD2NL 180 189 mA IDD2NG 243 252 mA IDD2ND 234 243 mA IDD2NP 243 252 mA
IDD2P 171 180 mA IDD2Q 225 225 mA IPP6E 63 63 mA IDD3N 333 342 mA
IDD3NA 333 342 mA
IDD3P 270 279 mA IPP7 153 162 mA IDD4R 1044 1134 mA
IDD4RA 1071 1161 mA IDD4RB 1071 1152 mA
IDD4W 900 972 mA IDD4WA 927 1008 mA IDD4WB 855 918 mA IDD4WC 882 954 mA IDD4WP 1035 1125 mA
IDD5B 1764 1773 mA IDD5F2 1278 1296 mA IDD5F4 1143 1161 mA
IDD6N 189 189 mA
IDD6E 252 252 mA
IDD6R 126 126 mA
IDD6A 252 252 mA
IDD7 1260 1314 mA IDD8 108 108 mA
unit note
IPP0 50 50 mA
IPP1 59 59 mA IPP2N 29 29 mA IPP2P 29 29 mA IPP3N 144 144 mA IPP3P 144 144 mA IPP4R 171 171 mA
IPP4W 171 171 mA
IPP5B 567 567 mA
IPP5F2 360 369 mA IPP5F4 315 315 mA
IPP6N 45 45 mA
IPP6R 37 37 mA IPP6A 63 63 mA
IPP8 29 29 mA
IPP
unit note
Rev. 1.5 / Jun.2018 70
Page 71

16GB, 2Gx 64 SO-DIMM: HMA82GS6CJR8N

IDD
Symbol 2400 2666 2933 3200 Symbol 2400 2666 2933 3200
IDD0 504 520 TBD TBD mA
IDD0A 504 528 TBD TBD mA
IDD1 576 600 TBD TBD mA
IDD1A 600 624 TBD TBD mA
IDD2N 432 448 TBD TBD mA IDD2NA 432 448 TBD TBD mA IDD2NT 512 528 TBD TBD mA IDD2NL 320 336 TBD TBD mA
IDD2NG 432 448 TBD TBD mA IDD2ND 416 432 TBD TBD mA
IDD2NP 432 448 TBD TBD mA
IDD2P 304 320 TBD TBD mA IDD2Q 400 400 TBD TBD mA IPP6E 112 112 TBD TBD mA IDD3N 592 608 TBD TBD mA
IDD3NA 592 608 TBD TBD mA
IDD3P 480 496 TBD TBD mA IPP7 162 170 TBD TBD mA
IDD4R 1144 1232 TBD TBD mA
IDD4RA 1168 1256 TBD TBD mA IDD4RB 1168 1248 TBD TBD mA
IDD4W 1016 1088 TBD TBD mA
IDD4WA 1040 1120 TBD TBD mA
IDD4WB 976 1040 TBD TBD mA
IDD4WC 1000 1072 TBD TBD mA
IDD4WP 1136 1224 TBD TBD mA
IDD5B 1784 1800 TBD TBD mA
IDD5F2 1352 1376 TBD TBD mA IDD5F4 1232 1256 TBD TBD mA
IDD6N 336 336 TBD TBD mA
IDD6E 448 448 TBD TBD mA
IDD6R 224 224 TBD TBD mA
IDD6A 448 448 TBD TBD mA
IDD7 1336 1392 TBD TBD mA IDD8 192 192 TBD TBD mA
unitnot
e
IPP0 70 70 TBD TBD mA
IPP1 78 78 TBD TBD mA IPP2N 51 51 TBD TBD mA IPP2P 51 51 TBD TBD mA IPP3N 256 256 TBD TBD mA IPP3P 256 256 TBD TBD mA IPP4R 178 178 TBD TBD mA
IPP4W 178 178 TBD TBD mA
IPP5B 530 530 TBD TBD mA
IPP5F2 346 354 TBD TBD mA IPP5F4 306 306 TBD TBD mA
IPP6N 80 80 TBD TBD mA
IPP6R 66 66 TBD TBD mA IPP6A 112 112 TBD TBD mA
IPP8 51 51 TBD TBD mA
IPP
unitno
te
Rev. 1.5 / Jun.2018 71
Page 72

16GB, 2Gx 72 SO-DIMM: HMA82GS7CJR8N

IDD
Symbol 2400 2666 Symbol 2400 2666
IDD0 567 585 mA
IDD0A 567 594 mA
IDD1 648 675 mA IDD1A 675 702 mA IDD2N 486 504 mA
IDD2NA 486 504 mA IDD2NT 576 594 mA
IDD2NL 360 378 mA IDD2NG 486 504 mA IDD2ND 468 486 mA IDD2NP 486 504 mA
IDD2P 342 360 mA IDD2Q 450 450 mA IPP6E 126 126 mA IDD3N 666 684 mA
IDD3NA 666 684 mA
IDD3P 540 558 mA IPP7 182 191 mA
IDD4R 1287 1386 mA IDD4RA 1314 1413 mA IDD4RB 1314 1404 mA
IDD4W 1143 1224 mA IDD4WA 1170 1260 mA IDD4WB 1098 1170 mA IDD4WC 1125 1206 mA
IDD4WP 1278 1377 mA
IDD5B 2007 2025 mA IDD5F2 1521 1548 mA IDD5F4 1386 1413 mA
IDD6N 378 378 mA
IDD6E 504 504 mA
IDD6R 252 252 mA
IDD6A 504 504 mA
IDD7 1503 1566 mA IDD8 216 216 mA
unit note
IPP0 78 78 mA
IPP1 87 87 mA IPP2N 58 58 mA IPP2P 58 58 mA IPP3N 288 288 mA IPP3P 288 288 mA IPP4R 200 200 mA
IPP4W 200 200 mA
IPP5B 596 596 mA
IPP5F2 389 398 mA IPP5F4 344 344 mA
IPP6N 90 90 mA
IPP6R 74 74 mA IPP6A 126 126 mA
IPP8 58 58 mA
IPP
unit note
Rev. 1.5 / Jun.2018 72
Page 73

Module Dimensions

Front
Back
30.00
69.60mm
20.00
18.00
1.75
35.50 28.50
1.425
2.50
pin 1
pin 260
Detail-A
4.00 0.10
1.80 0.102
X
Side
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
3.5mm max
6.00
1.675
1.00 ±0.05
0.20±0.15
0.20±0.15
4.00±.010
Detail - A
2.55
0.50
0.35±0.03
Note-metalized
Max 0.25
keep out area Max 0.30
1.20±0.10
SPD

512Mx64 - HMA851S6CJR6N

Rev. 1.5 / Jun.2018 73
Page 74

1Gx64 - HMA81GS6CJR8N

Front
Back
30.00
69.60mm
20.00
18.00
1.75
35.50 28.50
1.425
2.50
pin 1
pin 260
Detail-A
4.00 0.10
1.80 0.102
X
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
6.00
1.675
1.00 ±0.05
0.20±0.15
0.20±0.15
4.00±.010
Detail - A
2.55
0.50
0.35±0.03
Note-metalized
Max 0.25
keep out area Max 0.30
Detail - A
Side
3.7mm max
1.20±0.10
SPD
Rev. 1.5 / Jun.2018 74
Page 75

1Gx72 - HMA81GS7CJR8N

Front
Back
30.00
69.60mm
20.00
18.00
1.75
35.50 28.50
1.425
2.50
pin 1
pin 260
Detail-A
4.00 0.10
1.80 0.102
X
Side
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
3.7mm max
6.00
1.675
1.20±0.10
SPD/TS
1.00 ±0.05
0.20±0.15
0.20±0.15
4.00±.010
2.55
0.50
0.35±0.03
Note-metalized
Max 0.25
keep out area Max 0.30
Detail - A
Rev. 1.5 / Jun.2018 75
Page 76

2Gx64 - HMA82GS6CJR8N

Front
Back
30.00
69.60mm
20.00
18.00
1.75
35.50 28.50
1.425
2.50
pin 1
pin 260
Detail-A
4.00 0.10
1.80 0.102
X
Side
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
3.7mm max
6.00
1.675
1.20±0.10
1.00 ±0.05
0.20±0.15
0.20±0.15
4.00±.010
2.55
0.50
0.35±0.03
Note-metalized
Max 0.25
keep out area Max 0.30
Detail - A
SPD
Rev. 1.5 / Jun.2018 76
Page 77

2Gx72 - HMA82GS7CJR8N

Front
Back
30.00
69.60mm
20.00
18.00
1.75
35.50 28.50
1.425
2.50
pin 1
pin 260
Detail-A
4.00 0.10
1.80 0.102
X
Side
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
3.7mm max
6.00
1.675
1.20±0.10
SPD/TS
1.00 ±0.05
0.20±0.15
0.20±0.15
4.00±.010
2.55
0.50
0.35±0.03
Note-metalized
Max 0.25
keep out area Max 0.30
Detail - A
Rev. 1.5 / Jun.2018 77
Loading...