*SK hynix reserves the right to change products or specifications without notice.
Rev. 1.2 / Jun.20161
Page 2
Revision History
Revision No.HistoryDraft DateRemark
0.01Initial ReleaseOct.2015
0.1Added Development plan (1Rx16)
Updated JEDEC Specification
Deleted Speed Grade Table
0.2Added Development plan (ECC 1Rx8/2Rx8)
Updated 2133Mbps (tCK(min) : 0.938ns->0.937ns)
Updated JEDEC Specification
Updated IDD Specification
1.0Updated IDD Specification (1Rx16)Apr.2016
1.1Updated IPP Specification (1Rx8/2Rx8)Apr.2016
1.2Updated IDD Specification (2133Mbps)Jun.2016
Dec.2015
Mar.2016
Rev. 1.2 / Jun.20162
Page 3
Description
SK hynix Unbuffered Small Outline DDR4 SDRAM DIMMs (Unbuffered Small Outine Double Data Rate Synchronous DRAM Dual In-Line Memory Modules) are low power, high-speed operation memory modules
that use DDR4 SDRAM devices. These DDR4 SDRAM Unbuffered Small Outline DIMMs are intended for use
as main memory when installed in systems such as micro servers and mobile personal computres.
Features
• Power Supply: VDD=1.2V (1.14V to 1.26V)
• VDDQ = 1.2V (1.14V to 1.26V)
• VPP - 2.5V (2.375V to 2.75V)
• VDDSPD=2.25V to 3.6V
• Functionality and operations comply with the DDR4 SDRAM datasheet
• 16 internal banks
• Bank Grouping is applied, and CAS to CAS latency (tCCD_L, tCCD_S) for the banks in the same or different bank group accesses are available
• Data transfer rates: PC4-2400, PC4-2133, PC4-1866, PC4-1600
• Bi-Directional Differential Data Strobe
• 8 bit pre-fetch
• Burst Length (BL) switch on-the-fly BL8 or BC4(Burst Chop)
• Supports ECC error correction and detection
• On-Die Termination (ODT)
• Temperature sensor with integrated SPD
• This product is in compliance with the RoHS directive.
• Per DRAM Addressability is supported
• Internal Vref DQ level generation is available
Ordering Information
Part NumberDensityOrganizationComponent Composition
SDRAM column address strobeVDDSDRAM I/O & core power supply
SDRAM write enableVPPSDRAM activating power supply
Rank Select Lines C0, C1Chip ID lines for 3DS components
SDRAM command/address reference
supply
ODT0, ODT1SDRAM on-die termination control lines VSSPower supply return (ground)
ACT_nSDRAM activateVDDSPDSerial SPD/TS positive power supply
DQ0-DQ63DIMM memory data busALERT_nSDRAM ALERT_n
CB0-CB7DIMM ECC check bits
DQS0_t-DQS8_t
DQS0_c-DQS8_c
DM0_n-DM8_n,
DBI0_n-DBI8_n
CK0_t, CK1_t
CK0_c, CK1_c
SDRAM data strobes
(positive line of differential pair)
SDRAM data strobes
(negative line of differential pair)
SDRAM data masks/data bus inversion
(x8-based x72 DIMMs)
SDRAM clocks (positive line of differential pair)
SDRAM clocks (negative line of differential pair)
RESET_nSet SDRAMs to a Known State
EVENT_n
VTT
SPD signals a thermal event has
occurred
Termination supply for the Address,
Command and Control bus
NCNo connection
1. RAS_n is a multiplexed function with A16.
2. CAS_n is a multiplexed function with A15.
3. WE_n is a multiplexed function with A14.
Rev. 1.2 / Jun.20165
Page 6
Input/Output Functional Descriptions
SymbolTypeFunction
CK0_t, CK0_c,
CK1_t, CK1_c
CKE0, CKE1Input
CS0_n, CS1_n,
CS2_n, CS3_n
C0, C1
ODT0, ODT1
ACT_n
RAS_n/A16,
CAS_n/A15,
WE_n/A14
DM_n/DBI_n
BG0-BG1
BA0-BA1
Input
Input
Input
Input
Input
Input
Input/
Output
Input
Input
Clock: CK_t and CK_c are differential clock inputs. All address and control input signals
are sampled on the crossing of the positive edge of CK_t and negative edge of CK_c.
Clock Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals and
device input buffers and output drivers. Taking CKE LOW provides Precharge PowerDown and Self-Refresh operation (all banks idle), or Active Power-Down (row Active in
any bank). CKE is synchronous for Self-Refresh exit. After VREFCA and Internal DQ Vref
have become stable during the power on and initialization sequence, they must be
maintained during all operations (including Self-Refresh). CKE must be maintained high
throughout read and write accesses. Input buffers, excluding CK_t, CK_c, ODT and CKE,
are disabled during power-down. Input buffers, excluding CKE, are disabled during SelfRefresh.
Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for
external Rank selection on systems with multiple Ranks. CS_n is considered part of the
command code.
Chip ID: Chip ID is only used for 3DS for 2 and 4 high stack via TSV to select each slice
of stacked component. Chip ID is considered part of the command code.
On-Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance
internal to the DDR4 SDRAM. When enabled, ODT is only applied to each DQ, DQS_t,
DQS_c and DM_n/DBI_n, signal. The ODT pin will be ignored if MR1 is programmed to
disable RTT_NOM.
Activation Command Input: ACT_n defines the Activation command being entered along
with CS_n. The input into RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as
Row Address A16, A15, and A14.
Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the
command being entered. Those pins have multi function. For example, for activation
with ACT_n Low, these are Addresses like A16, A15, and A14 but for non-activation
command with ACT_n High, these are Command pins for Read, Write, and other
command defined in command truth table.
Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data.
Input data is masked when DM_n is sampled LOW coincident with that input data during
a Write access. DM_n is sampled on both edges of DQS. DM is muxed with DBI function.
DBI_n is an input/output identifying wherther to store/output the true or inverted data.
If DBI_n is LOW, the data will be stored/output after inversion inside the DDR4 SDRAM
and not inverted if DBI_n is HIGH.
Bank Group Inputs: BG0 - BG1 define which bank group an Active, Read, Write, or
Precharge command is being applied. BG0 also determines which mode register is to be
accessed during a MRS cycle. For x4/8 based SDRAMs, BG0 and BG1 are valid. For x16
based SDRAM components, only BG0 is valid.
Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write, or
Precharge command is being applied. Bank address also determines which mode
register is to be accessed during a MRS cycle.
Rev. 1.2 / Jun.20166
Page 7
SymbolTypeFunction
Address Inputs: Provide the row address for ACTIVATE Commands and the column
address for Read/Write commands to select one location out of the memory array in the
A0 - A16
Input
respective bank. A10/AP, A12/BC_n, RAS_n/A16, CAS_n/A15, and WE_n/A14 have
additional functions. See other rows. The address inputs also provide the op-code during
Mode Register Set commands.
Auto-precharge: A10 is sampled during Read/Write commands to determine whether
Autoprecharge should be performed to the accessed bank after the Read/Write
A10 / AP
Input
operation. (HIGH: Autoprecharge; LOW: no Autoprecharge). A10 is sampled during a
Precharge command to determine whether the Precharge applies to one bank (A10
LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected
by bank addresses.
Burst Chop: A12/BC_n is sampled during Read and Write commands to determine if
A12 / BC_n
Input
burst chop (on-the-fly) will be performed. (HIGH, no burst chop; LOW: burst chopped).
See command truth table for details.
RESET_n
CMOS
Input
Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive
when RESET_n is HIGH. RESET_n must be HIGH during normal operation.
Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then
DQ
Input /
Output
CRC code is added at the end of Data Burst. Any DQ from DQ0-DQ3 may indicate the
internal Vref level during test via Mode Register Setting MR4 A4=High. Refer to vendor
specific data sheets to determine which DQ is used.
Data Strobe: output with read data, input with write data. Edge-aligned with read data,
centered in write data. DDR4 SDRAMs support differential data strobe only and does not
support single-ended.
DQS_t, DQS_c,
Input /
Output
Command and Address Parity Input : DDR4 Supports Even Parity check in DRAMs with
MR setting. Once it’s enabled via Register in MR5, then DSRAM calculates Parity with
PARITY
Input
ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, BG0-BG1, BA0-BA1, A16-A0. Input parity
should be maintained at the rising edge of the clock and at the same time with
command & address with CS_n LOW.
ALERT: It has multiple functions, such as CRC error flag or Command and Address Parity
error flag, as an Output signal. If there is an error in CRC, then ALERT_n goes LOW for
the period time interval and goes back HIGH. If there is an error in Command Address
ALERT_n
Output
Parity Check, then ALERT_n goes LOW for relatively long period until on going DRAM
internal recovery transaction is complete.
During Connectivity Test mode, this pin functions as an input.
Use of this signal or not is dependent on the system.
SA0-SA1
RFU
NC
1
VDD
VSS
2
VTT
Rev. 1.2 / Jun.20167
Input Device address for the SPD.
Reserved for Future Use. No on DIMM electrical connection is present.
No Connect: No on DIMM electrical connection is present.
Supply
Supply
Supply
Power Supply: 1.2 V +/- 0.06 V
Ground
Power Supply : 0.6V
Page 8
SymbolTypeFunction
VPP
VREFCA
VDDSPD
Supply
Supply
Supply
DRAM Activating Power Supply: 2.5V (2.375V min , 2.75V max)
Reference voltage for CA
Power supply used to power the I2C bus on the SPD.
Note:
1. For PC4, VDD 1.2V. For PC4L VDD is TBD.
2. For PC4, VTT is 0.6V. For PC4L VTT is TBD.
Rev. 1.2 / Jun.20168
Page 9
Pin Assignments
Pin
1VSS2VSS131A3132A2
3DQ54
5
7DQ18DQ0137CK0_t138CK1_t
9VSS10
11
13DQS0_t14VSS143PARITY144A0
15
17DQ718VSS
19VSS20
21
23VSS24DQ12149CS0_n150BA0
25DQ1326
27
29DQ930VSS155ODT0156A15/CAS_n
31VSS32
33DM1_n, DBI1_n34DQS1_t159VDD160VDD
35VSS36VSS161ODT1162C0, CS2_n, NC
37DQ1538
39
41DQ1042DQ11167VSS168VSS
43VSS44
45
47VSS48VSS173DQ33174DQ32
49DQ1750
51
53DQS2_c54DM2_n, DBI2_n179DQS4_t180VSS
55DQS2_t56
57
59DQ2360VSS185VSS186DQ35
61VSS62
63
65VSS66DQ28191DQ44192VSS
67DQ2968
69
71DQ2572VSS197VSS198DQS5_c
73VSS74
75DM3_n, DBI3_n76DQS3_t201
Front Side
Pin Label
VSS
DQS0_
C
VSS
DQ3
VSS
VSS
DQ21
VSS
VSS
DQ19
VSS
Pin
6VSS135
12DM0_n, DBI0_n141
16DQ6
22VSS147VDD148VDD
28DQ8153VDD154VDD
40VSS165
46DQ20171
52VSS177
58DQ22183
64VSS189
70DQ24195
Back Side
Pin Label
DQ4
VSS
DQ2
VSS
DQS1_
C
DQ14
VSS
DQ16
VSS
DQ18
VSS
DQS3_c
Pin
133A1134
139CK0_c140
145BA1146A10/AP
151A14/WE_n152A16/RAS_n
157CS1_n158A13
163VDD164
169DQ37170
175VSS176
181VSS182
187DQ34188
193VSS194
199DM5_n, DBI5_n200
Front Side
Pin Label
VDD
VDD
C1, CS3
_n, NC
VSS
DQS4_
C
DQ38
VSS
DQ40
VSS
Pin
136VDD
142VDD
KEY
166SA2
172VSS
178DM4_n, DBI4_n
184VSS
190DQ45
196VSS
202VSS
Back Side
Pin Label
EVENT_
n
CK1_
C
VREFCA
DQ36
VSS
DQ39
VSS
DQ41
DQS5
_t
Rev. 1.2 / Jun.20169
Page 10
Pin
77VSS78VSS203DQ46204DQ47
79DQ3080
81
83DQ2684DQ27209VSS210VSS
85VSS86
87
89VSS90VSS215DQ49216DQ48
91CB1, NC92
93
95DQS8_c96DM8_n, DBI8_n221DQS6_t222VSS
97DQS8_t98VSS223VSS224DQ54
99VSS100CB6, NC225
101CB2, NC102VSS227VSS228DQ50
103VSS104CB7, NC229DQ51230
105CB3, NC106VSS231
107VSS108RESET_n233DQ61234VSS
109CKE0110CKE1235VSS236
111VDD112VDD237
113BG1114ACT_n239VSS240DQS7_c
115BG0116ALERT_n241DM7_n, DBI7_n242DQS7_t
117VDD118VDD243
119A12120A11245DQ62246DQ63
121A9122A7247VSS248VSS
123VDD124VDD249DQ58250DQ59
125A8126A5251VSS252VSS
127A6128A4253SCL254SDA
129VDD130VDD255VDDSPD256SA0
Front Side
Pin Label
VSS
CB5, NC
VSS
Pin
82VSS207
88CB4, NC213
94VSS219
Back Side
Pin Label
DQ31
VSS
CB0, NC
Pin
205VSS206
211DQ52212
217VSS218
257VPP258VTT
259VPP260SA1
Front Side
Pin Label
DQ42
VSS
DQS6_
C
DQ55
VSS
DQ56
VSS
Pin
208DQ43
214VSS
220DM6_n, DBI6_n
226VSS
232DQ60
238VSS
244
Back Side
Pin Label
VSS
DQ53
VSS
VSS
DQ57
VSS
Rev. 1.2 / Jun.201610
Page 11
Functional Block Diagram
VSS
CK0_t, CK0_c
A[16:0], BA[1:0]
CS0_n
ACT_n, PARITY,BG[0]
ODT0
CKE0
D0–D4
V
PP
V
DD
V
DDSPD
D0–D4
VREFCA
SPD
V
TT
V
SS
D0–D4
D0–D4
Note:
1. Unless otherwize noted, resistor values are 15Ω±5%.
2. ZQ resistors are 240
Ω±1%.For all other resistor values refer to the appropriate wiring diagram.
3. CK1_t, CK1_c terminated with 75
Ω±5% resistor.
D0
ZQ
CKE
ODT
CS_n
Address
CK
DQS0_t
DQS0_c
DQ [7:0]
DQSL_t
DQSL_c
DQL[7:0]
DM1_n/DBI1_nDM_n/DBI_n
DM0_n/DBI0_nDM_n/DBI_n
DQS1_t
DQS1_c
DQ [15:8]
DQSU_t
DQSU_c
DQU[7:0]
VSS
D1
ZQ
CKE
ODT
CS_n
Address
CK
DQS2_t
DQS2_c
DQ [23:16]
DQSL_t
DQSL_c
DQL[7:0]
DM3_n/DBI3_nDM_n/DBI_n
DM2_n/DBI2_nDM_n/DBI_n
DQS3_t
DQS3_c
DQ [15:8]
DQSU_t
DQSU_c
DQU[7:0]
VSS
D2
ZQ
CKE
ODT
CS_n
Address
CK
DQS4_t
DQS4_c
DQ [39:32]
DQSL_t
DQSL_c
DQL[7:0]
DM5_n/DBI5_nDM_n/DBI_n
DM4_n/DBI4_nDM_n/DBI_n
DQS5_t
DQS5_c
DQ [47:40]
DQSU_t
DQSU_c
DQU[7:0]
VSS
D3
ZQ
CKE
ODT
CS_n
Address
CK
DQS6_t
DQS6_c
DQ [55:48]
DQSL_t
DQSL_c
DQL[7:0]
DM7_n/DBI7_n
DM_n/DBI_n
DM6_n/DBI6_nDM_n/DBI_n
DQS7_t
DQS7_c
DQ [63:56]
DQSU_t
DQSU_c
DQU[7:0]
A0
Serial PD with Thermal sensor
A1
SA0 SA1
SDA
SCL
NC
A2
SA2
4GB, 512Mx64 Module(1Rank of x16)
Rev. 1.2 / Jun.201611
Page 12
8GB, 1Gx64 Module(1Rank of x8)
DQS2_t
DQS2_c
DQ [23:16]
DQS_t
DQS_c
DQ [7:0]
D1
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM2_n/DBI2_nDM_n/DBI_n
DQS0_t
DQS0_c
DQ [7:0]
DQS_t
DQS_c
DQ [7:0]
D0
ZQ
CKE
ODT
CS_n
VSS
Addressr
CK
DM0_n/DBI0_nDM_n/DBI_n
DQS1_t
DQS1_c
DQ [15:8]
DQS_t
DQS_c
DQ [7:0]
D7
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM1_n/DBI1_nDM_n/DBI_n
DQS3_t
DQS3_c
DQ [31:24]
DQS_t
DQS_c
DQ [7:0]
D6
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM3_n/DBI3_nDM_n/DBI_n
CK0_t, CK0_c
A[16:0], BA[1:0]
CS0_n
ACT_n, PARITY,BG[1:0]
ODT0
CKE0
D0–D7
V
PP
V
DD
V
DDSPD
D0–D7
VREFCA
SPD
V
TT
V
SS
D0–D7
D0–D7
Note:
1. Unless otherwize noted, resistor values are 15Ω±5%.
2. ZQ resistors are 240
Ω±1%.For all other resistor values refer to the appropriate wiring diagram.
3. To connect the SPD A2 input to the edge connector pin 166 install R1. To tie the SPD input A2 to ground install R2.
Do not install both R1 and R2. The values for R1 and R2 are not critical. Any value less than 100 Ohms may be used.
A0
Serial PD with Thermal sensor
A1
SA0 SA1
SDA
SCL
NC
SA2 (pin 166)
A2
EVENT_n
DQS4_t
DQS4_c
DQ [39:32]
DQS_t
DQS_c
DQ [7:0]
D5
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM4_n/DBI4_nDM_n/DBI_n
DQS6_t
DQS6_c
DQ [55:48]
DQS_t
DQS_c
DQ [7:0]
D4
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM6_n/DBI6_nDM_n/DBI_n
DQS7_t
DQS7_c
DQ [63:56]
DQS_t
DQS_c
DQ [7:0]
D3
ZQ
CKE
ODT
CS_n
VSS
Addressr
CK
DM7_n/DBI7_nDM_n/DBI_n
DQS5_t
DQS5_c
DQ [47:40]
DQS_t
DQS_c
DQ [7:0]
D2
ZQ
CKE
ODT
CS_n
VSS
Addressr
CK
DM5_n/DBI5_nDM_n/DBI_n
VSS
R1
R2
Rev. 1.2 / Jun.201612
Page 13
8GB, 1Gx72 Module(1Rank of x8)
DQS8_t
DQS8_c
CB[7:0]
DQS_t
DQS_c
DQ [7:0]
D6
ZQ
D0–D8
V
PP
V
DD
V
DDSPD
D0–D8
VREFCA
SPD
V
TT
V
SS
D0–D8
D0–D8
Note:
1. Unless otherwize noted, resistor values are 15Ω±5%.
2. ZQ resistors are 240
Ω±1%.For all other resistor values refer to the appropriate wiring diagram.
3. To connect the SPD A2 input to the edge connector pin 166 install R1. To tie the SPD input A2 to ground install R2.
Do not install both R1 and R2. The values for R1 and R2 are not critical. Any value less than 100 Ohms may be used.
CKE
ODT
CS_n
VSS
CK1_t, CK1_c
A[16:0], BA[1:0]
CS0_n
A,BA,BG,Par
CK
DM8_n/DBI8_nDM_n/DBI_n
DQS4_t
DQS4_c
DQ [39:32]
DQS_t
DQS_c
DQ [7:0]
D5
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
CK
DM4_n/DBI4_nDM_n/DBI_n
DQS6_t
DQS6_c
DQ [55:48]
DQS_t
DQS_c
DQ [7:0]
D4
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
CK
DM6_n/DBI6_nDM_n/DBI_n
DQS7_t
DQS7_c
DQ [63:56]
DQS_t
DQS_c
DQ [7:0]
D3
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
CK
DM7_n/DBI7_nDM_n/DBI_n
ACT_n, PARITY,BG[1:0]
ODT0
CKE0
DQS2_t
DQS2_c
DQ [23:16]
DQS_t
DQS_c
DQ [7:0]
D1
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
CK
DM2_n/DBI2_nDM_n/DBI_n
DQS0_t
DQS0_c
DQ [7:0]
DQS_t
DQS_c
DQ [7:0]
D0
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
CK
DM0_n/DBI0_nDM_n/DBI_n
DQS1_t
DQS1_c
DQ [15:8]
DQS_t
DQS_c
DQ [7:0]
D8
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
CK
DM1_n/DBI1_nDM_n/DBI_n
DQS3_t
DQS3_c
DQ [31:24]
DQS_t
DQS_c
DQ [7:0]
D7
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
CK
DM3_n/DBI3_nDM_n/DBI_n
DQS5_t
DQS5_c
DQ [47:40]
DQS_t
DQS_c
DQ [7:0]
D2
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
CK
DM5_n/DBI5_nDM_n/DBI_n
CK0_t, CK0_c
A[16:0], BA[1:0]
CS0_n
ACT_n, PARITY,BG[1:0]
ODT0
CKE0
A0
Serial PD with Thermal sensor
A1
SA0 SA1
SDA
SCL
EVENT_n/NC
pin 166
A2
EVENT_n
VSS
R1
R2
Rev. 1.2 / Jun.201613
Page 14
16GB, 2Gx64 Module(2Rank of x8) - page1
DQS2_t
DQS2_c
DQ [23:16]
DQS_t
DQS_c
DQ [7:0]
D5
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM2_n/DBI2_nDM_n/DBI_n
DQS0_t
DQS0_c
DQ [7:0]
DQS_t
DQS_c
DQ [7:0]
D4
ZQ
CKE
ODT
CS_n
VSS
Addressr
CK
DM0_n/DBI0_nDM_n/DBI_n
DQS1_t
DQS1_c
DQ [15:8]
DQS_t
DQS_c
DQ [7:0]
D0
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM1_n/DBI1_nDM_n/DBI_n
DQS3_t
DQS3_c
DQ [31:24]
DQS_t
DQS_c
DQ [7:0]
D1
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM3_n/DBI3_nDM_n/DBI_n
CK0_t, CK0_c
A[16:0], BA[1:0]
CS0_n
ACT_n, PARITY,BG[1:0]
ODT0
CKE0
DQS_t
DQS_c
DQ [7:0]
D14
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM_n/DBI_n
DQS_t
DQS_c
DQ [7:0]
D15
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM_n/DBI_n
DQS_t
DQS_c
DQ [7:0]
D11
ZQ
CKE
ODT
CS_n
VSS
Addressr
CK
DM_n/DBI_n
DQS_t
DQS_c
DQ [7:0]
D10
ZQ
CKE
ODT
CS_n
VSS
Addressr
CK
DM_n/DBI_n
CK1_t, CK1_c
A[16:0], BA[1:0]
CS1_n
ACT_n, PARITY,BG[1:0]
ODT1
CKE1
Rev. 1.2 / Jun.201614
Page 15
16GB, 2Gx64 Module(2Rank of x8) - page2
DQS4_t
DQS4_c
DQ [39:32]
DQS_t
DQS_c
DQ [7:0]
D2
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM4_n/DBI4_nDM_n/DBI_n
DQS6_t
DQS6_c
DQ [55:48]
DQS_t
DQS_c
DQ [7:0]
D3
ZQ
CKE
ODT
CS_n
VSS
Addressr
CK
DM6_n/DBI6_nDM_n/DBI_n
DQS7_t
DQS7_c
DQ [63:56]
DQS_t
DQS_c
DQ [7:0]
D7
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM7_n/DBI7_nDM_n/DBI_n
DQS5_t
DQS5_c
DQ [47:40]
DQS_t
DQS_c
DQ [7:0]
D6
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM5_n/DBI5_nDM_n/DBI_n
CK0_t, CK0_c
A[16:0], BA[1:0]
CS0_n
ACT_n, PARITY,BG[1:0]
ODT0
CKE0
D0–D15
V
PP
V
DD
V
DDSPD
D0–D15
VREFCA
SPD
V
TT
V
SS
D0–D15
D0–D15
Note:
1. Unless otherwize noted, resistor values are 15Ω±5%.
2. ZQ resistors are 240
Ω±1%.For all other resistor values refer to the appropriate wiring diagram.
3. SDRAMs for ODD ranks (D8 to D15), which are placed on the back side of the module use the address mirroing for A4 -A3, A6- A5, A8-A7,
A13-A11, BA1-BA0 and BG1-BG0. More detail can be found in the DDR4 SODIMM Common Section of the Design Specification.
A0
Serial PD with Thermal sensor
A1
SA0 SA1
SDA
SCL
A2
DQS_t
DQS_c
DQ [7:0]
D9
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM_n/DBI_n
DQS_t
DQS_c
DQ [7:0]
D8
ZQ
CKE
ODT
CS_n
VSS
Address
CK
DM_n/DBI_n
DQS_t
DQS_c
DQ [7:0]
D12
ZQ
CKE
ODT
CS_n
VSS
Addressr
CK
DM_n/DBI_n
DQS_t
DQS_c
DQ [7:0]
D13
ZQ
CKE
ODT
CS_n
VSS
Addressr
CK
DM_n/DBI_n
CK1_t, CK1_c
A[16:0], BA[1:0]
CS1_n
ACT_n, PARITY,BG[1:0]
ODT1
CKE1
SA2
Rev. 1.2 / Jun.201615
Page 16
16GB, 2Gx72 Module(2Rank of x8)
DQS0_t
DQS0_c
DQ [7:0]
DQS_t
DQS_c
DQ [7:0]
D1
ZQ
D0–D17
V
PP
V
DD
V
DDSPD
D0–D17
VREFCA
SPD
V
TT
V
SS
D0–D17
D0–D17
Note:
1. DQ-to-I/O wiring is shown as recommended but may be changed.
2. Unless otherwize noted, resistor values are 15
Ω±5%.
3. See the Net Structure diagrams for all resistors associated with the command, address and control bus.
4. ZQ resistors are 240
Ω±1%.For all other resistor values refer to the appropriate wiring diagram.
CKE
ODT
CS_n
VSS
CK0_t, CK0_c
PARITY
CS0_n
A,BA,BGACT
PAR
DM0_n/DBI0_nDM_n/DBI_n
DQS1_t
DQS1_c
DQ [15:8]
DQS_t
DQS_c
DQ [7:0]
D2
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM1_n/DBI1_nDM_n/DBI_n
DQS2_t
DQS2_c
DQ [23:16]
DQS_t
DQS_c
DQ [7:0]
D0
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM2_n/DBI2_nDM_n/DBI_n
DQS3_t
DQS3_c
DQ [31:24]
DQS_t
DQS_c
DQ [7:0]
D3
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM3_n/DBI3_nDM_n/DBI_n
A[16:0],BA[1:0],BG[1:0],ACT_n
ODT0
CKE0
DQS4_t
DQS4_c
DQ [39:32]
DQS_t
DQS_c
DQ [7:0]
D5
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM4_n/DBI4_nDM_n/DBI_n
CK1_t, CK1_c
CS1_n
ODT1
CKE1
CKCKCKCKCK
A0
Serial PD with Thermal sensor
A1
SA0 SA1
SDA
SCL
EVENT_n
A2
SA2
DQS5_t
DQS5_c
DQ [47:40]
DQS_t
DQS_c
DQ [7:0]
D8
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM5_n/DBI5_nDM_n/DBI_n
DQS6_t
DQS6_c
DQ [55:48]
DQS_t
DQS_c
DQ [7:0]
D6
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM6_n/DBI6_nDM_n/DBI_n
DQS7_t
DQS7_c
DQ [63:56]
DQS_t
DQS_c
DQ [7:0]
D7
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM7_n/DBI7_nDM_n/DBI_n
DQS8_t
DQS8_c
CB [7:0]
DQS_t
DQS_c
DQ [7:0]
D4
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM8_n/DBI8_nDM_n/DBI_n
CKCKCKCK
DQS_t
DQS_c
DQ [7:0]
D10
ZQ
CKE
ODT
CS_n
VSS
A,BA,BGACT
PAR
DM_n/DBI_n
DQS_t
DQS_c
DQ [7:0]
D11
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM_n/DBI_n
DQS_t
DQS_c
DQ [7:0]
D9
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM_n/DBI_n
DQS_t
DQS_c
DQ [7:0]
D12
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM_n/DBI_n
DQS_t
DQS_c
DQ [7:0]
D14
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM_n/DBI_n
CKCKCKCKCK
DQS_t
DQS_c
DQ [7:0]
D17
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM_n/DBI_n
DQS_t
DQS_c
DQ [7:0]
D15
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM_n/DBI_n
DQS_t
DQS_c
DQ [7:0]
D16
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM_n/DBI_n
DQS_t
DQS_c
DQ [7:0]
D13
ZQ
CKE
ODT
CS_n
VSS
A,BA,BG,Par
PAR
DM_n/DBI_n
CKCKCKCK
EVENT_n
Rev. 1.2 / Jun.201616
Page 17
Absolute Maximum Ratings
Absolute Maximum DC Ratings
Absolute Maximum DC Ratings
SymbolParameter RatingUnitsNOTE
VDD
VDDQ
VPP
V
IN, VOUT
T
STG
NOTE :
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement
conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300 mV of each other at all times;and VREFCA must be not greater than 0.6 x
VDDQ, When VDD and VDDQ are less than 500 mV; VREFCA may be equal to or less than 300 mV
4. VPP must be equal or greater than VDD/VDDQ at all times
5. Overshoot area above 1.5V is specified in DDR4 Device Operation.
Voltage on VDD pin relative to Vss
Voltage on VDDQ pin relative to Vss
Voltage on VPP pin relative to Vss
Voltage on any pin except VREFCA relative to Vss
Storage Temperature
-0.3 ~ 1.5V 1,3
-0.3 ~ 1.5V 1,3
-0.3 ~ 3.0V4
-0.3 ~ 1.5V 1,3,5
-55 to +100°C 1,2
DRAM Component Operating Temperature Range
Temperature Range
SymbolParameter RatingUnitsNotes
o
T
OPER
Notes:
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0 - 85
3. Some applications require operation of the DRAM in the Extended Temperature Range between 85
case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:
Normal Operating Temperature Range
Extended Temperature Range
a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It is
also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range.
Please refer to the DIMM SPD for option availability
0 to 85
85 to 95
o
C under all operating conditions.
b. If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use
the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b)
or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b).
C 1,2
o
C1,3
o
C and 95oC
Rev. 1.2 / Jun.201617
Page 18
AC & DC Operating Conditions
Recommended DC Operating Conditions
Recommended DC Operating Conditions
SymbolParameter
VDDSupply Voltage1.141.21.26V1,2,3
VDDQSupply Voltage for Output1.141.21.26V1,2,3
VPPSupply Voltage for DRAM Activating2.3752.52.75V3
NOTE:
1. Under all conditions VDDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.
3. DC bandwidth is limited to 20MHz.
Min.Typ.Max.
Rating
UnitNOTE
Rev. 1.2 / Jun.201618
Page 19
AC & DC Input Measurement Levels
AC & DC Logic input levels for single-ended signals
Single-ended AC & DC input levels for Command and Address
DDR4-1600/1866/2133/
SymbolParameter
2400
Min.Max.Min.Max.
+
V
V
V
V
IH.CA
V
IL.CA
V
IH.CA
IL.CA
REFCA
(DC75)
(DC75)
(AC100)
(AC100)
(DC)
DC input logic high
DC input logic low VSS
AC input logic high
AC input logic low Note 2
Reference Voltage for
ADD, CMD inputs
REFCA
0.075
VDD TBDTBDV
V
-
REFCA
0.075
V
REF
+ 0.1
Note 2 TBDTBDV1
V
- 0.1
REF
0.49*VDD 0.51*VDD TBDTBDV2,3
NOTE :
1. See “Overshoot and Undershoot Specifications”
2. The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD (for
reference : approx. ± 12mV)
3. For reference : approx. VDD/2 ± 12mV
DDR4-2666/3200
UnitNOTE
TBDTBDV
TBDTBDV1
Rev. 1.2 / Jun.201619
Page 20
AC and DC Input Measurement Levels: V
voltage
V
DD
V
SS
time
Tolerances
REF
The DC-tolerance limits and ac-noise limits for the reference voltages V
It shows a valid reference voltage V
(DC) is the linear average of V
V
REF
meet the min/max requirement in Table X. Furthermore V
no more than ± 1% V
DD
.
(t) as a function of time. (V
REF
(t) over a very long period of time (e.g. 1 sec). This average has to
REF
REF
REF
(t) may temporarily deviate from V
is illustrated in Figure below.
REFCA
stands for V
REFCA
).
REF
(DC) by
Illustration of V
(DC) tolerance and V
REF
AC-noise limits
REF
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are
dependent on V
" shall be understood as V
"V
REF
This clarifies, that DC-variations of V
REF
.
(DC), as defined in Figure above.
REF
affect the absolute voltage a signal has to reach to achieve a valid
REF
high or low level and therefore the time to which setup and hold is measured. System timing and voltage
budgets need to account for V
(DC) deviations from the optimum position within the data-eye of the
REF
input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and
voltage associated with V
ified limit (+/-1% of V
AC-noise. Timing and voltage effects due to AC-noise on V
REF
) are included in DRAM timings and their associated deratings.
DD
up to the spec-
REF
Rev. 1.2 / Jun.201620
Page 21
AC and DC Logic Input Levels for Differential Signals
0.0
tDVAC
V
IH
.DIFF.MIN
half cycle
Differential Input Voltage (CK-CK)
time
tDVAC
VIH.DIFF.AC.MIN
V
IL
.DIFF.MAX
V
IL
.DIFF.AC.MAX
(CK_t - CK_c)
Differential signal definition
NOTE:
1. Differential signal rising edge from VIL.DIFF.MAX to VIH.DIFF.MIN must be monotonic slope.
2. Differential signal falling edge from VIH.DIFF.MIN to VIL.DIFF.MAX must be monotonic slope.
Definition of differential ac-swing and “time above ac-level” t
DVAC
Rev. 1.2 / Jun.201621
Page 22
Differential swing requirements for clock (CK_t - CK_c)
Differential AC and DC Input Levels
SymbolParameter
V
V
V
IHdiff
V
ILdiff
IHdiff
ILdiff
differential input high+0.150NOTE 3 TBDNOTE 3 V1
differential input low NOTE 3 -0.150NOTE 3 TBDV1
(AC)
differential input high ac
(AC)
differential input low acNOTE 3
DDR4 -1600,1866,2133DDR4 -2400,2666 & 3200
minmaxminmax
2 x (V
V
IH
REF
(AC) -
)
NOTE 3
2 x (VIL(AC) -
V
)
REF
2 x (V
(AC) -
IH
)
V
REF
NOTE 3
NOTE 3V2
2 x (VIL(AC) -
V
REF
)
unit NOTE
V2
NOTE :
1. Used to define a differential signal slew-rate.
2. for CK_t - CK_c use V
IH.CA/VIL.CA
(AC) of ADD/CMD and V
REFCA
;
3. These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits
(V
(DC) max, V
IH.CA
(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot.
IL.CA
Allowed time before ringback (tDVAC) for CK_t - CK_c
Slew Rate [V/ns]
tDVAC [ps] @ |V
minmaxminmax
> 4.0120-TBD-
4.0115-TBD-
3.0110-TBD-
2.0105-TBD-
1.8100-TBD-
1.695-TBD-
1.490-TBD-
1.285-TBD-
1.080-TBD-
< 1.080-TBD-
(AC)| = 200mV tDVAC [ps] @ |V
IH/Ldiff
(AC)| = TBDmV
IH/Ldiff
Rev. 1.2 / Jun.201622
Page 23
Single-ended requirements for differential signals
VDD or V
DDQ
V
SEH
min
V
DD
/2 or V
DDQ
/2
V
SEL
max
V
SEH
VSS or V
SSQ
V
SEL
CK
time
Each individual component of a differential signal (CK_t, CK_c) has also to comply with certain requirements for single-ended signals.
CK_t and CK_c have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels
(VIH.CA(AC) / VIL.CA(AC) ) for ADD/CMD signals) in every half-cycle.
Note that the applicable ac-levels for ADD/CMD might be different per speed-bin etc. E.g., if Different
value than VIH.CA(AC100)/VIL.CA(AC100) is used for ADD/CMD signals, then these ac-levels apply also for
the single-ended signals CK_t and CK_c
Single-ended requirement for differential signals
Note that, while ADD/CMD signal requirements are with respect to VrefCA, the single-ended components
of differential signals have a requirement with respect to VDD / 2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but
adds a restriction on the common mode characteristics of these signals.
Rev. 1.2 / Jun.201623
Page 24
Single-ended levels for CK_t, CK_c
SymbolParameter
V
SEH
V
SEL
Single-ended high-level for
CK_t , CK_c
Single-ended low-level for
CK_t , CK_c
DDR4-1600/1866/2133DDR4-2400/2666/3200
MinMaxMinMax
(VDD/2)
+0.100
NOTE3
NOTE3TBDNOTE3V1, 2
(VDD/2)-
0.100
NOTE3TBDV1, 2
Unit NOTE
NOTE :
1. For CK_t - CK_c use V
2. V
(AC)/VIL(AC) for ADD/CMD is based on V
IH
IH.CA/VIL.CA
(AC) of ADD/CMD;
;
REFCA
3. These values are not defined, however the single-ended signals CK_t - CK_c need to be within the respective limits
(V
(DC) max, V
IH.CA
(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot.
IL.CA
Rev. 1.2 / Jun.201624
Page 25
Address and Control Overshoot and Undershoot specifications
Overshoot Area Between
V
DD
Undershoot Area below VSS
VDD Absolute Max
V
SS
Volts
(V)
1 tCK
VDD Absolute Max and VDD Max
Overshoot Area above VDD Absolute Max
AC overshoot/undershoot specification for Address, Command and Control pins
Specification
Parameter
Maximum peak amplitude above VDD Absolute Max
allowed for overshoot area
Delta value between VDD Absolute Max and VDD Max
allowed for overshoot area
Maximum peak amplitude allowed for undershoot area0.30.30.30.3TBDV-ns
Maximum overshoot area per 1tCK Above Absolute
Max
Maximum overshoot area per 1tCK Between Absolute
Max
Maximum undershoot area per 1tCK Below VSS0.26440.22650.19840.1762TBDV-ns
Address,Command and Control Overshoot and Undershoot Definition
Rev. 1.2 / Jun.201625
Page 26
Clock Overshoot and Undershoot Specifications
Overshoot Area Between
V
DD
Undershoot Area below VSS
VDD Absolute Max
V
SS
Volts
(V)
1 UI
VDD Absolute Max and VDD Max
Overshoot Area above VDD Absolute Max
AC overshoot/undershoot specification for Clock
Specification
Parameter
Maximum peak amplitude above VDD Absolute Max
allowed for overshoot area
Delta value between VDD Absolute Max and VDD Max
allowed for overshoot area
Maximum peak amplitude allowed for undershoot area0.30.30.30.3TBDV
Maximum overshoot area per 1UI Above Absolute Max0.00380.00320.00280.0025TBDV-ns
Maximum overshoot area per 1UI Between Absolute
Max
Maximum undershoot area per 1UI Below VSS0.11440.09800.08580.0762TBDV-ns
DDR4-
1600
0.060.060.060.06TBDV
0.240.240.240.24TBDV
0.11250.09640.08440.0750TBDV-ns
(CK_t, Ck_c)
DDR4-
1866
DDR4-
2133
DDR4-
2400
DDR4-
2666
Unit
Clock Overshoot and Undershoot Definition
Rev. 1.2 / Jun.201626
Page 27
Data, Strobe and Mask Overshoot and Undershoot Specifications
Overshoot Area Between
VDDQ
Undershoot Area below Min absolute level of Vin, Vout
Max absolute level of Vin,Vout
VSSQ
Volts
(V)
1 UI
Max absolute level of Vin,Vout and VDDQ
Overshoot Area above Max absolute level of Vin,Vout
Undershoot Area Between
Min absolute level of Vin,Vout and VSSQ
Min absolute level of Vin,Vout
AC overshoot/undershoot specification for Data, Strobe and Mask
Specification
Parameter
Maximum peak amplitude above Max absolute level of
Vin,Vout
Overshoot area Between Max Absolute level of Vin,
Vout and VDDQ Max
Undershoot area Between Min absolute level of
Vin,Vout and VDDQ
Maximum peak amplitude below Min absolute level of
Vin,Vout
Maximum overshoot area per 1UI Above Max absolute
level of Vin,Vout
Maximum overshoot area per 1UI Between Max absolute level of Vin,Vout and VDDQ Max
Maximum undershoot area per 1UI Between Min absolute level of Vin,Vout and VSSQ
Maximum undershoot area per 1UI Below Min absolute level of Vin,Vout
(DQ, DQS_t, DQS_c, DM_n, DBI_n, TDQS_t, TDQS_c)
DDR4-
1600
0.160.160.160.16TBDV
0.240.240.240.24TBDV
0.300.300.300.30TBDV
0.100.100.100.10TBDV
0.01500.01290.01130.0100TBDV-ns
0.10500.09000.07880.0700TBDV-ns
0.10500.09000.07880.0700TBDV-ns
0.01500.01290.01130.0100TBDV-ns
DDR4-
1866
DDR4-
2133
DDR4-
2400
DDR4-
2666
Unit
Rev. 1.2 / Jun.201627
Data, Strobe and Mask Overshoot and Undershoot Definition
Page 28
Slew Rate Definitions
Delta TRdiff
Delta TFdiff
V
IHdiffmin
0
V
ILdiffmax
Differential Input Voltage(i,e, CK_t - CK_c)
Slew Rate Definitions for Differential Input Signals (CK)
Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Table and Figure below.
Differential Input Slew Rate Definition
Description Defined by
Differential input slew rate for rising edge(CK_t - CK_c)
Differential input slew rate for falling edge(CK_t - CK_c)
NOTE: The differential signal (i,e.,CK_t - CK_c) must be linear between these thresholds.
fromto
V
ILdiffmax
V
IHdiffmin
V
V
IHdiffmin
ILdiffmax
V
[
IHdiffmin - VILdiffmax
V
[
IHdiffmin - VILdiffmax
] / DeltaTRdiff
] / DeltaTFdiff
Differential Input Slew Rate Definition for CK_t, CK_c
Rev. 1.2 / Jun.201628
Page 29
Slew Rate Definition for Single-ended Input Signals (CMD/ADD)
Delta TRsingle
Delta TFsingle
V
IHCA(AC) Min
V
IHCA(DC) Min
VREFCA(DC)
V
ILCA(DC) Max
V
ILCA(AC) Max
Single-ended Input Slew Rate definition for CMD and ADD
NOTE :
1. Single-ended input slew rate for rising edge = { VIHCA(AC)Min - VILCA(DC)Max } / Delta TR single
2. Single-ended input slew rate for falling edge = { VIHCA(DC)Min - VILCA(AC)Max } / Delta TF single
3. Single-ended signal rising edge from VILCA(DC)Max to VIHCA(DC)Min must be monotonic slope.
4. Single-ended signal falling edge from VIHCA(DC)Min to VILCA(DC)Max must be monotonic slope
Rev. 1.2 / Jun.201629
Page 30
Differential Input Cross Point Voltage
Vix
CK_t
VDD/2
VSS
VDD
CK_c
Vix
VSEL
VSEH
To guarantee tight setup and hold times as well as output skew parameters with respect to clock, each
cross point voltage of differential input signals (CK_t, CK_c) must meet the requirements in Table. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS.
Vix Definition (CK)
Cross point voltage for differential input signals (CK)
SymbolParameter
-Area of VSEH, VSEL
Differential Input Cross Point
VlX(CK)
SymbolParameter
VlX(CK)
Rev. 1.2 / Jun.201630
Voltage relative to VDD/2 for
CK_t, CK_c
-Area of VSEH, VSELTBDTBDTBDTBD
Differential Input Cross Point
Voltage relative to VDD/2 for
CK_t, CK_c
VSEL =<
VDD/2 - 145mV
-120mV
TBDTBDTBDTBD
DDR4-1600/1866/2133
minmax
VDD/2 - 145mV
=< VSEL =<
VDD/2 - 100mV
- (VDD/2 - VSEL)
+ 25mV
DDR4-2400/2666/3200
minmax
VDD/2 + 100mV
=< VSEH =<
VDD/2 + 145mV
(VSEH - VDD/2)
- 25mV
VDD/2 + 145mV
=< VSEH
120mV
Page 31
CMOS rail to rail Input Levels
0.8*VDD
TR_RESET
tPW_RESET
0.7*VDD
0.3*VDD
0.2*VDD
CMOS rail to rail Input Levels for RESET_n
CMOS rail to rail Input Levels for RESET_n
ParameterSymbolMinMaxUnitNOTE
AC Input High Voltage VIH(AC)_RESET 0.8*VDDVDDV6
DC Input High Voltage VIH(DC)_RESET 0.7*VDDVDDV2
DC Input Low Voltage VIL(DC)_RESET VSS0.3*VDDV1
AC Input Low Voltage VIL(AC)_RESET VSS0.2*VDDV7
Rising time TR_RESET -1.0us4
RESET pulse width tPW_RESET 1.0-us3,5
NOTE :
1. After RESET_n is registered LOW, RESET_n level shall be maintained below VIL(DC)_RESET during tPW_RESET,
otherwise, SDRAM may not be reset.
2. Once RESET_n is registered HIGH, RESET_n level must be maintained above VIH(DC)_RESET, otherwise, SDRAM
operation will not be guaranteed until it is reset asserting RESET_n signal LOW.
3. RESET is destructive to data contents.
4. No slope reversal(ringback) requirement during its level transition from Low to High.
5. This definition is applied only “Reset Procedure at Power Stable”.
6. Overshoot might occur. It should be limited by the Absolute Maximum DC Ratings.
7. Undershoot might occur. It should be limited by Absolute Maximum DC Ratings
RESET_n Input Slew Rate Definition
Rev. 1.2 / Jun.201631
Page 32
AC and DC Logic Input Levels for DQS Signals
Differential signal definition
Definition of differential DQS Signal AC-swing Level
Differential swing requirements for DQS (DQS_t - DQS_c)
1. Used to define a differential signal slew-rate.
2. These values are not defined; however, the differential signals DQS_t - DQS_c, need to be within the respective
limits Overshoot, Undershoot Specification for single-ended signals.
Rev. 1.2 / Jun.201632
DDR4-1600,1866,2133DDR4-2400DDR4-2666,3200
MinMaxMinMaxMinMax
Unit Note
Page 33
Peak voltage calculation method
The peak voltage of Differential DQS signals are calculated in a following equation.
VIH.DIFF.Peak Voltage = Max(f(t))
VIL.DIFF.Peak Voltage = Min(f(t))
f(t) = VDQS_t - VDQS_c
The Max(f(t)) or Min(f(t)) used t o determine the midpoint which to reference the +/-35% window of the
exempt non-monotonic signaling shall be the samllest peak voltage observed in all ui’s.
Definition of differential DQS Peak Voltage and rage of exempt non-monotonic signaling
Rev. 1.2 / Jun.201633
Page 34
Differential Input Cross Point Voltage
To achieve tight RxMask input requirements as well as output skew parameters with respect to strobe, the
cross point voltage of differential input signals (DQS_t, DQS_c) must meet the requirements in Tabel
below. The differential input cross point voltage VIX_DQS (VIX_DQS_FR and VIX_DQS_RF) ins measured
from the actual cross point of DQS_t, DQS_c relative to the VDQSmid fo the DQS_t and DQS_c signals.
VDQSmid is the midpoint of the minimum levels achieved by the transitioning DQS_t and DQS_c signals,
and noted by VDQS_trans. VDQS_trans is the difference between the lowest horizontal tangent above
VDQSmid of the transitioning DQS signals and the highest horizontal tangent below VDQSmid of the transitioning DQS signals.
A non-monotonic transitioning signal’s ledge is exempt or not used in determination of a horizontal tangent
provieded the said ledge occurs within +/- 30% of the midpoint of either VID.DIFF.Peak Voltage (DQS_t
rising) of VIL.DIFF.Peak Voltage (DQS_c rising), refer to Furure Definition of differential DQS Peak Voltage
and rage of exempt non-monotonic signaling. A secondary horizontal tangent resulting from a ring-back
transition is also exempt in determination of a horizontal tangent. Thath is, a falling transition’s horizontal
tangent is derived from its negative slope to zero slope transition (point A in Fugure bloew) and a ringback’s horizontal tangent derived from its positive slope to zero slope transition (point B in Figure below) is
not a valid horizontal tangent; and a rising transition’s horizontal tangent is derived from its positive slope
to zero slope transition (point C in Figure below) and a ring-back’s horizontal tangent derived from its negative slope to zero slope transition (point D in Figure below) is not a valid horizontal tangent.
Vix Definition (DQS)
Rev. 1.2 / Jun.201634
Page 35
Cross point voltage for differential input signals
DDR4-
SymbolParameter
Vix_DOS_
ratio
NOTE :
1. Vix_DQS_Ratio is DQS VIX crossing (Vix_DQS_FR or Vix_DQS_RF) divided by VDQS_trans. VDQS_trans is the
difference between the lowest horizontal tangent above VDQSmid of the transitioning DQS signals and the highest
horizontal tangent below VDQSmid of the transitioning DQS signals.
2. VDQSmid will be similar to the VREFDQ internal setting value obtained during Vref Training if the DQS and DQs
drivers and paths are matched.
DQS_t and DQS_c crossing relative
to the midpoint of the DQS_t and
DQS_c signal swings
1600,1866,2133,2400
MinMaxMinMax
-25TBDTBD%1,2
DDR4-2666,2933,3200
Unit Note
Rev. 1.2 / Jun.201635
Page 36
Differential Input Slew Rate Definition
Input slew rate for differential signals (DQS_t, DQS_c) are defined and measured as shown in Figure
below.
NOTE :
1. Differential signal rising edge from VILDiff_DQS to VIHDiff_DQS must be monotonic slope.
2. Differential signal falling edge from VIHDiff_DQS to VILDiff_DQS must be monotonic slope.
Differential Input Slew Rate Definition for DQS_t, DQS_c
Differential Input Slew Rate Definition for DQS_t, DQS_c
DescriptionDefined by
Differential input slew rate for
rising edge(DQS_t - DQS_c)
Differential input slew rate for
falling edge(DQS_t - DQS_c)
Single ended output slew rate SRQse49494949TBDTBDTBDTBDV/ns
Description: SR: Slew Rate
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)
se: Single-ended Signals
For Ron = RZQ/7 setting
NOTE:
1. In two cases, a maximum slew rate of 12 V/ns applies for a single DQ signal within a byte lane.
-Case 1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high
to low or low to high) while all remaining DQ signals in the same byte lane are static (i.e. they stay at either high or
low).
-Case 2 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high
to low or low to high) while all remaining DQ signals in the same byte lane are switching into the opposite direction
(i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction,
the regular maximum limit of 9 V/ns applies
Rev. 1.2 / Jun.201639
Page 40
Differential Output Slew Rate
V
OHdiff
(AC)
V
OLdiff
(AC)
delta TRdiffdelta TFdiff
With the reference load for timing measurements, output slew rate for falling and rising edges is defined
and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in Table and Figure
below.
Differential output slew rate definition
Description
Differential output slew rate for rising edge
Differential output slew rate for falling edge
V
V
Measured
FromTo
(AC)V
OLdiff
(AC)V
OHdiff
OHdiff
OLdiff
(AC)
(AC)
[V
[V
OHdiff
OHdiff
Defined by
(AC)-V
OLdiff
Delta TRdiff
(AC)-V
OLdiff
Delta TFdiff
NOTE :
1. Output slew rate is verified by design and characterization, and may not be subject to production test.
Supported CL Settings with read DBI 12,14,16,18,19,20,21nCK
Supported CWL Settings 9,10,11,12,14,16nCK
14.16
(13.75)
14.16
(13.75)
14.16
(13.75)
46.16
(45.75)
5,10
5,10
5,10
5,10
18.00 ns 10
- ns 10
- ns 10
- ns 10
1.6
ns 1,2,3,4,9
Rev. 1.2 / Jun.201645
Page 46
Speed Bin Table Notes
Absolute Specification
- VDDQ = VDD = 1.20V +/- 0.06 V
- VPP = 2.5V +0.25/-0.125 V
- The values defined with above-mentioned table are DLL ON case.
- DDR4-1600, 1866, 2133 and 2400 Speed Bin Tables are valid only when Geardown Mode is disabled.
1. The CL setting and CWL setting result in tCK(avg).MIN and tCK(avg).MAX requirements. When making
a selection of tCK(avg), both need to be fulfilled: Requirements from CL setting as well as require
ments from CWL setting.
2. tCK(avg).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized
by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use
the next smaller JEDEC standard tCK(avg) value (1.5, 1.25, 1.071, 0.938 or 0.833 ns) when calculating
CL [nCK] = tAA [ns] / tCK(avg) [ns], rounding up to the next ‘Supported CL’, where tAA = 12.5ns and
tCK(avg) = 1.3 ns should only be used for CL = 10 calculation.
3. tCK(avg).MAX limits: Calculate tCK(avg) = tAA.MAX / CL SELECTED and round the resulting tCK(avg)
down to the next valid speed bin (i.e. 1.5ns or 1.25ns or 1.071 ns or 0.938 ns or 0.833 ns). This result
is tCK(avg).MAX corresponding to CL SELECTED.
4. ‘Reserved’ settings are not allowed. User must program a different value.
5. 'Optional' settings allow certain devices in the industry to support this setting, however, it is not a
mandatory feature. Refer to supplier's data sheet and/or the DIMM SPD information if and how this
setting is supported.
6. Any DDR4-1866 speed bin also supports functional operation at lower frequencies as shown in the
table which are not subject to Production Tests but verified by Design/Characterization.
7. Any DDR4-2133 speed bin also supports functional operation at lower frequencies as shown in the
table which are not subject to Production Tests but verified by Design/Characterization.
8. Any DDR4-2400 speed bin also supports functional operation at lower frequencies as shown in the
table which are not subject to Production Tests but verified by Design/Characterization.
9. DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate.
10. Parameters apply from tCK(avg)min to tCK(avg)max at all standard JEDEC clock period values as
stated in the Speed Bin Tables.
11. CL number in parentheses, it means that these numbers are optional.
12. DDR4 SDRAM supports CL=9 as long as a system meets tAA(min).
13. Each speed bin lists the timing requirements that need to be supported in order for a given DRAM to
be JEDEC compliant. JEDEC compliance does not require support for all speed bins within a given
speed. JEDEC compliance requires meeting the parameters for a least one of the listed speed bins.
-
Rev. 1.2 / Jun.201646
Page 47
IDD and IDDQ Specification Parameters and Test Conditions
IDD, IPP and IDDQ Measurement Conditions
In this chapter, IDD, IPP and IDDQ measurement conditions such as test load and patterns are defined.
Figure shows the setup and test load for IDD, IPP and IDDQ measurements.
•IDD currents (such as IDD0, IDD0A, IDD1, IDD1A, IDD2N, IDD2NA, IDD2NL, IDD2NT, IDD2P, IDD2Q,
IDD3N, IDD3NA, IDD3P, IDD4R, IDD4RA, IDD4W, IDD4WA, IDD5B, IDD5F2, IDD5F4, IDD6N, IDD6E,
IDD6R, IDD6A, IDD7 and IDD8) are measured as time-averaged currents with all VDD balls of the
DDR4 SDRAM under test tied together. Any IPP or IDDQ current is not included in IDD currents.
•IPP currents have the same definition as IDD except that the current on the VPP supply is measured.
•IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all
VDDQ balls of the DDR4 SDRAM under test tied together. Any IDD current is not included in IDDQ cur
rents.
Attention: IDDQ values cannot be directly used to calculate IO power of the DDR4 SDRAM. They can
be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In
DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one
merged-power layer in Module PCB.
For IDD, IPP and IDDQ measurements, the following definitions apply:
•“0” and “LOW” is defined as VIN <= VILAC(max).
•“1” and “HIGH” is defined as VIN >= VIHAC(min).
•“MID-LEVEL” is defined as inputs are VREF = VDD / 2.
•Timings used for IDD, IPP and IDDQ Measurement-Loop Patterns are provided in Table 1.
•Basic IDD, IPP and IDDQ Measurement Conditions are described in Table 2.
•Detailed IDD, IPP and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 11.
•IDD Measurements are done after properly initializing the DDR4 SDRAM. This includes but is not limited to setting
RON = RZQ/7 (34 Ohm in MR1);
RTT_NOM = RZQ/6 (40 Ohm in MR1);
RTT_WR = RZQ/2 (120 Ohm in MR2);
RTT_PARK = Disable;
Qoff = 0B (Output Buffer enabled) in MR1;
TDQS_t disabled in MR1;
CRC disabled in MR2;
CA parity feature disabled in MR5;
Gear down mode disabled in MR3
Read/Write DBI disabled in MR5;
DM disabled in MR5
•Attention: The IDD, IPP and IDDQ Measurement-Loop Patterns need to be executed at least one time
before actual IDD or IDDQ measurement is started.
1. DIMM level Output test load condition may be different from above
Figure 1 - Measurement Setup and Test Load for IDD, IPP and IDDQ Measurements
Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ
Measurement
Rev. 1.2 / Jun.201648
Page 49
Table 1 -Timings used for IDD, IPP and IDDQ Measurement-Loop Patterns
Symbol
tCK1.251.0710.9370.833ns
CL11131517nCK
CWL11121417nCK
nRCD11131517nCK
nRC39455156nCK
nRAS28323639nCK
nRP11131517nCK
x416161616nCK
nFAW
nRRDS
nRRDL
nRFC 2Gb128150171193nCK
nRFC 4Gb208243278313nCK
nRFC 8Gb280327374421nCK
nRFC 16GbTBDTBDTBDTBDnCK
x820222326nCK
x1628283236nCK
x44444nCK
x84444nCK
x165567nCK
x45566nCK
x85566nCK
x166678nCK
tCCD_S4444nCK
tCCD_L5566nCK
tWTR_S2333nCK
tWTR_L6789nCK
DDR4-1600DDR4-1866DDR4-2133DDR4-2400
11-11-1113-13-1315-15-1517-17-17
Unit
Rev. 1.2 / Jun.201649
Page 50
Table 2 -Basic IDD, IPP and IDDQ Measurement Conditions
SymbolDescription
Operating One Bank Active-Precharge Current (AL=0)
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 81; AL: 0; CS_n: High
IDD0
IDD0A
IPP0
IDD1
IDD1A
IPP1
IDD2N
IDD2NA
IPP2N
IDD2NT
IDDQ2NT
(Optional)
IDD2NL
IDD2NG
IDD2ND
between ACT and PRE; Command, Address, Bank Group Address, Bank Address Inputs: partially
toggling according to Table 3; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: Cycling with one
bank active at a time: 0,0,1,1,2,2,... (see Table 3); Output Buffer and RTT: Enabled in Mode
Registers
2
; ODT Signal: stable at 0; Pattern Details: see Table 3
Operating One Bank Active-Precharge Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD0
Operating One Bank Active-Precharge IPP Current
Same condition with IDD0
Operating One Bank Active-Read-Precharge Current (AL=0)
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: 81; AL: 0; CS_n: High
between ACT, RD and PRE; Command, Address, Bank Group Address, Bank Address Inputs,
Data IO: partially toggling according to Table 4; DM_n: stable at 1; Bank Activity: Cycling with one
bank active at a time: 0,0,1,1,2,2,... (see Table 4); Output Buffer and RTT: Enabled in Mode
2
Registers
; ODT Signal: stable at 0; Pattern Details: see Table 4
Operating One Bank Active-Read-Precharge Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD1
Operating One Bank Active-Read-Precharge IPP Current
Same condition with IDD1
Precharge Standby Current (AL=0)
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: stable at 1; Command,
Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 5; Data
IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in
2
Mode Registers
; ODT Signal: stable at 0; Pattern Details: see Table 5
Precharge Standby Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD2N
Precharge Standby IPP Current
Same condition with IDD2N
Precharge Standby ODT Current
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: stable at 1; Command,
Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 6; Data
IO: VSSQ; DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in
2
Mode Registers
; ODT Signal: toggling according to Table 6; Pattern Details: see Table 6
Precharge Standby ODT IDDQ Current
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current
Precharge Standby Current with CAL enabled
Same definition like for IDD2N, CAL enabled
3
Precharge Standby Current with Gear Down mode enabled
Same definition like for IDD2N, Gear Down mode enabled
3
Precharge Standby Current with DLL disabled
Same definition like for IDD2N, DLL disabled
3
Rev. 1.2 / Jun.201650
Page 51
IDD2N_par
IDD2P
IPP2P
IDD2Q
IDD3N
IDD3NA
IPP3N
IDD3P
IPP3P
IDD4R
IDD4RA
IDD4RB
IPP4R
IDDQ4R
(Optional)
IDDQ4RB
(Optional)
Precharge Standby Current with CA parity enabled
Same definition like for IDD2N, CA parity enabled
3
Precharge Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 81; AL:
0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: stable at
0; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT:
2
Enabled in Mode Registers
; ODT Signal: stable at 0
Precharge Power-Down IPP Current
Same condition with IDD2P
Precharge Quiet Standby Current
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: stable at 1; Command,
Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable
at 1;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
2
; ODT
Signal: stable at 0
Active Standby Current
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: stable at 1; Command,
Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 5; Data
IO: VDDQ; DM_n: stable at 1;Bank Activity: all banks open; Output Buffer and RTT: Enabled in
Mode Registers
2
; ODT Signal: stable at 0; Pattern Details: see Table 5
Active Standby Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD3N
Active Standby IPP Current
Same condition with IDD3N
Active Power-Down Current
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: stable at 1; Command,
Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable
at 1; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers
2
; ODT Signal:
stable at 0
Active Power-Down IPP Current
Same condition with IDD3P
Operating Burst Read Current
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 82; AL: 0; CS_n: High between RD;
Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to
Tab l e 7 ; Data IO: seamless read data burst with different data between one burst and the next one
according to Table 7; DM_n: stable at 1; Bank Activity: all banks open, RD commands cycling through
banks: 0,0,1,1,2,2,... (see Table 7); Output Buffer and RTT: Enabled in Mode Registers
2
; ODT Signal :
stable at 0; Pattern Details: see Table 7
Operating Burst Read Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD4R
Operating Burst Read Current with Read DBI
Read DBI enabled3, Other conditions: see IDD4R
Operating Burst Read IPP Current
Same condition with IDD4R
Operating Burst Read IDDQ Current
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current
Operating Burst Read IDDQ Current with Read DBI
Same definition like for IDD4RB, however measuring IDDQ current instead of IDD current
Rev. 1.2 / Jun.201651
Page 52
IDD4W
IDD4WA
IDD4WB
IDD4WC
IDD4W_par
IPP4W
IDD5B
IPP5B
IDD5F2
IPP5F2
IDD5F4
IPP5F4
IDD6N
IPP6N
IDD6E
IPP6E
Operating Burst Write Current
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: High between WR;
Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to
Tab l e 8 ; Data IO: seamless write data burst with different data between one burst and the next one
according to Table 8; DM_n: stable at 1; Bank Activity: all banks open, WR commands cycling through
banks: 0,0,1,1,2,2,... (see Table 8); Output Buffer and RTT: Enabled in Mode Registers
stable at
HIGH; Pattern Details: see Table 8
2
; ODT Signal :
Operating Burst Write Current (AL=CL-1)
AL = CL-1, Other conditions: see IDD4W
Operating Burst Write Current with Write DBI
Write DBI enabled3, Other conditions: see IDD4W
Operating Burst Write Current with Write CRC
Write CRC enabled3, Other conditions: see IDD4W
Operating Burst Write Current with CA Parity
CA Parity enabled3, Other conditions: see IDD4W
Operating Burst Write IPP Current
Same condition with IDD4W
Burst Refresh Current (1X REF)
CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: 81; AL: 0; CS_n: High between REF;
Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Tab l e 9 ; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: REF command every nRFC (see Table 9);
Output Buffer and RTT: Enabled in Mode Registers
2
; ODT Signal: stable at 0; Pattern Details: see
Tab l e 9
Burst Refresh Write IPP Current (1X REF)
Same condition with IDD5B
Burst Refresh Current (2X REF)
tRFC=tRFC_x2, Other conditions: see IDD5B
Burst Refresh Write IPP Current (2X REF)
Same condition with IDD5F2
Burst Refresh Current (4X REF)
tRFC=tRFC_x4, Other conditions: see IDD5B
Burst Refresh Write IPP Current (4X REF)
Same condition with IDD5F4
Off; CK_t and CK_c#: LOW; CL: see Table 1; BL: 8
Address, Bank Address, Data IO: High; DM_n: stable at 1; Bank Activity: Self-Refresh operation;
Output Buffer and RTT: Enabled in Mode Registers
1
; AL: 0; CS_n#, Command, Address, Bank Group
2
; ODT Signal: MID-LEVEL
Self Refresh IPP Current: Normal Temperature Range
Same condition with IDD6N
Off; CK_t and CK_c: LOW; CL: see Table 1; BL: 81; AL: 0; CS_n, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Extended Temperature
Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers
2
; ODT Signal: MID-LEVEL
Self Refresh IPP Current: Extended Temperature Range
Same condition with IDD6E
External clock: Off; CK_t and CK_c#: LOW; CL: see Table 1; BL: 81; AL: 0; CS_n#, Command,
Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity:
Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers
2
;
ODT Signal: MID-LEVEL
Self Refresh IPP Current: Reduced Temperature Range
Same condition with IDD6R
Auto Self-Refresh Current
T
: 0 - 95°C; Low Power Array Self Refresh (LP ASR) : Auto4; CKE: Low; External c lock : Off;
CASE
CK_t and CK_c#: LOW; CL: see Table 1; BL: 81; AL: 0; CS_n#, Command, Address, Bank Group
Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Auto Self-Refresh
operation; Output Buffer and RTT: Enabled in Mode Registers
2
; ODT Signal: MID-LEVEL
Auto Self-Refresh IPP Current
Same condition with IDD6A
Operating Bank Interleave Read Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 1; BL: 81; AL:
CL-1; CS_n: High between ACT and RDA; Command, Address, Bank Group Address, Bank Address
Inputs: partially toggling according to Table 10; Data IO: read data bursts with different data between
one burst and the next one according to Table 10; DM_n: stable at 1; Bank Activity: two times
interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 10; Output Buffer and RTT: Enabled in Mode Registers
2
; ODT Signal: stable at 0; Pattern Details: see Table 10
Operating Bank Interleave Read IPP Current
Same condition with IDD7
Maximum Power Down Current
TBD
Maximum Power Down IPP Current
Same condition with IDD8
Rev. 1.2 / Jun.201653
Page 54
NOTE :
1. Burst Length: BL8 fixed by MRS: set MR0 [A1:0=00].
3. CAL enabled : set MR4 [A8:6 = 001] : 1600MT/s
010] : 1866MT/s, 2133MT/s
011] : 2400MT/s
Gear Down mode enabled :set MR3 [A3 = 1] : 1/4 Rate
DLL disabled : set MR1 [A0 = 0]
CA parity enabled :set MR5 [A2:0 = 001] : 1600MT/s,1866MT/s, 2133MT/s
010] : 2400MT/s
Read DBI enabled : set MR5 [A12 = 1]
Write DBI enabled : set :MR5 [A11 = 1]
4. Low Power Array Self Refresh (LP ASR) : set MR2 [A7:6 = 00] : Normal
01] : Reduced Temperature range
10] : Extended Temperature range
11] : Auto Self Refresh
5. IDD2NG should be measured after sync pulse(NOP) input.
Rev. 1.2 / Jun.201654
Page 55
Table 3 - IDD0, IDD0A and IPP0 Measurement-Loop Pattern
2
3
CK_t /CK_c
CKE
Sub-Loop
Cycle
Number
Command
00ACT000000000000000-
1,2D, D100000000000000-
3,4
D_#,
D_#
...repeat pattern 1...4 until nRAS - 1, truncate if necessary
nRASPRE010100000000000-
...repeat pattern 1...4 until nRC - 1, truncate if necessary