SK hynix HMA451R7AFR8N, HMA41GR7AFR8N, HMA41GR7AFR4N, HMA42GR7AFR4N User Manual

Page 1
288pin DDR4 SDRAM Registered DIMM
DDR4 SDRAM Registered DIMM
Based on 4Gb A-die
HMA451R7AFR8N HMA41GR7AFR8N HMA41GR7AFR4N HMA42GR7AFR4N
*SK hynix reserves the right to change products or specifications without notice.
Rev. 1.7 / Jun.2016 1
Page 2

Revision History

0.1 Initial Release Dec.2014
1.0 IDD Specification update May.2015
1.1 Module dimension update(PCB) Jun.2015
1.2 Corrected IDD value of HMA41GR7AFR8N Jul.2015
1.3 Corrected Pin Assignments Jul.2015
1.4 Changed Module Dimension Oct.2015
1.5 Updated JEDEC Specification Changed Speed Bin : 2666Mbps CL9(VK)
1.6 Updated 2133Mbps (tCK(min) : 0.938ns -> 0.937ns)
Updated JEDEC Specification
1.7 Corrected typo : page number Jun.2016
Dec.2015
Mar.2016
Rev. 1.7 / Jun.2016 2
Page 3

Description

SK hynix Registered DDR4 SDRAM DIMMs (Registered Double Data Rate Synchronous DRAM Dual In-Line Memory Modules) are low power, high-speed operation memory modules that use DDR4 SDRAM devices. These Registered SDRAM DIMMs are intended for use as main memory when installed in systems such as servers and workstations.

Features

• Power Supply: VDD=1.2V (1.14V to 1.26V)
• VDDQ = 1.2V (1.14V to 1.26V)
• VPP - 2.5V (2.375V to 2.75V)
• VDDSPD=2.25V to 2.75V
• Functionality and operations comply with the DDR4 SDRAM datasheet
• 16 internal banks
• Bank Grouping is applied, and CAS to CAS latency (tCCD_L, tCCD_S) for the banks in the same or dif­ferent bank group accesses are available
• Data transfer rates: PC4-2666, PC4-2400, PC4-2133
• Bi-Directional Differential Data Strobe
• 8 bit pre-fetch
• Burst Length (BL) switch on-the-fly BL8 or BC4(Burst Chop)
• Supports ECC error correction and detection
• On-Die Termination (ODT)
• Temperature sensor with integrated SPD
• This product is in compliance with the RoHS directive.
• Per DRAM Addressability is supported
• Internal Vref DQ level generation is available
• Write CRC is supported at all speed grades
• DBI (Data Bus Inversion) is supported(x8)
• CA parity (Command/Address Parity) mode is supported

Ordering Information

Part Number Density Organization Component Composition
HMA451R7AFR8N-TF/UH/VK 4GB 512Mx72 512Mx8(H5AN4G8NAFR)*9 1
HMA41GR7AFR8N-TF/UH/VK 8GB 1Gx72 512Mx8(H5AN4G8NAFR)*18 2
HMA41GR7AFR4N-TF/UH/VK 8GB 1Gx72 1Gx4(H5AN4G4NAFR)*18 1
HMA42GR7AFR4N-TF/UH/VK 16GB 2Gx72 1Gx4(H5AN4G4NAFR)*36 2
Rev. 1.7 / Jun.2016 3
# of
ranks
Page 4

Key Parameters

MT/s Grade
DDR4-1600 -PB 1.25 11
DDR4-1866 -RD 1.071 13
DDR4-2133 -TF 0.937 15
DDR4-2400 -UH 0.833 17
DDR4-2666 -VK 0.75 19
*SK hynix DRAM devices support optional downbinning to CL17, CL15, CL13 and CL11. SPD setting is programmed to match.
tCK
(ns)
CAS
Latency
(tCK)
tRCD
(ns)
13.75
(13.50)*
13.92
(13.50)*
14.06
(13.50)*
14.16
(13.75)*
14.25
(13.75)*
tRP
(ns)
13.75
(13.50)*
13.92
(13.50)*
14.06
(13.50)*
14.16
(13.75)*
14.25
(13.75)*
tRAS
(ns)
35
34
33
32
32
tRC
(ns)
48.75
(48.50)*
47.92
(47.50)*
47.06
(46.50)*
46.16
(45.75)*
46.25
(45.75)*
CL-tRCD-tRP
11-11-11
13-13-13
15-15-15
17-17-17
19-19-19

Address Table

4GB(1Rx8) 8GB(2Rx8) 8GB(1Rx4) 16GB(2Rx4)
# of Bank Groups 4 4 4 4
Bank Address
BG Address BG0~BG1 BG0~BG1 BG0~BG1 BG0~BG1
Bank Address in a BG BA0~BA1 BA0~BA1 BA0~BA1 BA0~BA1 Row Address A0~A14 A0~A14 A0~A15 A0~A15 Column Address A0~ A9 A0~ A9 A0~ A9 A0~ A9 Page size 1 KB 1 KB 512MB 512MB
Rev. 1.7 / Jun.2016 4
Page 5

Pin Descriptions

Pin Name Description Pin Name Description
A0-A17
1
Register address input SCL
BA0, BA1 Regisiter bank select input SDA
BG0, BG1 Regisiter bank group select input SA0-SA2
2
RAS_n
3
CAS_n
4
WE_n
CS0_n, CS1_n,
CS2_n, CS3_n
Register row address strobe input PAR Register parity input
Register column address strobe input VDD SDRAM core power supply
Register write enable input C0, C1, C2 Chip ID lines for SDRAMx
DIMM Rank Select Lines input 12V
CKE0, CEK1 Register clock enable lines input VREFCA
ODT0, ODT1
Register on-die termination control lines input
VSS Power supply return (ground)
I2C serial bus clock for SPD-TSE and register
I2C serial data line for SPD-TSE and register
I2C slave address select for SPD-TSE and register
Optional Power Supply on socket but not used on RDIMM
SDRAM command/address reference supply
ACT_n Register input for activate input VDDSPD Serial SPD/TS positive power supply
DQ0-DQ63 DIMM memory data bus ALERT_n Register ALERT_n output
CB0-CB7 DIMM ECC check bits VPP SDRAM Supply
TDQS9_t-TDQS17_t
TDQS9_c-TDQS17_c
DQS0_t-DQS17_t
DQS0_c-DQS17_c
DBI0_n-DBI8_n Data Bus Inversion EVENT_n
CK0_t, CK1_t
CK0_c, CK1_c
Dummy loads for mixed populations of x4 based and x8 based RDIMMs.
Data Buffer data strobes
(positive line of differential pair)
Data Buffer data strobes
(negative line of differential pair)
Register clock input (positive line of dif­ferential pair)
Register clocks input (negative line of differential pair)
DM0_n-DM8_n Data Mask
RESET_n
Set Register and SDRAMs to a Known State
SPD signals a thermal event has occurred
VTT SDRAM I/O termination supply
RFU Reserved for future use
1. Address A17 is only valid for 16Gbx4 based SDRAMs.
2. RAS_n is a multiplexed function with A16.
3. CAS_n is a multiplexed function with A15.
4. WE_n is a multiplexed function with A14.
Rev. 1.7 / Jun.2016 5
Page 6

Input/Output Functional Descriptions

Symbol Type Function
CK0_t, CK0_c,
CK1_t, CK1_c
CKE0, CKE1 Input
CS0_n, CS1_n,
CS2_n, CS3_n
C0, C1, C2
ODT0, ODT1
ACT_n
RAS_n/A16, CAS_n/A15,
WE_n/A14
Input
Input
Input
Input
Input
Input
Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK_t and negative edge of CK_c.
Clock Enable: CKE HIGH activates, and CKE LOW deactivates internal clock signals and device input buffers and output drivers. Taking CKE LOW provides Precharge Power­Down and Self-Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is synchronous for Self-Refresh exit. After VREFCA and Internal DQ Vref have become stable during the power on and initialization sequence, they must be maintained during all operations (including Self-Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK_t, CK_c, ODT and CKE, are disabled during power-down. Input buffers, excluding CKE, are disabled during Self­Refresh.
Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank selection. CS_n is considered part of the command code.
Chip ID: Chip ID is only used for 3DS for 2,4,8 high stack via TSV to select each slice of stacked component. Chip ID is considered part of the command code.
On-Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance internal to the DDR4 SDRAM. When enabled, ODT is only applied to each DQ, DQS_t, DQS_c, TDQS_t, and TDQS_c signal. The ODT pin will be ignored if MR1 is programmed to disable RTT_NOM.
Activation Command Input: ACT_n defines the Activation command being entered along with CS_n. The input into RAS_n/A16, CAS_n/A15, and WE_n/A14 will be considered as Row Address A16, A15, and A14.
Command Inputs: RAS_n/A16, CAS_n/A15, and WE_n/A14 (along with CS_n) define the command being entered. Those pins are multi-function. For example, for activation with ACT_n Low, these are Addresses like A16, A15, and A14, but for non-activation command with ACT_n High, these are Command pins for Read, Write, and other commands defined in command truth table.
Bank Group Inputs: BG0 - BG1 define to which bank group an Active, Read, Write, or
BG0 - BG1
BA0 - BA1
A0 - A17
Rev. 1.7 / Jun.2016 6
Input
Input
Input
Precharge command is being applied. BG0 also determines which mode register is to be accessed during a MRS cycle.
Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write, or Precharge command is being applied. Bank address also determines which mode register is to be accessed during a MRS cycle.
Address Inputs: Provide the row address for ACTIVATE Commands and the column address for Read/Write commands to select one location out of the memory array in the respective bank. A10/AP, A12/BC_n, RAS_n/A16, CAS_n/A15 and WE_n/A14 have additional functions. See other rows. The address inputs also provide the op-code during Mode Register Set commands. A17 is only defined for 16Gb x4 SDRAM configurations.
Page 7
Symbol Type Function
Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be performed to the accessed bank after the Read/Write
A10 / AP
Input
operation. (HIGH: Autoprecharge; LOW: no Autoprecharge). A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by bank addresses.
Burst Chop: A12 / BC_n is sampled during Read and Write commands to determine if
A12 / BC_n
Input
burst chop (on-the-fly) will be performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details.
RESET_n
CMOS
Input
Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is HIGH. RESET_n must be HIGH during normal operation.
Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register, then
DQ
Input / Output
CRC code is added at the end of Data Burst. Any DQ from DQ0-DQ3 may indicate the internal Vref level during test via Mode Register Setting MR4 A4=High. Refer to vendor specific data sheets to determine which DQ is used.
Data Strobe: output with read data, input with write data. Edge-aligned with read data, DQS0_t-DQS17_t, DQS0_c-DQS17_c
Input / Output
centered in write data. The data strobe DQS_t is paired with differential signals DQS_c,
respectively, to provide differential pair signaling to the system during reads and writes.
DDR4 SDRAM supports differential data strobe only and does not support single-ended.
TDQS9_t-TDQS17_t, TDQS9_c-TDQS17_c
DBI0_n-DBI8_n
DM0_n-DM8_n
PAR
ALERT_n
RFU
NC
1
VDD
VSS
Input
Input/
Output
Input
Input
Output (Input)
Supply
Supply
Provides a dummy load for x8 based RDIMMs where mixed populations of x4 and x8
based RDIMMs are present.
Provides for data bus inversion. Only possible for x8 based RDIMMs and where only x8
based RDIMMs are on a channel.
Provides for masking of a byte on WRITE commands to the SDRAMs. Only Possible x8
based RDIMMs and where only x8 based RDIMMs are on a channel.
Command and Address Parity Input : DDR4 Supports Even Parity check in SDRAMs with
MR setting. Once it’s enabled via Register in MR5, then SDRAM calculates Parity with
ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, BG0-BG1, BA0-BA1, A17-A0. Input parity
should be maintained at the rising edge of the clock and at the same time as command
& address, with CS_n LOW.
Alert: Is multi functions, such as CRC error flag or Command and Address Parity error
flag, as on Output signal. If there is an error in the CRC, then ALERT_n goes LOW for the
period time interval and goes back HIGH. If there is an error in the Command Address
Parity Check, then ALERT_n goes LOW for a relatively long period until on going SDRAM
internal recovery transaction is complete. During Connectivity Test mode, this pin
functions as an input.
Using this signal or not is dependent on the system.
Reserved for Future Use: No on-DIMM electrical connection is present.
No Connect: No on-DIMM electrical connection is present.
Power Supply: 1.2 V ± 0.06 V
Ground
Rev. 1.7 / Jun.2016 7
Page 8
Symbol Type Function
VTT
12V
VPP
VDDSPD
VREFCA
Supply
Supply
Supply
Supply
Supply
Power Supply for termination of Address, Command and Control, VDD/2.
12V supply not used on RDIMMs.
SDRAM Activating Power Supply: 2.5V (2.375V min , 2.75V max)
Power supply used to power the I2C bus on the SPD-TSE and register.
Reference voltage for CA
Note: For PC4, VDD is 1.2V. For PC4L, VDD is TBD.
Rev. 1.7 / Jun.2016 8
Page 9

Pin Assignments

Pin
1 NC 145
2
3 DQ4 147 VSS 76 VDD 220 VDD
4 VSS 148
5
6 VSS 150 DQ1
7
8
9 VSS 153 DQS0_t 80 VDD 224 BA1
10 DQ6 154
11
12 DQ2 156 VSS 83 VDD 227 RFU
13 VSS 157
14
15 VSS 159 DQ13 86 CAS_n/A15 230 NC
16 DQ8 160
17
18
19 TDQS10_c, DQS10_c 163
20
21 DQ14 165 VSS 92 VDD 236 VDD
22 VSS 166
23
24 VSS 168 DQ11 95 DQ36 239 VSS
25 DQ20 169
26
27 DQ16 171 VSS 98 VSS 242 DQ33
28 VSS 172
29
30 TDQS11_c, DQS11_c 174 DQS2_c 101 VSS 245 DQS4_t
31 VSS 175
32
33 VSS 177 DQ23 104 DQ34 248 VSS
34 DQ18 178
35
36 DQ28 180 VSS 107 VSS 251 DQ45
Front Side
Pin Label
VSS
DQ0
TDQS9_t, DQS9_t,
DM0_n, DBI0_n
TDQS9_C, DQS9_
VSS
DQ12
VSS
TDQS10_t, DQS10_t,
DM1_n, DBI1_n
VSS
DQ10
VSS
TDQS11_t, DQS11_t,
DM2_n, DBI2_n
DQ22
VSS
C
Pin
146 VREFCA 75 CK0_c 219 CK1_c
149 VSS
151
152 DQS0_c 79 A0 223 VDD
155 DQ7 82 RAS_n/A16 226 VDD
158 VSS 85 VDD 229 VDD
161 DQ9 88 VDD 232 A13
162 VSS 89 CS1_n, NC 233 VDD
164 DQS1_t 91
167 VSS 94
170 DQ21 97
173 VSS 100
176 VSS 103
179 DQ19 106
Back Side
Pin Label
NC
DQ5
VSS
VSS
DQ3
VSS
DQS1
_c 90 VDD 234
DQ15
VSS
DQ17
DQS2_t
VSS
Pin
74 CK0_t 218 CK1_t
77 VTT 221 VTT
78 EVENT_n 222 PARITY
81 BA0 225 A10/AP
84 CS0_n 228 WE_n/A14
87 ODT0 231 VDD
93 C0, CS2_n, NC 237
96 VSS 240
99
102 DQ38 246
105 VSS 249
Front Side
Pin Label
ODT1, NC
VSS
DQ32
TDQS13_t, DQS13_t,
DM4_n, DBI4_n
TDQS13_C, DQS13_C244 DQS4_c
VSS
DQ44
Pin
KEY
235 NC, C2
238 SA2
241 VSS
243
247 DQ39
250 VSS
Back Side
Pin Label
A17
NC, CS3_n, C1
DQ37
VSS
VSS
DQ35
Rev. 1.7 / Jun.2016 9
Page 10
Pin
37 VSS 181
38
39 VSS 183 DQ25 110
40
41
42 VSS 186 DQS3_t 113 DQ46 257 VSS
43 DQ30 187
44
45 DQ26 189 VSS 116 VSS 260 DQ43
46 VSS 190
47
48 VSS 192 CB5 119 DQ48 263 VSS
49 CB0 193 VSS 120 VSS 264 DQ49
50 VSS 194 CB1 121
51
52 TDQS17_c, DQS17_c 196 DQS8_c 123 VSS 267
53 VSS 197 DQS8_t 124
54 CB6 198 VSS 125 VSS 269 DQ55
55 VSS 199 CB7 126 DQ50 270
56 CB2 200 VSS 127
57 VSS 201 CB3 128 DQ60 272 VSS
58 RESET_n 202 VSS 129 VSS 273 DQ61
59 VDD 203 CKE1, NC 130
60 CKE0 204 VDD 131 VSS 275 DQ57
61 VDD 205 RFU 132
62 ACT_n 206 VDD 133 TDQS16_t, DQS16_c 277 DQS7_c
63 BG0 207 BG1 134 VSS 278 DQS7_t
64 VDD 208 ALERT_n 135 DQ62 279 VSS
65 A12/BC_n 209 VDD 136 VSS 280 DQ63
66 A9 210 A11 137 DQ58 281 VSS
67 VDD 211 A7 138 VSS 282 DQ59
68 A8 212 VDD 139 SA0 283 VSS
69 A6 213 A5 140 SA1 284 VDDSPD
70 VDD 214 A4 141 SCL 285 SDA
71 A3 215 VDD 142 VPP 286 VPP
72 A1 216 A2 143 VPP 287 VPP
73 VDD 217 VDD 144 RFU 288 VPP
Front Side
Pin Label
DQ24
TDQS12_t, DQS12_t,
DM3_n, DBI3_n
TDQS12_C, DQS12_C185 DQS3_c 112
VSS
CB4
TDQS17_t, DQS17_t,
DM8_n, DBI8_n
Pin
182 VSS 109
184
188 DQ31 115
191 VSS 118
195 VSS 122 TDQS15_c, DQS15_c 266 DQS6_c
Back Side
Pin Label
DQ29
VSS
VSS
DQ27
Pin
108 DQ40 252
111 TDQS14_c, DQS14_c 255
114 VSS 258
117 DQ52 261
Front Side
Pin Label
VSS
TDQS14_t, DQS14_t,
DM5_n, DBI5_n
VSS
DQ42
VSS
TDQS15_t, DQS15_t,
DM6_n, DBI6_n
DQ54
VSS
DQ56
TDQS16_t, DQS16_t,
DM7_n, DBI7_n
Pin
253 DQ41
254 VSS
256 DQS5_t
259 VSS
262 DQ53
265 VSS
268 VSS
271 DQ51
274
276 VSS
Back Side
Pin Label
VSS
DQS5_
DQ47
VSS
DQS6_t
VSS
VSS
C
Rev. 1.7 / Jun.2016 10
Page 11

Functional Block Diagram

CS0B_n
ODT0B
CKE0B
DQS0_t
DQS0_c
DQ [7:0]
DQS1_t
DQS1_c
DQ [15:8]
DQS2_t
DQS2_c
DQ [23:16]
DQS3_t
DQS3_c
DQ [31:24]
DQS8_t
DQS8_c
CB [0:7]
DQS_t DQS_c DQ [7:0]
D0
ZQ
DQS_t DQS_c DQ [7:0]
D1
ZQ
DQS_t DQS_c DQ [7:0]
D2
ZQ
DQS_t DQS_c DQ [7:0]
D3
ZQ
DQS_t DQS_c DQ [7:0]
D4
ZQ
DQS5_t
DQS5_c
DQ [47:40]
DQS6_t
DQS6_c
DQ [55:48]
DQS7_t
DQS7_c
DQ [63:56]
DQS_t DQS_c DQ [7:0]
D5
ZQ
DQS_t DQS_c DQ [7:0]
D6
ZQ
DQS_t DQS_c DQ [7:0]
D7
ZQ
DQS_t DQS_c DQ [7:0]
D8
ZQ
D0–D8
V
PP
V
DD
V
DDSPD
D0–D8
VREFCA
SPD
V
TT
V
SS
D0–D8
D0–D8
Note:
1. Unless otherwize noted, resistor values are 15Ω±5%.
2. See the Net Structure diagrams for all resistor associated with the command, address and control bus.
3. ZQ resistors are 240
Ω±1%.For all other resistor values refer to the appropriate wiring diagram.
4. The TEN pin on the SDRAMs are tied to VSS.
5. VDD and VDDSPD also connect with the register.
DQS4_t
DQS4_c
DQ [39:32]
CKE ODT CS_n VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
CKE ODT CS_n
CKE ODT CS_n
CKE ODT CS_n
CKE ODT CS_n
CKE ODT CS_n
CKE ODT CS_n
CKE ODT CS_n
CKE ODT CS_n
CS0A_n
ODT0A
CKE0A
SA0
Serial PD with Thermal sensor
SA1
SA0 SA1
SCL
EVENT_n
SA2
SA2
EVENT_n
SCL
SDA
SDA
SA0 SA1
SA0
SA1
BFUNC
SA2
SA2
VSS
SCL
SDA
1K
±
5%
RCD
DBI0_n/DM0_n DBI_n/DM_n DBI4_n/DM4_n DBI_n/DM_n
DBI1_n/DM1_n DBI_n/DM_n DBI5_n/DM5_n DBI_n/DM_n
DBI2_n/DM2_n DBI_n/DM_n DBI6_n/DM6_n DBI_n/DM_n
DBI3_n/DM3_n DBI_n/DM_n
DBI8_n/DM8_n DBI_n/DM_n
DBI7_n/DM7_n DBI_n/DM_n

4GB, 512Mx72 Module(1Rank of x8) - page1

Rev. 1.7 / Jun.2016 11
Page 12

4GB, 512Mx72 Module(1Rank of x8) - page2

ALERT_n ERROR_IN_n <- ALERT_n: All SDRAMs
BG[1:0]
BA[1:0]
A[16:0]
PARITY, ACT_n
CKE0
ODT0
CS0_n
CK0_t
CK0_c
BG[1:0]A -> BG[1:0]: SDRAMs D[4:0] BG[1:0]B -> BG[1:0]: SDRAMs D[8:5]
CKE0B -> CKE: SDRAMs D[8:5]
A[16:0]B -> A[16:0]: SDRAMs D[8:5]
A[16:0]A -> A[16:0]: SDRAMs D[4:0]
CKE0A -> CKE: SDRAMs D[4:0]
ODT0B -> ODT: SDRAMs D[8:5]
ODT0A -> ODT: SDRAMs D[4:0]
CS0B_n -> CS_n: SDRAMs D[8:5]
CS0A_n -> CS_n: SDRAMs D[4:0]
Y1(_t, _c) -> CK1(_t, _c): SDRAMs D[4:0]
Y0(_t, _c) -> CK0(_t, _c): SDRAMs D[8:5]
RESET_n QRESET_n -> RESET_n: All SDRAMs
R E
G
I S T E R
PARB -> PAR, ACT_n: SDRAMs D[8:5]
PARA -> PAR, ACT_n: SDRAMs D[4:0]
BA[1:0]A -> BA[1:0]: SDRAMs D[4:0] BA[1:0]B -> BA[1:0]: SDRAMs D[8:5]
CK1_t
CK1_c
Note:
1. CK0_t, CK0_c terminated with 120Ω±5% resistor.
2. CK1_t, CK1_c terminated with 120
Ω±5% resistor but not used.
3. Unless otherwise noted resistors are 22
Ω±5%.
4. Register inputs CS1_n, CS2_n/C0 and CS3_n/C1 are tied to VDD. Register inputs CS, ODT1 and CKE1 are tied to VSS.
Rev. 1.7 / Jun.2016 12
Page 13

8GB, 1Gx72 Module(2Rank of x8) - page1

CKE1A
ODT1A
CS1A_n
CKE0A
ODT0A
CS0A_n
CKE1B
ODT1B
CS1B_n
CKE0B
ODT0B
CS0B_n
DQS8_t DQS8_c
CB [7:0]
DQS3_t DQS3_c
DQ [31:24]
DQS2_t DQS2_c
DQ [23:16]
DQS‘_t
DQS‘_c
DQ [15:8]
DQS_t DQS_c DQ [7:0]
D4
ZQ
DQS_t DQS_c DQ [7:0]
D3
ZQ
DQS_t DQS_c DQ [7:0]
D2
ZQ
DQS_t DQS_c DQ [7:0]
D1
ZQ
D0–D17
V
PP
V
DD
V
DDSPD
D0–D17
VREFCA
RCD, Serial PD
V
TT
V
SS
D0–D17
D0–D17, RCD, Serial PD
Note:
1. Unless otherwize noted, resistor values are 15Ω±5%.
2. See the Net Structure diagrams for all resistor associated with the command, address and control bus.
3. ZQ resistors are 240
Ω±1%.For all other resistor values refer to the appropriate wiring diagram.
4. The TEN pin on the SDRAMs are tied to Vss.
5. VDD and VDDSPD also connect to the RCD
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
DQS_t DQS_c DQ [7:0]
D13
ZQ
DQS_t DQS_c DQ [7:0]
D12
ZQ
DQS_t DQS_c DQ [7:0]
D11
ZQ
DQS_t DQS_c DQ [7:0]
D10
ZQ
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
DQS4_t
DQS4_c
DQ [39:32]
DQS5_t
DQS5_c
DQ [47:40]
DQS6_t
DQS6_c
DQ [55:48]
DQS7_t
DQS7_c
DQ [59:56]
DQS_t DQS_c DQ [7:0]
D5
ZQ
DQS_t DQS_c DQ [7:0]
D6
ZQ
DQS_t DQS_c DQ [7:0]
D7
ZQ
DQS_t DQS_c DQ [7:0]
D8
ZQ
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
DQS_t DQS_c DQ [7:0]
D14
ZQ
DQS_t DQS_c DQ [7:0]
D15
ZQ
DQS_t DQS_c DQ [7:0]
D16
ZQ
DQS_t DQS_c DQ [7:0]
D17
ZQ
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
DQS0_t DQS0_c
DQ [7:0]
DQS_t DQS_c DQ [7:0]
D0
ZQ VSS
DQS_t DQS_c DQ [7:0]
D9
ZQ VSS
CKE
ODT
CS_n
CKE
ODT
CS_n
DBI8_n/DM8_n DBI_n/DM_n DBI_n/DM_n DBI4_n/DM4_n DBI_n/DM_n DBI_n/DM_n
DBI3_n/DM3_n DBI_n/DM_n DBI_n/DM_n DBI5_n/DM5_n DBI_n/DM_n DBI_n/DM_n
DBI2_n/DM2_n DBI_n/DM_n DBI_n/DM_n DBI6_n/DM6_n DBI_n/DM_n DBI_n/DM_n
DBI1_n/DM1_n DBI_n/DM_n DBI_n/DM_n DBI7_n/DM7_n DBI_n/DM_n DBI_n/DM_n
DBI0_n/DM0_n DBI_n/DM_n DBI_n/DM_n
SA0
Serial PD with Thermal sensor
SA1
SA0 SA1
SCL
EVENT_n
SA2
SA2
EVENT_n
SCL
SDA
SDA
SA0 SA1
SA0
SA1
BFUNC
SA2
SA2
VSS
SCL
SDA
1K
±
5%
RCD
Rev. 1.7 / Jun.2016 13
Page 14

8GB, 1Gx72 Module(2Rank of x8) - page2

CKE1
CKE1B -> CKE: SDRAMs D[17:14]
CKE1A -> CKE: SDRAMs D[13:9]
ODT1
ODT1B -> ODT: SDRAMs D[17:14]
ODT1A -> ODT: SDRAMs D[13:9]
CS1_n
CS1B_n -> CS_n: SDRAMs D[17:14]
CS1A_n -> CS_n: SDRAMs D[13:9]
ALERT_n ERROR_IN_n <- ALERT_n: All SDRAMs
ACT_n
BG[1:0]
BA[1:0]
A[17:0]
PARITY
CKE0
ODT0
CS0_n
CK0_t
CK0_c
BG[1:0]A -> BG[1:0]: SDRAMs D[4:0], D[13:9] BG[1:0]B -> BG[1:0]: SDRAMs D[8:5], D[17:14]
CKE0B -> CKE: SDRAMs D[8:5]
A[17:0]B -> A[17:0]: SDRAMs D[8:5], D[12:9]
A[17:0]A -> A[17:0]: SDRAMs D[4:0], D[17:13]
CKE0A -> CKE: SDRAMs D[4:0]
ODT0B -> ODT: SDRAMs D[8:5]
ODT0A -> ODT: SDRAMs D[4:0]
CS0B_n -> CS_n: SDRAMs D[8:5]
CS0A_n -> CS_n: SDRAMs D[4:0]
Y2_t -> CK_C: SDRAMs D[17:14]
Y0_t -> CK_t: SDRAMs D[8:5]
RESET_n QRST_n -> RESET_n: All SDRAMs
R
E
T E
R
PARB -> PAR: SDRAMs D[8:5], D[17:14]
PARA -> PAR: SDRAMs D[4:0], D[13:9]
BA[1:0]A -> BA[1:0]: SDRAMs D[4:0], D[13:9] BA[1:0]A -> BA[1:0]: SDRAMs D[8:5], D[17:14]
CK1_t
CK1_c
Note:
1. CK0_t, CK0_c terminated with 120Ω±5% resistor.
2. CK1_t, CK1_c terminated with 120
Ω±5% resistor but not used.
3. Unless otherwise noted resistors are 22
Ω±5%.
ACTB_n -> ACT_n: SDRAMs D[8:5], D[17:14]
ACTA_n -> ACT_n: SDRAMs D[4:0], D[13:9]
G
I S
Y1_t -> CK_t: SDRAMs D[4:0]
Y3_t -> CK_C: SDRAMs D[13:9]
Y2_c -> CK_C: SDRAMs D[17:14]
Y0_c -> CK_t: SDRAMs D[8:5] Y1_c-> CK_t: SDRAMs D[4:0]
Y3_c -> CK_C: SDRAMs D[13:9]
Rev. 1.7 / Jun.2016 14
Page 15

8GB, 1Gx72 Module(1Rank of x4) - page1

CS0B_n
ODT0B
CKE0B
DQS9_t
DQS9_c
DQ [9:4]
DQS10_t
DQS10_c
DQ [15:12]
DQS11_t
DQS11_c
DQ [23:20]
DQS12_t
DQS12_c
DQ [31:28]
DQS_t DQS_c DQ [3:0]
D0
ZQ
DQS_t DQS_c DQ [3:0]
D1
ZQ
DQS_t DQS_c DQ [3:0]
D2
ZQ
DQS_t DQS_c DQ [3:0]
D3
ZQ
D0–D17
V
PP
V
DD
V
DDSPD
D0–D17
VREFCA
SPD
V
TT
V
SS
D0–D17
D0–D17
Note:
1. Unless otherwize noted, resistor values are 15Ω±5%.
2. See the Net Structure diagrams for all resistor associated with the command, address and control bus.
3. ZQ resistors are 240
Ω±1%.For all other resistor values refer to the appropriate wiring diagram.
4. VDD and VDDSPD also connect to the register. TEN pi n of SDRAMs is tied to VSS.
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
CS0A_n
ODT0A
CKE0A
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
DQS0_t
DQS0_c
DQ [3:0]
DQS1_t
DQS1_c
DQ [11:8]
DQS2_t
DQS2_c
DQ [19:16]
DQS3_t
DQS3_c
DQ [27:24]
DQS_t DQS_c DQ [3:0]
D17
ZQ
DQS_t DQS_c DQ [3:0]
D16
ZQ
DQS_t DQS_c DQ [3:0]
D15
ZQ
DQS_t DQS_c DQ [3:0]
D14
ZQ
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
DQS4_t
DQS4_c
DQ [35:32]
DQS5_t
DQS5_c
DQ [43:40]
DQS6_t
DQS6_c
DQ [51:48]
DQS7_t
DQS7_c
DQ [59:56]
DQS_t DQS_c DQ [3:0]
D5
ZQ
DQS_t DQS_c DQ [3:0]
D6
ZQ
DQS_t DQS_c DQ [3:0]
D7
ZQ
DQS_t DQS_c DQ [3:0]
D8
ZQ
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
DQS13_t DQS13_c
DQ [39:36]
DQS14_t DQS14_c
DQ [47:44]
DQS15_t DQS15_c
DQ [55:52]
DQS16_t DQS16_c
DQ [63:60]
DQS_t DQS_c DQ [3:0]
D9
ZQ
DQS_t DQS_c DQ [3:0]
D10
ZQ
DQS_t DQS_c DQ [3:0]
D11
ZQ
DQS_t DQS_c DQ [3:0]
D12
ZQ
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
DQS17_t DQS17_c
CB [7:4]
DQS_t DQS_c DQ [3:0]
D4
ZQ VSS
CKE
ODT
CS_n
DQS8_t DQS8_c
CB [3:0]
DQS_t DQS_c DQ [3:0]
D13
ZQ VSS
CKE
ODT
CS_n
SA0
Serial PD with Thermal sensor
SA1
SA0 SA1
SCL
EVENT_n
SA2
SA2
EVENT_n
SCL
SDA
SDA
SA0 SA1
SA0
SA1
BFUNC
SA2
SA2
VSS
SCL
SDA
1K
±
5%
RCD
Rev. 1.7 / Jun.2016 15
Page 16

8GB, 1Gx72 Module(1Rank of x4) - page2

ALERT_n ERROR_IN_n <- ALERT_n: All SDRAMs
C[2:0]
ACT_n
BG[1:0]
BA[1:0]
A[17:0]
PARITY
CKE0
ODT0
CS0_n
CK0_t
CK0_c
BG[1:0]A -> BG[1:0]: SDRAMs D[4:0], D[17:13] BG[1:0]B -> BG[1:0]: SDRAMs D[8:5], D[12:9]
CKE0B -> CKE: SDRAMs D[8:5], D[12:9]
A[17:0]B -> A[17:0]: SDRAMs D[8:5], D[12:9]
A[17:0]A -> A[17:0]: SDRAMs D[4:0], D[17:13]
CKE0A -> CKE: SDRAMs D[4:0], D[17:13]
ODT0B -> ODT: SDRAMs D[8:5], D[12:9]
ODT0A -> ODT: SDRAMs D[4:0], D[17:13]
CS0B_n -> CS_n: SDRAMs D[8:5], D[12:9]
CS0A_n -> CS_n: SDRAMs D[4:0], D[17:13]
Y0_C -> CK_C: SDRAMs D[8:5], D[12:9]
Y0_t -> CK_t: SDRAMs D[8:5], D[12:9]
RESET_n QRST_n -> RESET_n: All SDRAMs
R
E
T E
R
PARB -> PAR: SDRAMs D[8:5], D[12:9]
PARA -> PAR: SDRAMs D[4:0], D[17:13]
BA[1:0]A -> BA[1:0]: SDRAMs D[4:0], D[17:13] BA[1:0]A -> BA[1:0]: SDRAMs D[8:5], D[12:9]
CK1_t
CK1_c
Note:
1. CK0_t, CK0_c terminated with 120Ω±5% resistor.
2. CK1_t, CK1_c terminated with 120
Ω±5% resistor but not used.
3. Unless otherwise noted resistors are 22
Ω±5%.
4. Register input CS1_n is tied to VDD. Register inputs ODT1 and CKE1 are tied to VSS.
ACTB_n -> ACT_n: SDRAMs D[8:5], D[12:9]
ACTA_n -> ACT_n: SDRAMs D[4:0], D[17:13]
G
I S
Y1_t -> CK_t: SDRAMs D[4:0], D[17:13]
Y1_C -> CK_C: SDRAMs D[4:0], D[17:13]
C[2:0]B -> C[2:0]: SDRAMs D[8:5], D[12:9]
C[2:0]A -> C[2:0]: SDRAMs D[4:0], D[17:13]
Rev. 1.7 / Jun.2016 16
Page 17
DQS0_t
DQS0_c
DQ [3:0]
DQS1_t
DQS1_c
DQ [11:8]
DQS2_t
DQS2_c
DQ [19:16]
DQS3_t
DQS3_c
DQ [27:24]
DQS8_t
DQS8_c
CB [3:0]
DQS_t DQS_c DQ [3:0]
D5
ZQ
DQS_t DQS_c DQ [3:0]
D6
ZQ
DQS_t DQS_c DQ [3:0]
D7
ZQ
DQS_t DQS_c DQ [3:0]
D8
ZQ
DQS_t DQS_c DQ [3:0]
D9
ZQ
Note:
1. Unless otherwize noted, resistor values are 15Ω±5%.
2. See the Net Structure diagrams for all resistor associated with the command, address and control bus.
3. ZQ resistors are 240
Ω±1%.For all other resistor values refer to the appropriate wiring diagram.
4. DRAM TEN pin need to be tied to VSS.
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
VSS
QACS1_n
QAODT1
QACKE1
DQS_t DQS_c DQ [3:0]
D15
ZQ
DQS_t DQS_c DQ [3:0]
D16
ZQ
DQS_t DQS_c DQ [3:0]
D17
ZQ
DQS_t DQS_c DQ [3:0]
D18
ZQ
DQS_t DQS_c DQ [3:0]
D19
ZQ
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
VSS
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
DQS9_t
DQS9_c
DQ [7:4]
DQS10_t
DQS10_c
DQ [15:12]
DQS11_t
DQS11_c
DQ [23:20]
DQS12_t
DQS12_c
DQ [31:28]
DQS17_t
DQS17_c
CB [7:4]
DQS_t DQS_c DQ [3:0]
D0
ZQ
DQS_t DQS_c DQ [3:0]
D1
ZQ
DQS_t DQS_c DQ [3:0]
D2
ZQ
DQS_t DQS_c DQ [3:0]
D3
ZQ
DQS_t DQS_c DQ [3:0]
D4
ZQ
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
VSS
DQS_t DQS_c DQ [3:0]
D10
ZQ
DQS_t DQS_c DQ [3:0]
D11
ZQ
DQS_t DQS_c DQ [3:0]
D12
ZQ
DQS_t DQS_c DQ [3:0]
D13
ZQ
DQS_t DQS_c DQ [3:0]
D14
ZQ
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
VSS
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
QACS0_n
QAODT0
QACKE0

16GB, 2Gx72 Module(2Rank of x4) - TF page1

Rev. 1.7 / Jun.2016 17
Page 18
DQS4_t
DQS4_c
DQ [35:32]
DQS5_t
DQS5_c
DQ [43:40]
DQS6_t
DQS6_c
DQ [51:48]
DQS7_t
DQS7_c
DQ [59:56]
DQS_t DQS_c DQ [3:0]
D14
ZQ
DQS_t DQS_c DQ [3:0]
D25
ZQ
DQS_t DQS_c DQ [3:0]
D26
ZQ
DQS_t DQS_c DQ [3:0]
D27
ZQ
D0–D35
V
PP
V
DD
V
DDSPD
D0–D35
VREFCA
SPD
V
TT
V
SS
D0–D35
D0–D35
Note:
1. Unless otherwize noted, resistor values are 15Ω±5%.
2. See the Net Structure diagrams for all resistor associated with the command, address and control bus.
3. ZQ resistors are 240
Ω±1%.For all other resistor values refer to the appropriate wiring diagram.
4. DRAM TEN pin need to be tied to VSS.
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
QBCS1_n
QBODT1
QBCKE1
DQS_t DQS_c DQ [3:0]
D32
ZQ
DQS_t DQS_c DQ [3:0]
D33
ZQ
DQS_t DQS_c DQ [3:0]
D34
ZQ
DQS_t DQS_c DQ [3:0]
D35
ZQ
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
DQS13_t
DQS13_c
DQ [39:36]
DQS14_t
DQS14_c
DQ [47:44]
DQS15_t
DQS15_c
DQ [55:52]
DQS16_t
DQS16_c
DQ [63:60]
DQS_t DQS_c DQ [3:0]
D20
ZQ
DQS_t DQS_c DQ [3:0]
D21
ZQ
DQS_t DQS_c DQ [3:0]
D22
ZQ
DQS_t DQS_c DQ [3:0]
D23
ZQ
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
DQS_t DQS_c DQ [3:0]
D28
ZQ
DQS_t DQS_c DQ [3:0]
D29
ZQ
DQS_t DQS_c DQ [3:0]
D30
ZQ
DQS_t DQS_c DQ [3:0]
D31
ZQ
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
QBCS0_n
QBODT0
QBCKE0
SA0
Serial PD with Thermal sensor
SA1
SA0 SA1
SCL
EVENT_n
SA2
SA2
EVENT_n
SCL
SDA
SDA
SA0 SA1
SA0
SA1
BFUNC
SA2
SA2
VSS
SCL
SDA
1K
±
5%
RCD

16GB, 2Gx72 Module(2Rank of x4) - TF page2

Rev. 1.7 / Jun.2016 18
Page 19

16GB, 2Gx72 Module(2Rank of x4) - TF page3

ACT_n
QBACT_n -> ACT_n: SDRAMs D[35:20]
QAACT_n -> ACT_n: SDRAMs D[19:0]
C[2:0]
QBC[2:0] -> C[2:0]: SDRAMs D[35:20]
QAC[2:0] -> C[2:0]: SDRAMs D[19:0]
CKE1
QBCKE1 -> CKE: SDRAMs D[35:28]
QACKE1 -> CKE: SDRAMs D[19:10]
ODT1
QBODT1 -> ODT: SDRAMs D[35:28]
QAODT1 -> ODT: SDRAMs D[19:10]
CS1_n
QBCS1_n -> CS1_n: SDRAMs D[35:28]
QACS1_n -> CS1_n: SDRAMs D[19:10]
ALERT_n ERROR_IN_n <- ALERT_n: All SDRAMs
BG[1:0]
BA[1:0]
A[17:0]
PARITY
CKE0
ODT0
CS0_n
CK0_t
CK0_c
QABG[1:0] -> BG[1:0]: SDRAMs D[19:0] QBBG[1:0] -> BG[1:0]: SDRAMs D[35:20]
QBCKE0 -> CKE: SDRAMs D[27:20]
QBA[17:0] -> A[17:0]: SDRAMs D[35:20]
QAA[17:0] -> A[17:0]: SDRAMs D[19:0]
QACKE0 -> CKE: SDRAMs D[9:0]
QBODT0 -> ODT: SDRAMs D[27:20]
QAODT0 -> ODT: SDRAMs D[9:0]
QBCS0_n -> CS0_n: SDRAMs D[27:20]
QACS0_n -> CS_n: SDRAMs D[9:0]
Y0_t -> CK_t: SDRAMs D[23:20], D[31:28]
RESET_n QRST_n -> RESET_n: All SDRAMs
R E
G
I S T E R
QBPAR -> PAR: SDRAMs D[35:20]
QAPAR -> PAR: SDRAMs D[19:0]
QABA[1:0] -> BA[1:0]: SDRAMs D[19:0] QBBA[1:0] -> BA[1:0]: SDRAMs D[35:20]
CK1_t
CK1_c
Note:
1. CK0_t, CK0_c terminated with 120Ω±5% resistor.
2. CK1_t, CK1_c terminated with 120
Ω±5% resistor but not used.
3. Unless otherwise noted resistors are 22
Ω±5%.
Y1_t -> CK_t: SDRAMs D[4:0],D[14:10] Y2_t -> CK_t: SDRAMs D[27:24], D[35:32] Y3_t -> CK_t: SDRAMs D[9:5], D[19:15]
Y0_c -> CK_c: SDRAMs D[23:20], D[31:28] Y1_c -> CK_c: SDRAMs D[4:0],D[14:10] Y2_c -> CK_c: SDRAMs D[27:24], D[35:32] Y3_c -> CK_c: SDRAMs D[9:5], D[19:15]
Rev. 1.7 / Jun.2016 19
Page 20
DQS0_t
DQS0_c
DQ [3:0]
DQS1_t
DQS1_c
DQ [11:8]
DQS2_t
DQS2_c
DQ [19:16]
DQS3_t
DQS3_c
DQ [27:24]
DQS8_t
DQS8_c
CB [3:0]
DQS_t DQS_c DQ [3:0]
D9
ZQ
DQS_t DQS_c DQ [3:0]
D10
ZQ
DQS_t DQS_c DQ [3:0]
D11
ZQ
DQS_t DQS_c DQ [3:0]
D12
ZQ
DQS_t DQS_c DQ [3:0]
D17
ZQ
Note:
1. Unless otherwize noted, resistor values are 15Ω±5%.
2. See the Net Structure diagrams for all resistor associated with the command, address and control bus.
3. ZQ resistors are 240
Ω±1%.For all other resistor values refer to the appropriate wiring diagram.
4. DRAM TEN pin need to be tied to VSS.
5. VDDSPD also connects to the register (RCD).
6. VREFCA from the edge connector only connects with the register (RCD). The RCD sources a separate VREFCA to all the SDRAMs.
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
VSS
QACS1_n
QAODT1
QACKE1
DQS_t DQS_c DQ [3:0]
D27
ZQ
DQS_t DQS_c DQ [3:0]
D28
ZQ
DQS_t DQS_c DQ [3:0]
D29
ZQ
DQS_t DQS_c DQ [3:0]
D30
ZQ
DQS_t DQS_c DQ [3:0]
D35
ZQ
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
VSS
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
DQS9_t
DQS9_c
DQ [7:4]
DQS10_t
DQS10_c
DQ [15:12]
DQS11_t
DQS11_c
DQ [23:20]
DQS12_t
DQS12_c
DQ [31:28]
DQS17_t
DQS17_c
CB [7:4]
DQS_t DQS_c DQ [3:0]
D0
ZQ
DQS_t DQS_c DQ [3:0]
D1
ZQ
DQS_t DQS_c DQ [3:0]
D2
ZQ
DQS_t DQS_c DQ [3:0]
D3
ZQ
DQS_t DQS_c DQ [3:0]
D8
ZQ
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
VSS
DQS_t DQS_c DQ [3:0]
D18
ZQ
DQS_t DQS_c DQ [3:0]
D19
ZQ
DQS_t DQS_c DQ [3:0]
D20
ZQ
DQS_t DQS_c DQ [3:0]
D21
ZQ
DQS_t DQS_c DQ [3:0]
D26
ZQ
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
VSS
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
QACS0_n
QAODT0
QACKE0

16GB, 2Gx72 Module(2Rank of x4) - UH page1

Rev. 1.7 / Jun.2016 20
Page 21
DQS4_t
DQS4_c
DQ [35:32]
DQS5_t
DQS5_c
DQ [43:40]
DQS6_t
DQS6_c
DQ [51:48]
DQS7_t
DQS7_c
DQ [59:56]
DQS_t DQS_c DQ [3:0]
D13
ZQ
DQS_t DQS_c DQ [3:0]
D14
ZQ
DQS_t DQS_c DQ [3:0]
D15
ZQ
DQS_t DQS_c DQ [3:0]
D16
ZQ
D0–D35
V
PP
V
DD
V
DDSPD
D0–D35
VREFCA
SPD
V
TT
V
SS
D0–D35
D0–D35
Note:
1. Unless otherwize noted, resistor values are 15Ω±5%.
2. See the Net Structure diagrams for all resistor associated with the command, address and control bus.
3. ZQ resistors are 240
Ω±1%.For all other resistor values refer to the appropriate wiring diagram.
4. DRAM TEN pin need to be tied to VSS.
5. VDDSPD also connects to the register (RCD).
6. VREFCA from the edge connector only connects with the register (RCD). The RCD sources a separate VREFCA to all the SDRAMs.
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
QBCS1_n
QBODT1
QBCKE1
DQS_t DQS_c DQ [3:0]
D31
ZQ
DQS_t DQS_c DQ [3:0]
D32
ZQ
DQS_t DQS_c DQ [3:0]
D33
ZQ
DQS_t DQS_c DQ [3:0]
D34
ZQ
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
DQS13_t
DQS13_c
DQ [39:36]
DQS14_t
DQS14_c
DQ [47:44]
DQS15_t
DQS15_c
DQ [55:52]
DQS16_t
DQS16_c
DQ [63:60]
DQS_t DQS_c DQ [3:0]
D4
ZQ
DQS_t DQS_c DQ [3:0]
D5
ZQ
DQS_t DQS_c DQ [3:0]
D6
ZQ
DQS_t DQS_c DQ [3:0]
D7
ZQ
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
DQS_t DQS_c DQ [3:0]
D22
ZQ
DQS_t DQS_c DQ [3:0]
D23
ZQ
DQS_t DQS_c DQ [3:0]
D24
ZQ
DQS_t DQS_c DQ [3:0]
D25
ZQ
CKE
ODT
CS_n
VSS
VSS
VSS
VSS
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
CKE
ODT
CS_n
QBCS0_n
QBODT0
QBCKE0
SA0
Serial PD with Thermal sensor
SA1
SA0 SA1
SCL
EVENT_n
SA2
SA2
EVENT_n
SCL
SDA
SDA
SA0 SA1
SA0
SA1
BFUNC
SA2
SA2
VSS
SCL
SDA
1K
±
5%
RCD

16GB, 2Gx72 Module(2Rank of x4) - UH page2

Rev. 1.7 / Jun.2016 21
Page 22

16GB, 2Gx72 Module(2Rank of x4) - UH page3

ACT_n
QBACT_n -> ACT_n: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
QAACT_n -> ACT_n: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35
C[2:0]
QBC[2:0] -> C[2:0]: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
QAC[2:0] -> C[2:0]: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35
CKE1
QBCKE1 -> CKE: SDRAMs D[25:22], D[34:31]
QACKE1 -> CKE: SDRAMs D[21:18], D[30:26], D35
ODT1
QBODT1 -> ODT: SDRAMs D[25:22], D[34:31]
QAODT1 -> ODT: SDRAMs D[21:18], D[30:26], D35
CS1_n
QBCS1_n -> CS_n: SDRAMs D[25:22], D[34:31]
QACS1_n -> CS_n: SDRAMs D[21:18], D[30:26], D35
ALERT_n ERROR_IN_n <- ALERT_n: All SDRAMs
BG[1:0]
BA[1:0]
A[17:0]
PARITY
CKE0
ODT0
CS0_n
CK0_t
CK0_c
QABG[1:0] -> BG[1:0]: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35 QBBG[1:0] -> BG[1:0]: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
QBCKE0 -> CKE: SDRAMs D[7:4], D[16:13]
QBA[17:0] -> A[17:0]: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
QAA[17:0] -> A[17:0]: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35
QACKE0 -> CKE: SDRAMs D[3:0], D[12:8], D17
QBODT0 -> ODT: SDRAMs D[7:4], D[16:13]
QAODT0 -> ODT: SDRAMs D[3:0], D[12:8], D17
QBCS0_n -> CS_n: SDRAMs D[7:4], D[16:13]
QACS0_n -> CS_n: SDRAMs D[3:0], D[12:8], D17
Y0_t -> CK_t: SDRAMs D[7:4], D[25:22]
RESET_n QRST_n -> RESET_n: All SDRAMs
R E
G
I S T E R
QBPAR -> PAR: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
QAPAR -> PAR: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35
QABA[1:0] -> BA[1:0]: SDRAMs D[3:0], D[12:8], D[21:17], D[30:26], D35 QBBA[1:0] -> BA[1:0]: SDRAMs D[7:4], D[16:13], D[25:22], D[34:31]
CK1_t
CK1_c
Note:
1. CK0_t, CK0_c terminated with 120Ω±5% resistor.
2. CK1_t, CK1_c terminated with 120
Ω±5% resistor but not used.
3. Unless otherwise noted resistors are 22
Ω±5%.
Y1_t -> CK_t: SDRAMs D[3:0], D8, D[21:18], D26 Y2_t -> CK_t: SDRAMs D[16:13], D[34:31] Y3_t -> CK_t: SDRAMs D[12:9], D17, D[30:27], D35
Y0_c -> CK_c: SDRAMs D[7:4], D[25:22] Y1_c -> CK_c: SDRAMs D[3:0], D8, D[21:18], D26 Y2_c -> CK_c: SDRAMs D[16:13], D[34:31] Y3_c -> CK_c: SDRAMs D[12:9], D17, D[30:27], D35
Rev. 1.7 / Jun.2016 22
Page 23

Absolute Maximum Ratings

Absolute Maximum DC Ratings

Absolute Maximum DC Ratings
Symbol Parameter Rating Units NOTE
VDD
VDDQ
VPP
V
IN, VOUT
T
STG
NOTE :
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indi­cated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300 mV of each other at all times;and VREFCA must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500 mV; VREFCA may be equal to or less than 300 mV
4. VPP must be equal or greater than VDD/VDDQ at all times
5. Overshoot area above 1.5V is specified in DDR4 Device Operation.
Voltage on VDD pin relative to Vss
Voltage on VDDQ pin relative to Vss
Voltage on VPP pin relative to Vss
Voltage on any pin except VREFCA relative to Vss
Storage Temperature
-0.3 ~ 1.5 V 1,3
-0.3 ~ 1.5 V 1,3
-0.3 ~ 3.0 V 4
-0.3 ~ 1.5 V 1,3,5
-55 to +100 °C 1,2

DRAM Component Operating Temperature Range

Temperature Range
Symbol Parameter Rating Units Notes
o
T
OPER
Notes:
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measure­ment conditions, please refer to the JEDEC document JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. Dur­ing operation, the DRAM case temperature must be maintained between 0 - 85
3. Some applications require operation of the DRAM in the Extended Temperature Range between 85 case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:
Normal Operating Temperature Range
Extended Temperature Range
a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It is
also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range. Please refer to the DIMM SPD for option availability
0 to 85
85 to 95
o
C under all operating conditions.
b. If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use
the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b).
C 1,2
o
C1,3
o
C and 95oC
Rev. 1.7 / Jun.2016 23
Page 24

AC & DC Operating Conditions

Recommended DC Operating Conditions

Recommended DC Operating Conditions
Symbol Parameter
VDD Supply Voltage 1.14 1.2 1.26 V 1,2,3
VDDQ Supply Voltage for Output 1.14 1.2 1.26 V 1,2,3
VPP Supply Voltage for DRAM Activating 2.375 2.5 2.75 V 3
NOTE:
1. Under all conditions VDDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.
3. DC bandwidth is limited to 20MHz.
Min. Typ. Max.
Rating
Unit NOTE
Rev. 1.7 / Jun.2016 24
Page 25

AC & DC Input Measurement Levels

AC & DC Logic input levels for single-ended signals

Single-ended AC & DC input levels for Command and Address
DDR4-1600/1866/2133/
Symbol Parameter
2400
Min. Max. Min. Max.
+
V
V
V
V
IH.CA
V
IL.CA
V
IH.CA
IL.CA
REFCA
(DC75)
(DC75)
(AC100)
(AC100)
(DC)
DC input logic high
DC input logic low VSS
AC input logic high
AC input logic low Note 2
Reference Voltage for
ADD, CMD inputs
REFCA
0.075
VDD TBD TBD V
V
-
REFCA
0.075
V
REF
+ 0.1
Note 2 TBD TBD V 1
V
- 0.1
REF
0.49*VDD 0.51*VDD TBD TBD V 2,3
NOTE :
1. See “Overshoot and Undershoot Specifications”
2. The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD (for reference : approx. ± 12mV)
3. For reference : approx. VDD/2 ± 12mV
DDR4-2666/3200
Unit NOTE
TBD TBD V
TBD TBD V 1
Rev. 1.7 / Jun.2016 25
Page 26
AC and DC Input Measurement Levels: V
voltage
V
DD
V
SS
time
Tolerances
REF
The DC-tolerance limits and ac-noise limits for the reference voltages V It shows a valid reference voltage V
(DC) is the linear average of V
V
REF
meet the min/max requirement in Table X. Furthermore V no more than ± 1% V
DD
.
(t) as a function of time. (V
REF
(t) over a very long period of time (e.g. 1 sec). This average has to
REF
REF
REF
(t) may temporarily deviate from V
is illustrated in Figure below.
REFCA
stands for V
REFCA
).
REF
(DC) by
Illustration of V
(DC) tolerance and V
REF
AC-noise limits
REF
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on V
" shall be understood as V
"V
REF
This clarifies, that DC-variations of V
REF
.
(DC), as defined in Figure above.
REF
affect the absolute voltage a signal has to reach to achieve a valid
REF
high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for V
(DC) deviations from the optimum position within the data-eye of the
REF
input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V
ified limit (+/-1% of V
AC-noise. Timing and voltage effects due to AC-noise on V
REF
) are included in DRAM timings and their associated deratings.
DD
up to the spec-
REF
Rev. 1.7 / Jun.2016 26
Page 27

AC and DC Logic Input Levels for Differential Signals

0.0
tDVAC
V
IH
.DIFF.MIN
half cycle
Differential Input Voltage (CK-CK)
time
tDVAC
VIH.DIFF.AC.MIN
V
IL
.DIFF.MAX
V
IL
.DIFF.AC.MAX
(CK_t - CK_c)

Differential signal definition

NOTE:
1. Differential signal rising edge from VIL.DIFF.MAX to VIH.DIFF.MIN must be monotonic slope.
2. Differential signal falling edge from VIH.DIFF.MIN to VIL.DIFF.MAX must be monotonic slope.
Definition of differential ac-swing and “time above ac-level” t
DVAC
Rev. 1.7 / Jun.2016 27
Page 28

Differential swing requirements for clock (CK_t - CK_c)

Differential AC and DC Input Levels
Symbol Parameter
V
V
V
IHdiff
V
ILdiff
IHdiff
ILdiff
differential input high +0.150 NOTE 3 TBD NOTE 3 V 1
differential input low NOTE 3 -0.150 NOTE 3 TBD V 1
(AC)
differential input high ac
(AC)
differential input low ac NOTE 3
DDR4 -1600,1866,2133 DDR4 -2400,2666 & 3200
min max min max
2 x (V
V
IH
REF
(AC) -
)
NOTE 3
2 x (VIL(AC) -
V
)
REF
2 x (V
(AC) -
IH
V
REF
NOTE 3
)
NOTE 3 V 2
2 x (VIL(AC) -
V
REF
)
unit NOTE
V2
NOTE :
1. Used to define a differential signal slew-rate.
2. for CK_t - CK_c use V
IH.CA/VIL.CA
(AC) of ADD/CMD and V
REFCA
;
3. These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits (V
(DC) max, V
IH.CA
(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot.
IL.CA
Allowed time before ringback (tDVAC) for CK_t - CK_c
Slew Rate [V/ns]
tDVAC [ps] @ |V
min max min max
> 4.0 120 - TBD -
4.0 115 - TBD -
3.0 110 - TBD -
2.0 105 - TBD -
1.8 100 - TBD -
1.6 95 - TBD -
1.4 90 - TBD -
1.2 85 - TBD -
1.0 80 - TBD -
< 1.0 80 - TBD -
(AC)| = 200mV tDVAC [ps] @ |V
IH/Ldiff
(AC)| = TBDmV
IH/Ldiff
Rev. 1.7 / Jun.2016 28
Page 29

Single-ended requirements for differential signals

VDD or V
DDQ
V
SEH
min
V
DD
/2 or V
DDQ
/2
V
SEL
max
V
SEH
VSS or V
SSQ
V
SEL
CK
time
Each individual component of a differential signal (CK_t, CK_c) has also to comply with certain require­ments for single-ended signals.
CK_t and CK_c have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH.CA(AC) / VIL.CA(AC) ) for ADD/CMD signals) in every half-cycle.
Note that the applicable ac-levels for ADD/CMD might be different per speed-bin etc. E.g., if Different value than VIH.CA(AC100)/VIL.CA(AC100) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK_t and CK_c
Single-ended requirement for differential signals
Note that, while ADD/CMD signal requirements are with respect to VrefCA, the single-ended components of differential signals have a requirement with respect to VDD / 2; this is nominally the same. The transi­tion of single-ended signals through the ac-levels is used to measure setup time. For single-ended compo­nents of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals.
Rev. 1.7 / Jun.2016 29
Page 30
Single-ended levels for CK_t, CK_c
Symbol Parameter
V
SEH
V
SEL
Single-ended high-level for
CK_t , CK_c
Single-ended low-level for
CK_t , CK_c
DDR4-1600/1866/2133 DDR4-2400/2666/3200
Min Max Min Max
(VDD/2)
+0.100
NOTE3
NOTE3 TBD NOTE3 V 1, 2
(VDD/2)-
0.100
NOTE3 TBD V 1, 2
Unit NOTE
NOTE :
1. For CK_t - CK_c use V
2. V
(AC)/VIL(AC) for ADD/CMD is based on V
IH
IH.CA/VIL.CA
(AC) of ADD/CMD;
;
REFCA
3. These values are not defined, however the single-ended signals CK_t - CK_c need to be within the respective limits
(V
(DC) max, V
IH.CA
(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot.
IL.CA
Rev. 1.7 / Jun.2016 30
Page 31

Address and Control Overshoot and Undershoot specifications

Overshoot Area Between
V
DD
Undershoot Area below VSS
VDD Absolute Max
V
SS
Volts
(V)
1 tCK
VDD Absolute Max and VDD Max
Overshoot Area above VDD Absolute Max
AC overshoot/undershoot specification for Address, Command and Control pins
Specification
Parameter
Maximum peak amplitude above VDD Absolute Max allowed for overshoot area
Delta value between VDD Absolute Max and VDD Max allowed for overshoot area
Maximum peak amplitude allowed for undershoot area 0.3 0.3 0.3 0.3 TBD V-ns
Maximum overshoot area per 1tCK Above Absolute Max
Maximum overshoot area per 1tCK Between Absolute Max
Maximum undershoot area per 1tCK Below VSS 0.2644 0.2265 0.1984 0.1762 TBD V-ns
(A0-A13,A17,BG0-BG1,BA0-BA1,ACT_n,RAS_n/A16,CAS_n/A15,WE_n/A14,CS_n,CKE,ODT,C2-C0)
DDR4-
1600
0.06 0.06 0.06 0.06 TBD V
0.24 0.24 0.24 0.24 TBD V
0.0083 0.0071 0.0062 0.0055 TBD V-ns
0.2550 0.2185 0.1914 0.1699 TBD V-ns
DDR4-
1866
DDR4-
2133
DDR4-
2400
DDR4-
2666
Unit
Address,Command and Control Overshoot and Undershoot Definition
Rev. 1.7 / Jun.2016 31
Page 32

Clock Overshoot and Undershoot Specifications

Overshoot Area Between
V
DD
Undershoot Area below VSS
VDD Absolute Max
V
SS
Volts
(V)
1 UI
VDD Absolute Max and VDD Max
Overshoot Area above VDD Absolute Max
AC overshoot/undershoot specification for Clock
Specification
Parameter
Maximum peak amplitude above VDD Absolute Max allowed for overshoot area
Delta value between VDD Absolute Max and VDD Max allowed for overshoot area
Maximum peak amplitude allowed for undershoot area 0.3 0.3 0.3 0.3 TBD V
Maximum overshoot area per 1UI Above Absolute Max 0.0038 0.0032 0.0028 0.0025 TBD V-ns
Maximum overshoot area per 1UI Between Absolute Max
Maximum undershoot area per 1UI Below VSS 0.1144 0.0980 0.0858 0.0762 TBD V-ns
DDR4-
1600
0.06 0.06 0.06 0.06 TBD V
0.24 0.24 0.24 0.24 TBD V
0.1125 0.0964 0.0844 0.0750 TBD V-ns
(CK_t, Ck_c)
DDR4-
1866
DDR4-
2133
DDR4-
2400
DDR4-
2666
Unit
Clock Overshoot and Undershoot Definition
Rev. 1.7 / Jun.2016 32
Page 33

Data, Strobe and Mask Overshoot and Undershoot Specifications

Overshoot Area Between
VDDQ
Undershoot Area below Min absolute level of Vin, Vout
Max absolute level of Vin,Vout
VSSQ
Volts
(V)
1 UI
Max absolute level of Vin,Vout and VDDQ
Overshoot Area above Max absolute level of Vin,Vout
Undershoot Area Between Min absolute level of Vin,Vout and VSSQ
Min absolute level of Vin,Vout
AC overshoot/undershoot specification for Data, Strobe and Mask
Specification
Parameter
Maximum peak amplitude above Max absolute level of Vin,Vout
Overshoot area Between Max Absolute level of Vin, Vout and VDDQ Max
Undershoot area Between Min absolute level of Vin,Vout and VDDQ
Maximum peak amplitude below Min absolute level of Vin,Vout
Maximum overshoot area per 1UI Above Max absolute level of Vin,Vout
Maximum overshoot area per 1UI Between Max abso­lute level of Vin,Vout and VDDQ Max
Maximum undershoot area per 1UI Between Min abso­lute level of Vin,Vout and VSSQ
Maximum undershoot area per 1UI Below Min abso­lute level of Vin,Vout
(DQ, DQS_t, DQS_c, DM_n, DBI_n, TDQS_t, TDQS_c)
DDR4-
1600
0.16 0.16 0.16 0.16 TBD V
0.24 0.24 0.24 0.24 TBD V
0.30 0.30 0.30 0.30 TBD V
0.10 0.10 0.10 0.10 TBD V
0.0150 0.0129 0.0113 0.0100 TBD V-ns
0.1050 0.0900 0.0788 0.0700 TBD V-ns
0.1050 0.0900 0.0788 0.0700 TBD V-ns
0.0150 0.0129 0.0113 0.0100 TBD V-ns
DDR4-
1866
DDR4-
2133
DDR4-
2400
DDR4-
2666
Unit
Rev. 1.7 / Jun.2016 33
Data, Strobe and Mask Overshoot and Undershoot Definition
Page 34

Slew Rate Definitions

Delta TRdiff
Delta TFdiff
V
IHdiffmin
0
V
ILdiffmax
Differential Input Voltage(i,e, CK_t - CK_c)

Slew Rate Definitions for Differential Input Signals (CK)

Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Table and Fig­ure below.
Differential Input Slew Rate Definition
Description Defined by
Differential input slew rate for rising edge(CK_t - CK_c)
Differential input slew rate for falling edge(CK_t - CK_c)
NOTE: The differential signal (i,e.,CK_t - CK_c) must be linear between these thresholds.
from to
V
ILdiffmax
V
IHdiffmin
V
V
IHdiffmin
ILdiffmax
V
[
IHdiffmin - VILdiffmax
V
[
IHdiffmin - VILdiffmax
] / DeltaTRdiff
] / DeltaTFdiff
Differential Input Slew Rate Definition for CK_t, CK_c
Rev. 1.7 / Jun.2016 34
Page 35

Slew Rate Definition for Single-ended Input Signals (CMD/ADD)

Delta TRsingle
Delta TFsingle
V
IHCA(AC) Min
V
IHCA(DC) Min
VREFCA(DC)
V
ILCA(DC) Max
V
ILCA(AC) Max
Single-ended Input Slew Rate definition for CMD and ADD
NOTE :
1. Single-ended input slew rate for rising edge = { VIHCA(AC)Min - VILCA(DC)Max } / Delta TR single
2. Single-ended input slew rate for falling edge = { VIHCA(DC)Min - VILCA(AC)Max } / Delta TF single
3. Single-ended signal rising edge from VILCA(DC)Max to VIHCA(DC)Min must be monotonic slope.
4. Single-ended signal falling edge from VIHCA(DC)Min to VILCA(DC)Max must be monotonic slope
Rev. 1.7 / Jun.2016 35
Page 36

Differential Input Cross Point Voltage

Vix
CK_t
VDD/2
VSS
VDD
CK_c
Vix
VSEL
VSEH
To guarantee tight setup and hold times as well as output skew parameters with respect to clock, each cross point voltage of differential input signals (CK_t, CK_c) must meet the requirements in Table. The dif­ferential input cross point voltage VIX is measured from the actual cross point of true and complement sig­nals to the midlevel between of VDD and VSS.
Vix Definition (CK)
Cross point voltage for differential input signals (CK)
Symbol Parameter
-Area of VSEH, VSEL
Differential Input Cross Point
VlX(CK)
Symbol Parameter
VlX(CK)
Rev. 1.7 / Jun.2016 36
Voltage relative to VDD/2 for
CK_t, CK_c
- Area of VSEH, VSEL TBD TBD TBD TBD
Differential Input Cross Point Voltage relative to VDD/2 for
CK_t, CK_c
VSEL =<
VDD/2 - 145mV
-120mV
TBD TBD TBD TBD
DDR4-1600/1866/2133
min max
VDD/2 - 145mV
=< VSEL =<
VDD/2 - 100mV
- (VDD/2 - VSEL) + 25mV
DDR4-2400/2666/3200
min max
VDD/2 + 100mV
=< VSEH =<
VDD/2 + 145mV
(VSEH - VDD/2)
- 25mV
VDD/2 + 145mV
=< VSEH
120mV
Page 37

CMOS rail to rail Input Levels

0.8*VDD
TR_RESET
tPW_RESET
0.7*VDD
0.3*VDD
0.2*VDD

CMOS rail to rail Input Levels for RESET_n

CMOS rail to rail Input Levels for RESET_n
Parameter Symbol Min Max Unit NOTE
AC Input High Voltage VIH(AC)_RESET 0.8*VDD VDD V 6
DC Input High Voltage VIH(DC)_RESET 0.7*VDD VDD V 2
DC Input Low Voltage VIL(DC)_RESET VSS 0.3*VDD V 1
AC Input Low Voltage VIL(AC)_RESET VSS 0.2*VDD V 7
Rising time TR_RESET - 1.0 us 4
RESET pulse width tPW_RESET 1.0 - us 3,5
NOTE :
1. After RESET_n is registered LOW, RESET_n level shall be maintained below VIL(DC)_RESET during tPW_RESET,
otherwise, SDRAM may not be reset.
2. Once RESET_n is registered HIGH, RESET_n level must be maintained above VIH(DC)_RESET, otherwise, SDRAM
operation will not be guaranteed until it is reset asserting RESET_n signal LOW.
3. RESET is destructive to data contents.
4. No slope reversal(ringback) requirement during its level transition from Low to High.
5. This definition is applied only “Reset Procedure at Power Stable”.
6. Overshoot might occur. It should be limited by the Absolute Maximum DC Ratings.
7. Undershoot might occur. It should be limited by Absolute Maximum DC Ratings
RESET_n Input Slew Rate Definition
Rev. 1.7 / Jun.2016 37
Page 38
AC and DC Logic Input Levels for DQS Signals Differential signal definition
Definition of differential DQS Signal AC-swing Level

Differential swing requirements for DQS (DQS_t - DQS_c)

Differential AC and DC Input Levels for DQS
Symbol Parameter
VIHDiffPeak VIH.DIFF.Peak Voltage 186 Note2 TBD TBD TBD TBD mV 1
VILDiffPeak VIL.DIFF.Peak Voltage Note2 -186 TBD TBD TBD TBD mV 1
NOTE :
1. Used to define a differential signal slew-rate.
2. These values are not defined; however, the differential signals DQS_t - DQS_c, need to be within the respective limits Overshoot, Undershoot Specification for single-ended signals.
Rev. 1.7 / Jun.2016 38
DDR4-1600,1866,2133 DDR4-2400 DDR4-2666,3200
Min Max Min Max Min Max
Unit Note
Page 39

Peak voltage calculation method

The peak voltage of Differential DQS signals are calculated in a following equation.
VIH.DIFF.Peak Voltage = Max(f(t)) VIL.DIFF.Peak Voltage = Min(f(t)) f(t) = VDQS_t - VDQS_c
The Max(f(t)) or Min(f(t)) used t o determine the midpoint which to reference the +/-35% window of the exempt non-monotonic signaling shall be the samllest peak voltage observed in all ui’s.
Definition of differential DQS Peak Voltage and rage of exempt non-monotonic signaling
Rev. 1.7 / Jun.2016 39
Page 40

Differential Input Cross Point Voltage

To achieve tight RxMask input requirements as well as output skew parameters with respect to strobe, the cross point voltage of differential input signals (DQS_t, DQS_c) must meet the requirements in Tabel below. The differential input cross point voltage VIX_DQS (VIX_DQS_FR and VIX_DQS_RF) ins measured from the actual cross point of DQS_t, DQS_c relative to the VDQSmid fo the DQS_t and DQS_c signals.
VDQSmid is the midpoint of the minimum levels achieved by the transitioning DQS_t and DQS_c signals, and noted by VDQS_trans. VDQS_trans is the difference between the lowest horizontal tangent above VDQSmid of the transitioning DQS signals and the highest horizontal tangent below VDQSmid of the tran­sitioning DQS signals.
A non-monotonic transitioning signal’s ledge is exempt or not used in determination of a horizontal tangent provieded the said ledge occurs within +/- 30% of the midpoint of either VID.DIFF.Peak Voltage (DQS_t rising) of VIL.DIFF.Peak Voltage (DQS_c rising), refer to Furure Definition of differential DQS Peak Voltage and rage of exempt non-monotonic signaling. A secondary horizontal tangent resulting from a ring-back transition is also exempt in determination of a horizontal tangent. Thath is, a falling transition’s horizontal tangent is derived from its negative slope to zero slope transition (point A in Fugure bloew) and a ring­back’s horizontal tangent derived from its positive slope to zero slope transition (point B in Figure below) is not a valid horizontal tangent; and a rising transition’s horizontal tangent is derived from its positive slope to zero slope transition (point C in Figure below) and a ring-back’s horizontal tangent derived from its neg­ative slope to zero slope transition (point D in Figure below) is not a valid horizontal tangent.
Vix Definition (DQS)
Rev. 1.7 / Jun.2016 40
Page 41
Cross point voltage for differential input signals
DDR4-
Symbol Parameter
Vix_DOS_ ratio
NOTE :
1. Vix_DQS_Ratio is DQS VIX crossing (Vix_DQS_FR or Vix_DQS_RF) divided by VDQS_trans. VDQS_trans is the
difference between the lowest horizontal tangent above VDQSmid of the transitioning DQS signals and the highest
horizontal tangent below VDQSmid of the transitioning DQS signals.
2. VDQSmid will be similar to the VREFDQ internal setting value obtained during Vref Training if the DQS and DQs
drivers and paths are matched.
DQS_t and DQS_c crossing relative to the midpoint of the DQS_t and DQS_c signal swings
1600,1866,2133,2400
Min Max Min Max
-25TBDTBD%1,2
DDR4-2666,2933,3200
Unit Note
Rev. 1.7 / Jun.2016 41
Page 42

Differential Input Slew Rate Definition

Input slew rate for differential signals (DQS_t, DQS_c) are defined and measured as shown in Figure below.
NOTE :
1. Differential signal rising edge from VILDiff_DQS to VIHDiff_DQS must be monotonic slope.
2. Differential signal falling edge from VIHDiff_DQS to VILDiff_DQS must be monotonic slope.
Differential Input Slew Rate Definition for DQS_t, DQS_c
Differential Input Slew Rate Definition for DQS_t, DQS_c
Description Defined by
Differential input slew rate for rising edge(DQS_t - DQS_c)
Differential input slew rate for falling edge(DQS_t - DQS_c)
From To
VILDiff_DQS VIHDiff_DQS |VILDiff_DQS - VIHDiff_DQS|/DeltaTRdiff
VIHDiff_DQS VILDiff_DQS |VILDiff_DQS - VIHDiff_DQS|/DeltaTFdiff
Differential Input Level for DQS_t, DQS_c
Symbol Parameter
VIHDiff_DQS Differential Input High 136 - 130 - TBD TBD mV
VILDiff_DQS Differential Input Low - -136 - -130 TBD TBD mV
Rev. 1.7 / Jun.2016 42
DDR4-1600,1866,2133 DDR4-2400 DDR4-2666,3200
Min Max Min Max Min Max
Unit Note
Page 43
Differential Input Slew Rate for DQS_t, DQS_c
Symbol Parameter
SRIdiff
Differential Input Slew Rate
DDR4-1600,1866,2133 DDR4-2400 DDR4-2666,3200
Min Max Min Max Min Max
318318TBDTBDV/ns
Unit Note
Rev. 1.7 / Jun.2016 43
Page 44

AC and DC output Measurement levels

Single-ended AC & DC Output Levels

Single-ended AC & DC output levels
Symbol Parameter
V
(DC) DC output high measurement level (for IV curve linearity) 1.1 x V
OH
(DC) DC output mid measurement level (for IV curve linearity) 0.8 x V
V
OM
V
(DC) DC output low measurement level (for IV curve linearity) 0.5 x V
OL
(AC) AC output high measurement level (for output SR) (0.7 + 0.15) x V
V
OH
V
(AC) AC output low measurement level (for output SR) (0.7 - 0.15) x V
OL
DDR4-1600/1866/2133/
2400/2666/3200
NOTE :
1. The swing of ± 0.15 × V
is based on approximately 50% of the static single-ended output peak-to-peak swing
DDQ
with a driver impedance of RZQ/7 and an effective test load of 50 to VTT = V

Differential AC & DC Output Levels

Differential AC & DC output levels
Symbol Parameter
V
(AC) AC differential output high measurement level (for output SR) +0.3 x V
OHdiff
(AC) AC differential output low measurement level (for output SR) -0.3 x V
V
OLdiff
NOTE :
1. The swing of ± 0.3 × V
a driver impedance of RZQ/7 and an effective test load of 50 to V
is based on approximately 50% of the static differential output peak-to-peak swing with
DDQ
= V
TT
DDR4-1600/1866/
2133/2400/2666/3200
at each of the differential outputs.
DDQ
DDQ
Units NOTE
DDQ
DDQ
DDQ
DDQ
DDQ
V
V
V
V1
V1
.
Units NOTE
DDQ
DDQ
V1
V1
Rev. 1.7 / Jun.2016 44
Page 45

Single-ended Output Slew Rate

V
OH(AC)
V
OL(AC)
delta TRsedelta TFse
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between V
OL(AC)
and V
for single ended signals as shown in Table and Figure below.
OH(AC)
Single-ended output slew rate definition
Description
Single ended output slew rate for rising edge
Single ended output slew rate for falling edge
Measured
From To
(AC) VOH(AC)
V
OL
(AC) VOL(AC)
V
OH
Defined by
[V
(AC)-VOL(AC)] /
OH
Delta TRse
[V
(AC)-VOL(AC)] /
OH
Delta TFse
NOTE :
1. Output slew rate is verified by design and characterization, and may not be subject to production test.
Single-ended Output Slew Rate Definition
Single-ended output slew rate
Parameter Symbol
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-3200
Min Max Min Max Min Max Min Max Min Max Min Max
Units
Single ended output slew rate SRQse49494949TBDTBDTBDTBDV/ns
Description: SR: Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals For Ron = RZQ/7 setting
NOTE:
1. In two cases, a maximum slew rate of 12 V/ns applies for a single DQ signal within a byte lane.
-Case 1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high
to low or low to high) while all remaining DQ signals in the same byte lane are static (i.e. they stay at either high or low).
-Case 2 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high
to low or low to high) while all remaining DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the regular maximum limit of 9 V/ns applies
Rev. 1.7 / Jun.2016 45
Page 46

Differential Output Slew Rate

V
OHdiff
(AC)
V
OLdiff
(AC)
delta TRdiffdelta TFdiff
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in Table and Figure below.
Differential output slew rate definition
Description
Differential output slew rate for rising edge
Differential output slew rate for falling edge
V
V
Measured
From To
(AC) V
OLdiff
(AC) V
OHdiff
OHdiff
OLdiff
(AC)
(AC)
[V
[V
OHdiff
OHdiff
Defined by
(AC)-V
OLdiff
Delta TRdiff
(AC)-V
OLdiff
Delta TFdiff
NOTE :
1. Output slew rate is verified by design and characterization, and may not be subject to production test.
Differential Output Slew Rate Definition
Differential output slew rate
(AC)] /
(AC)] /
Parameter Symbol
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-3200
Min Max Min Max Min Max Min Max Min Max Min Max
Units
Differential output slew rate SRQdiff818818818818TBDTBDTBDTBDV/ns
Description: SR: Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) diff: Differential Signals For Ron = RZQ/7 setting
Rev. 1.7 / Jun.2016 46
Page 47

Single-ended AC & DC Output Levels of Connectivity Test Mode

VOH(AC)
TR_output_CT
VTT 0.5 * VDDQ
VOL(AC)
TF_output_CT
Following output parameters will be applied for DDR4 SDRAM Output Signal during Connectivity Test Mode.
Single-ended AC & DC output levels of Connectivity Test Mode
Symbol Parameter
V
(DC) DC output high measurement level (for IV curve linearity) 1.1 x V
OH
V
(DC) DC output mid measurement level (for IV curve linearity) 0.8 x V
OM
(DC) DC output low measurement level (for IV curve linearity) 0.5 x V
V
OL
V
(DC) DC output below measurement level (for IV curve linearity) 0.2 x V
OB
(AC) AC output high measurement level (for output SR) VTT + (0.1 x V
V
OH
V
(AC) AC output below measurement level (for output SR) VTT - (0.1 x V
OL
DDR4-1600/1866/2133/
2400/2666/3200
NOTE :
1. The effective test load is 50 terminated by VTT = 0.5 * VDDQ.
Differential Output Slew Rate Definition of Connectivity Test Mode
Unit Note
DDQ
DDQ
DDQ
DDQ
)V1
DDQ
)V1
DDQ
V
V
V
V
Single-ended output slew rate of Connectivity Test Mode
Parameter Symbol
Output signal Falling time TF_output_CT - 10 ns/V
Output signal Rising time TR_output_CT - 10 ns/V
Rev. 1.7 / Jun.2016 47
DDR4-1600/1866/2133/2400/2666/3200
Min Max
Unit Note
Page 48

Standard Speed Bins

DDR4-1600 Speed Bins and Operations
Speed Bin DDR4-1600K
Unit NOTECL-nRCD-nRP 11-11-11
Parameter Symbol min max
Internal read command to first
data
Internal read command to first
data with read DBI enabled
ACT to internal read or write
delay time
tAA
tAA_DBI tAA(min) + 2nCK tAA(max) +2nCK ns 11
tRCD
PRE command period tRP
ACT to PRE command period tRAS 35 9 x tREFI ns 11
ACT to ACT or REF command
period
tRC
Normal Read DBI
CWL = 9
CL = 9 CL = 11 tCK(AVG) 1.5 1.6 ns
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4,10
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4
CWL = 9,11
CL = 11 CL = 13 tCK(AVG) 1.25 <1.5 ns 1,2,3,4
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3
Supported CL Settings 9,11,12 nCK 12,13
Supported CL Settings with read DBI 11,13,14 nCK 12
Supported CWL Settings 9,11 nCK
13.75
(13.50)
13.75
(13.50)
13.75
(13.50)
48.75
(48.50)
13
5,11
5,11
5,11
5,11
18.00 ns 11
- ns 11
- ns 11
- ns 11
1,2,3,4,10
,13
Rev. 1.7 / Jun.2016 48
Page 49
DDR4-1866 Speed Bins and Operations
Speed Bin DDR4-1866M
Unit NOTECL-nRCD-nRP 13-13-13
Parameter Symbol min max
Internal read command to first
data
Internal read command to first
data with read DBI enabled
ACT to internal read or write delay
time
tAA
tAA_DBI tAA(min) + 2nCK tAA(max) +2nCK ns 11
tRCD
PRE command period tRP
ACT to PRE command period tRAS 34 9 x tREFI ns 11
ACT to ACT or REF command
period
tRC
Normal Read DBI
CWL = 9
CL = 9 CL = 11 tCK(AVG) 1.5 1.6 ns
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4,10
CL = 10 CL = 12 tCK(AVG) Reserved ns 4
CWL = 9,11
CL = 11 CL = 13 tCK(AVG) 1.25 <1.5 ns 1,2,3,4,6
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,6
CL = 12 CL = 14 tCK(AVG) Reserved ns 1,2,3,4
CWL = 10,12
CL = 13 CL = 15 tCK(AVG) 1.071 <1.25 ns 1,2,3,4
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3
Supported CL Settings 9,11,12,13,14 nCK 12,13
Supported CL Settings with read DBI 11,13,14 ,15,16 nCK 13
Supported CWL Settings 9,10,11,12 nCK
13.92
(13.50)
13.92
(13.50)
13.92
(13.50)
47.92
(47.50)
13
5,11
5,11
5,11
5,11
18.00 ns 11
- ns 11
- ns 11
- ns 11
1,2,3,4,10
,11
Rev. 1.7 / Jun.2016 49
Page 50
DDR4-2133 Speed Bins and Operations
Speed Bin DDR4-2133P
Unit NOTECL-nRCD-nRP 15-15-15
Parameter Symbol min max
13
Internal read command to first data tAA
Internal read command to first data
with read DBI enabled
ACT to internal read or write delay
time
tAA_DBI tAA(min)+3nCK tAA(max)+3nCK ns 11
tRCD
PRE command period tRP
ACT to PRE command period tRAS 33 9 x tREFI ns 11
ACT to ACT or REF command period tRC
Normal Read DBI
CWL = 9
CL = 9 CL = 11 tCK(AVG) 1.5 1.6 ns
CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,10
CWL = 9,11
CWL = 10,12
CL = 11 CL = 13 tCK(AVG) 1.25 <1.5 ns 1,2,3,4,7
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,7
CL = 13 CL = 15 tCK(AVG) 1.071 <1.25 ns 1,2,3,4,7
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3,7
CL = 14 CL = 17 tCK(AVG) Reserved ns 1,2,3,4
CWL = 11,14
CL = 15 CL = 18 tCK(AVG) 0.937 <1.071 ns 1,2,3,4
CL = 16 CL = 19 tCK(AVG) 0.937 <1.071 ns 1,2,3
Supported CL Settings 9,11,12,13,14,15,16 nCK 12,13
Supported CL Settings with read DBI 11,13,14,15,16,18,19 nCK
Supported CWL Settings 9,10,11,12,14 nCK
14.06
(13.50)
14.06
(13.50)
14.06
(13.50)
47.06
(46.50)
5,11
5,11
5,11
5,11
18.00 ns 11
- ns 11
- ns 11
- ns 11
1,2,3,4,10,
13
Rev. 1.7 / Jun.2016 50
Page 51
DDR4-2400 Speed Bins and Operations
Speed Bin DDR4-2400T
Unit NOTECL-nRCD-nRP 17-17-17
Parameter Symbol min max
Internal read command to first data tAA
Internal read command to first data
with read DBI enabled
ACT to internal read or write delay
time
tAA_DBI tAA(min)+3nCK tAA(max)+3nCK ns 11
tRCD
PRE command period tRP
ACT to PRE command period tRAS 32 9 x tREFI ns 11
ACT to ACT or REF command period tRC
Normal Read DBI
CWL = 9
CL = 9
CL = 11
tCK(AVG) Reserved ns 1,2,3,4,10
CL = 10 CL = 12 tCK(AVG) 1.5 1.6 ns 1,2,3,4,10
CL = 10 CL = 12 tCK(AVG) Reserved ns 4
CWL = 9,11
CL = 11 CL = 13 tCK(AVG) 1.25 <1.5 ns 1,2,3,4,8
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,8
CL = 12 CL = 14 tCK(AVG) Reserved ns 4
CWL = 10,12
CL = 13 CL = 15 tCK(AVG) 1.071 <1.25 ns 1,2,3,4,8
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3,8
CL = 14 CL = 17 tCK(AVG) Reserved ns 4
CWL = 11,14
CL = 15 CL = 18 tCK(AVG) 0.937 <1.071 ns 1,2,3,4,8
CL = 16 CL = 19 tCK(AVG) 0.937 <1.071 ns 1,2,3,8
CL = 15 CL = 18 tCK(AVG) Reserved ns 1,2,3,4
CWL = 12,16
CL = 16 CL = 19 tCK(AVG) Reserved ns 1,2,3,4
CL = 17 CL = 20 tCK(AVG) 0.833 <0.937 ns
CL = 18 CL = 21 tCK(AVG) 0.833 <0.937 ns 1,2,3
Supported CL Settings 10,11,12,13,14,15,16,17,18 nCK 12
Supported CL Settings with read DBI 12,14,16,18,19,20,21 nCK
Supported CWL Settings 9,10,11,12,14,16 nCK
14.16
(13.75)
14.16
(13.75)
14.16
(13.75)
46.16
(45.75)
5,11
5,11
5,11
5,11
18.00 ns 11
- ns 11
- ns 11
- ns 11
Rev. 1.7 / Jun.2016 51
Page 52
DDR4-2666 Speed Bins and Operations
Speed Bin DDR4-2666V
Unit NOTECL-nRCD-nRP 19-19-19
Parameter Symbol min max
13
Internal read command to first data tAA
Internal read command to first data
with read DBI enabled
ACT to internal read or write delay
time
tAA_DBI tAA(min)+3nCK tAA(max)+3nCK ns 11
tRCD
PRE command period tRP
ACT to PRE command period tRAS 32 9 x tREFI ns 11
14.25
(13.75)
14.25
(13.75)
14.25
(13.75)
5,11
13
5,11
13
5,11
18.00 ns 11
- ns 11
- ns 11
ACT to ACT or REF command period tRC
46.25
(45.75)
5,11
- ns 11
Normal Read DBI
CWL = 9
CL = 9 CL = 11 tCK(AVG) Reserved ns 1,2,3,4,10
CL = 10 CL = 12 tCK(AVG) 1.5 1.6 ns 1,2,3,10
CL = 10 CL = 12 tCK(AVG) Reserved ns 4
CWL = 9,11
CL = 11 CL = 13 tCK(AVG) 1.25 <1.5 ns 1,2,3,4,9
CL = 12 CL = 14 tCK(AVG) 1.25 <1.5 ns 1,2,3,9
CL = 12 CL = 14 tCK(AVG) Reserved ns 4
CWL = 10,12
CL = 13 CL = 15 tCK(AVG) 1.071 <1.25 ns 1,2,3,4,9
CL = 14 CL = 16 tCK(AVG) 1.071 <1.25 ns 1,2,3,9
CL = 14 CL = 17 tCK(AVG) Reserved ns 4
CWL = 11,14
CL = 15 CL = 18 tCK(AVG) 0.937 <1.071 ns 1,2,3,4,9
CL = 16 CL = 19 tCK(AVG) 0.937 <1.071 ns 1,2,3,9
CL = 15 CL = 18 tCK(AVG) Reserved ns 4
CWL = 12,16
CL = 16 CL = 19 tCK(AVG) Reserved ns 1,2,3,4,9
CL = 17 CL = 20 tCK(AVG) 0.833 <0.937 ns 1,2,3,4,9
CL = 18 CL = 21 tCK(AVG) 0.833 <0.937 ns 1,2,3
CL = 17 CL = 20 tCK(AVG) Reserved ns 1,2,3,4
CWL = 14,18
CL = 18 CL = 21 tCK(AVG) Reserved ns 1,2,3,4
CL = 19 CL = 22 tCK(AVG) 0.75 <0.833 ns 1,2,3,4
CL = 20 CL = 23 tCK(AVG) 0.75 <0.833 ns 1,2,3
Supported CL Settings 10,11,12,13,14,15,16,17,18,19,20 nCK 12
Supported CL Settings with read DBI 12,13,14,15,17,18,19,20,21,22,23 nCK
Supported CWL Settings 9,10,11,12,14,16,18 nCK
Rev. 1.7 / Jun.2016 52
Page 53

Speed Bin Table Notes

Absolute Specification
- VDDQ = VDD = 1.20V +/- 0.06 V
- VPP = 2.5V +0.25/-0.125 V
- The values defined with above-mentioned table are DLL ON case.
- DDR4-1600, 1866, 2133 and 2400 Speed Bin Tables are valid only when Geardown Mode is disabled.
1. The CL setting and CWL setting result in tCK(avg).MIN and tCK(avg).MAX requirements. When making a selection of tCK(avg), both need to be fulfilled: Requirements from CL setting as well as require ments from CWL setting.
2. tCK(avg).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(avg) value (1.5, 1.25, 1.071, 0.938 or 0.833 ns) when calculating CL [nCK] = tAA [ns] / tCK(avg) [ns], rounding up to the next ‘Supported CL’, where tAA = 12.5ns and tCK(avg) = 1.3 ns should only be used for CL = 10 calculation.
3. tCK(avg).MAX limits: Calculate tCK(avg) = tAA.MAX / CL SELECTED and round the resulting tCK(avg) down to the next valid speed bin (i.e. 1.5ns or 1.25ns or 1.071 ns or 0.938 ns or 0.833 ns). This result is tCK(avg).MAX corresponding to CL SELECTED.
4. ‘Reserved’ settings are not allowed. User must program a different value.
5. 'Optional' settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier's data sheet and/or the DIMM SPD information if and how this setting is supported.
6. Any DDR4-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
7. Any DDR4-2133 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
8. Any DDR4-2400 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
9. Any DDR4-2666 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
10. DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate.
11. Parameters apply from tCK(avg)min to tCK(avg)max at all standard JEDEC clock period values as stated in the Speed Bin Tables.
12. CL number in parentheses, it means that these numbers are optional.
13. DDR4 SDRAM supports CL=9 as long as a system meets tAA(min).
14. Each speed bin lists the timing requirements that need to be supported in order for a given DRAM to be JEDEC compliant. JEDEC compliance does not require support for all speed bins within a given speed. JEDEC compliance requires meeting the parameters for a least one of the listed speed bins.
-
Rev. 1.7 / Jun.2016 53
Page 54

IDD and IDDQ Specification Parameters and Test Conditions

IDD, IPP and IDDQ Measurement Conditions

In this chapter, IDD, IPP and IDDQ measurement conditions such as test load and patterns are defined. Figure shows the setup and test load for IDD, IPP and IDDQ measurements.
IDD currents (such as IDD0, IDD0A, IDD1, IDD1A, IDD2N, IDD2NA, IDD2NL, IDD2NT, IDD2P, IDD2Q, IDD3N, IDD3NA, IDD3P, IDD4R, IDD4RA, IDD4W, IDD4WA, IDD5B, IDD5F2, IDD5F4, IDD6N, IDD6E, IDD6R, IDD6A, IDD7 and IDD8) are measured as time-averaged currents with all VDD balls of the DDR4 SDRAM under test tied together. Any IPP or IDDQ current is not included in IDD currents.
IPP currents have the same definition as IDD except that the current on the VPP supply is measured.
IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR4 SDRAM under test tied together. Any IDD current is not included in IDDQ cur rents. Attention: IDDQ values cannot be directly used to calculate IO power of the DDR4 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one merged-power layer in Module PCB.
For IDD, IPP and IDDQ measurements, the following definitions apply:
“0” and “LOW” is defined as VIN <= VILAC(max).
“1” and “HIGH” is defined as VIN >= VIHAC(min).
“MID-LEVEL” is defined as inputs are VREF = VDD / 2.
Timings used for IDD, IPP and IDDQ Measurement-Loop Patterns are provided in Table 1.
Basic IDD, IPP and IDDQ Measurement Conditions are described in Table 2.
Detailed IDD, IPP and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 11.
IDD Measurements are done after properly initializing the DDR4 SDRAM. This includes but is not lim­ited to setting RON = RZQ/7 (34 Ohm in MR1); RTT_NOM = RZQ/6 (40 Ohm in MR1); RTT_WR = RZQ/2 (120 Ohm in MR2); RTT_PARK = Disable; Qoff = 0B (Output Buffer enabled) in MR1;
TDQS_t disabled in MR1; CRC disabled in MR2; CA parity feature disabled in MR5;
Gear down mode disabled in MR3 Read/Write DBI disabled in MR5; DM disabled in MR5
Attention: The IDD, IPP and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started.
Define D = {CS_n, ACT_n, RAS_n, CAS_n, WE_n } := {HIGH, LOW, LOW, LOW, LOW} ; apply BG/BA changes when directed.
Define D# = {CS_n, ACT_n, RAS_n, CAS_n, WE_n } := {HIGH, HIGH, HIGH, HIGH, HIGH} ; apply invert of BG/BA changes when directed above.
-
Rev. 1.7 / Jun.2016 54
Page 55
NOTE:
RESET CK_t/CK_c
CKE CS
ACT,RAS,CAS,WE
A,BG,BA
C
ODT ZQ
DQS_t/DQS_c
DQ
DM
DDR4 SDRAM
V
SS
V
SSQ
V
DD
V
PP
V
DDQ
I
DD
I
PP
I
DDQ
X
Application specific
memory channel
environment
Channel IO Powe
Simulatin
X
Channel IO Power
Number
IDDQ
TestLad
IDDQ
Simuaion
IDDQ
Measurement
Correlation
1. DIMM level Output test load condition may be different from above
Figure 1 - Measurement Setup and Test Load for IDD, IPP and IDDQ Measurements
Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ
Measurement
Rev. 1.7 / Jun.2016 55
Page 56
Table 1 -Timings used for IDD, IPP and IDDQ Measurement-Loop Patterns
Symbol
tCK 1.25 1.071 0.937 0.833 ns
CL 11 13 15 17 nCK
CWL 11 12 14 17 nCK
nRCD 11 13 15 17 nCK
nRC 39 45 51 56 nCK
nRAS 28 32 36 39 nCK
nRP 11 13 15 17 nCK
x4 16 16 16 16 nCK
nFAW
nRRDS
nRRDL
nRFC 2Gb 128 150 171 193 nCK
nRFC 4Gb 208 243 278 313 nCK
nRFC 8Gb 280 327 374 421 nCK
nRFC 16Gb TBD TBD TBD TBD nCK
x8 20 22 23 26 nCK
x16 28 28 32 36 nCK
x4 4 4 4 4 nCK
x8 4 4 4 4 nCK
x16 5 5 6 7 nCK
x4 5 5 6 6 nCK
x8 5 5 6 6 nCK
x16 6 6 7 8 nCK
tCCD_S 4 4 4 4 nCK
tCCD_L 5 5 6 6 nCK
tWTR_S 2 3 3 3 nCK
tWTR_L 6 7 8 9 nCK
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400
11-11-11 13-13-13 15-15-15 17-17-17
Unit
Rev. 1.7 / Jun.2016 56
Page 57
Table 2 -Basic IDD, IPP and IDDQ Measurement Conditions
Symbol Description
Operating One Bank Active-Precharge Current (AL=0) CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 81; AL: 0; CS_n: High
IDD0
IDD0A
IPP0
IDD1
IDD1A
IPP1
IDD2N
IDD2NA
IPP2N
IDD2NT
IDDQ2NT
(Optional)
IDD2NL
IDD2NG
IDD2ND
between ACT and PRE; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 3; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 3); Output Buffer and RTT: Enabled in Mode
Registers
2
; ODT Signal: stable at 0; Pattern Details: see Table 3
Operating One Bank Active-Precharge Current (AL=CL-1) AL = CL-1, Other conditions: see IDD0
Operating One Bank Active-Precharge IPP Current Same condition with IDD0
Operating One Bank Active-Read-Precharge Current (AL=0) CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: 81; AL: 0; CS_n: High
between ACT, RD and PRE; Command, Address, Bank Group Address, Bank Address Inputs, Data IO: partially toggling according to Table 4; DM_n: stable at 1; Bank Activity: Cycling with one
bank active at a time: 0,0,1,1,2,2,... (see Table 4); Output Buffer and RTT: Enabled in Mode
2
Registers
; ODT Signal: stable at 0; Pattern Details: see Table 4
Operating One Bank Active-Read-Precharge Current (AL=CL-1) AL = CL-1, Other conditions: see IDD1
Operating One Bank Active-Read-Precharge IPP Current Same condition with IDD1
Precharge Standby Current (AL=0) CKE: High; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: stable at 1; Command,
Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 5; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in
2
Mode Registers
; ODT Signal: stable at 0; Pattern Details: see Table 5
Precharge Standby Current (AL=CL-1) AL = CL-1, Other conditions: see IDD2N
Precharge Standby IPP Current Same condition with IDD2N
Precharge Standby ODT Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: stable at 1; Command,
Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 6; Data IO: VSSQ; DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in
2
Mode Registers
; ODT Signal: toggling according to Table 6; Pattern Details: see Table 6
Precharge Standby ODT IDDQ Current
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current
Precharge Standby Current with CAL enabled
Same definition like for IDD2N, CAL enabled
3
Precharge Standby Current with Gear Down mode enabled
Same definition like for IDD2N, Gear Down mode enabled
3
Precharge Standby Current with DLL disabled
Same definition like for IDD2N, DLL disabled
3
Rev. 1.7 / Jun.2016 57
Page 58
IDD2N_par
IDD2P
IPP2P
IDD2Q
IDD3N
IDD3NA
IPP3N
IDD3P
IPP3P
IDD4R
IDD4RA
IDD4RB
IPP4R
IDDQ4R
(Optional)
IDDQ4RB
(Optional)
Precharge Standby Current with CA parity enabled
Same definition like for IDD2N, CA parity enabled
3
Precharge Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks closed; Output Buffer and RTT:
2
Enabled in Mode Registers
; ODT Signal: stable at 0
Precharge Power-Down IPP Current Same condition with IDD2P
Precharge Quiet Standby Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable
at 1;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers
2
; ODT
Signal: stable at 0 Active Standby Current
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 5; Data IO: VDDQ; DM_n: stable at 1;Bank Activity: all banks open; Output Buffer and RTT: Enabled in
Mode Registers
2
; ODT Signal: stable at 0; Pattern Details: see Table 5
Active Standby Current (AL=CL-1) AL = CL-1, Other conditions: see IDD3N
Active Standby IPP Current Same condition with IDD3N
Active Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: stable at 1; Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable
at 1; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers
2
; ODT Signal:
stable at 0
Active Power-Down IPP Current Same condition with IDD3P
Operating Burst Read Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 82; AL: 0; CS_n: High between RD; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to
Tab l e 7 ; Data IO: seamless read data burst with different data between one burst and the next one according to Table 7; DM_n: stable at 1; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 7); Output Buffer and RTT: Enabled in Mode Registers
2
; ODT Signal :
stable at 0; Pattern Details: see Table 7
Operating Burst Read Current (AL=CL-1) AL = CL-1, Other conditions: see IDD4R
Operating Burst Read Current with Read DBI Read DBI enabled3, Other conditions: see IDD4R
Operating Burst Read IPP Current Same condition with IDD4R
Operating Burst Read IDDQ Current
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current
Operating Burst Read IDDQ Current with Read DBI
Same definition like for IDD4RB, however measuring IDDQ current instead of IDD current
Rev. 1.7 / Jun.2016 58
Page 59
IDD4W
IDD4WA
IDD4WB
IDD4WC
IDD4W_par
IPP4W
IDD5B
IPP5B
IDD5F2
IPP5F2
IDD5F4
IPP5F4
IDD6N
IPP6N
IDD6E
IPP6E
Operating Burst Write Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 81; AL: 0; CS_n: High between WR; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to
Tab l e 8 ; Data IO: seamless write data burst with different data between one burst and the next one according to Table 8; DM_n: stable at 1; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 8); Output Buffer and RTT: Enabled in Mode Registers stable at
HIGH; Pattern Details: see Table 8
2
; ODT Signal :
Operating Burst Write Current (AL=CL-1) AL = CL-1, Other conditions: see IDD4W
Operating Burst Write Current with Write DBI Write DBI enabled3, Other conditions: see IDD4W
Operating Burst Write Current with Write CRC Write CRC enabled3, Other conditions: see IDD4W
Operating Burst Write Current with CA Parity CA Parity enabled3, Other conditions: see IDD4W
Operating Burst Write IPP Current Same condition with IDD4W
Burst Refresh Current (1X REF) CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: 81; AL: 0; CS_n: High between REF; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Tab l e 9 ; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: REF command every nRFC (see Table 9); Output Buffer and RTT: Enabled in Mode Registers
2
; ODT Signal: stable at 0; Pattern Details: see
Tab l e 9
Burst Refresh Write IPP Current (1X REF) Same condition with IDD5B
Burst Refresh Current (2X REF) tRFC=tRFC_x2, Other conditions: see IDD5B
Burst Refresh Write IPP Current (2X REF) Same condition with IDD5F2
Burst Refresh Current (4X REF) tRFC=tRFC_x4, Other conditions: see IDD5B
Burst Refresh Write IPP Current (4X REF) Same condition with IDD5F4
Self Refresh Current: Normal Temperature Range
T
: 0 - 85°C; Low Power Array Self Refresh (LP ASR) : Normal4; CKE: Low; External clock:
CASE
Off; CK_t and CK_c#: LOW; CL: see Table 1; BL: 8 Address, Bank Address, Data IO: High; DM_n: stable at 1; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers
1
; AL: 0; CS_n#, Command, Address, Bank Group
2
; ODT Signal: MID-LEVEL
Self Refresh IPP Current: Normal Temperature Range Same condition with IDD6N
Self-Refresh Current: Extended Temperature Range
T
: 0 - 95°C; Low Power Array Self Refresh (LP ASR) : Extended4; CKE: Low; External clock:
CASE
)
Off; CK_t and CK_c: LOW; CL: see Table 1; BL: 81; AL: 0; CS_n, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers
2
; ODT Signal: MID-LEVEL
Self Refresh IPP Current: Extended Temperature Range Same condition with IDD6E
Rev. 1.7 / Jun.2016 59
Page 60
IDD6R
IPP6R
IDD6A
IPP6A
IDD7
IPP7
IDD8
IPP8
Self-Refresh Current: Reduced Temperature Range
T
: 0 - TBD (~35-45)°C; Low Power Array Self Refresh (LP ASR) : Reduced4; CKE: Low;
CASE
External clock: Off; CK_t and CK_c#: LOW; CL: see Table 1; BL: 81; AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity:
Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers
2
;
ODT Signal: MID-LEVEL Self Refresh IPP Current: Reduced Temperature Range
Same condition with IDD6R Auto Self-Refresh Current
T
: 0 - 95°C; Low Power Array Self Refresh (LP ASR) : Auto4; CKE: Low; External c lock : Off;
CASE
CK_t and CK_c#: LOW; CL: see Table 1; BL: 81; AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at 1; Bank Activity: Auto Self-Refresh
operation; Output Buffer and RTT: Enabled in Mode Registers
2
; ODT Signal: MID-LEVEL
Auto Self-Refresh IPP Current Same condition with IDD6A
Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 1; BL: 81; AL: CL-1; CS_n: High between ACT and RDA; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 10; Data IO: read data bursts with different data between
one burst and the next one according to Table 10; DM_n: stable at 1; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 10; Output Buffer and RTT: Enabled in Mode Registers
2
; ODT Signal: stable at 0; Pattern Details: see Table 10
Operating Bank Interleave Read IPP Current Same condition with IDD7
Maximum Power Down Current TBD
Maximum Power Down IPP Current Same condition with IDD8
Rev. 1.7 / Jun.2016 60
Page 61
NOTE :
1. Burst Length: BL8 fixed by MRS: set MR0 [A1:0=00].
2. Output Buffer Enable
- set MR1 [A12 = 0] : Qoff = Output buffer enabled
- set MR1 [A2:1 = 00] : Output Driver Impedance Control = RZQ/7
RTT_Nom enable
- set MR1 [A10:8 = 011] : RTT_NOM = RZQ/6
RTT_WR enable
- set MR2 [A10:9 = 01] : RTT_WR = RZQ/2
RTT_PARK disable
- set MR5 [A8:6 = 000]
3. CAL enabled : set MR4 [A8:6 = 001] : 1600MT/s
010] : 1866MT/s, 2133MT/s 011] : 2400MT/s Gear Down mode enabled :set MR3 [A3 = 1] : 1/4 Rate DLL disabled : set MR1 [A0 = 0] CA parity enabled :set MR5 [A2:0 = 001] : 1600MT/s,1866MT/s, 2133MT/s 010] : 2400MT/s Read DBI enabled : set MR5 [A12 = 1] Write DBI enabled : set :MR5 [A11 = 1]
4. Low Power Array Self Refresh (LP ASR) : set MR2 [A7:6 = 00] : Normal
01] : Reduced Temperature range 10] : Extended Temperature range 11] : Auto Self Refresh
5. IDD2NG should be measured after sync pulse(NOP) input.
Rev. 1.7 / Jun.2016 61
Page 62
Table 3 - IDD0, IDD0A and IPP0 Measurement-Loop Pattern
2
3
CK_t /CK_c
CKE
Sub-Loop
Cycle
Number
Command
0 0 ACT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1,2 D, D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
3,4
D_#,
D_#
... repeat pattern 1...4 until nRAS - 1, truncate if necessary
nRAS PRE 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 -
... repeat pattern 1...4 until nRC - 1, truncate if necessary
1
1*nRC
2
2*nRC
3
3*nRC
4
4*nRC
5
5*nRC
toggling
6
10
11
12
13
14
15
6*nRC
7
7*nRC
8
8*nRC
9
9*nRC
10*nRC
11*nRC
12*nRC
13*nRC
14*nRC
15*nRC
Static High
NOTE:
1 .DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. DQ signals are VDDQ.
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 1 instead repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 3 instead repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 2 instead repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 0 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0 instead
CS_n
ACT_n
CAS_n/ A15
RAS_n/ A16
1 1 1 1 1 0 0
ODT
C[2:0]
WE_n/ A14
BA[1:0]
2
3
BG[1:0]
A12/BC_n
3 0 0 0 7 F 0 -
1
4
Data
A[9:7]
A[6:3]
A[2:0]
A[17,13,11]
A[10]/AP
For x4 and x8
only
Rev. 1.7 / Jun.2016 62
Page 63
Table 4 - IDD1, IDD1A and IPP1 Measurement-Loop Pattern
2
3
CKE
CK_t, CK_c
Sub-Loop
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
Cycle
Number
WE_n/A14
ODT
C[2:0]
BA[1:0]
BG[1:0]
a)
A[9:7]
A12/BC_n
A[10]/AP
A[17,13,11]
A[6:3]
0 0 ACT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1, 2 D, D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ­3, 4 D#, D# 1 1 1 1 1 0 0
b
3 0 0 0 7 F 0 -
3
... repeat pattern 1...4 until nRCD - AL - 1, truncate if necessary nRCD -AL RD 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 D0=00, D1=FF
... repeat pattern 1...4 until nRAS - 1, truncate if necessary nRAS PRE 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 ­... repeat pattern 1...4 until nRC - 1, truncate if necessary
1 1*nRC + 0 ACT 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 -
1*nRC + 1, 2 D, D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ­1*nRC + 3, 4 D#, D# 1 1 1 1 1 0 0
b
3 0 0 0 7 F 0 -
3 ... repeat pattern nRC + 1...4 until 1*nRC + nRAS - 1, truncate if necessary 1*nRC + nRCD
RD 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 D0=FF, D1=00
- AL
... repeat pattern 1...4 until nRAS - 1, truncate if necessary
toggling
NOTE:
1. DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4.Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ.
1*nRC + nRAS PRE 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 -
Static High
... repeat nRC + 1...4 until 2*nRC - 1, truncate if necessary
2 2*nRC
3 3*nRC
4 4*nRC
5 5*nRC
6 6*nRC
8 7*nRC
9 9*nRC
10 10*nRC
11 11*nRC
12 12*nRC
13 13*nRC
14 14*nRC
15 15*nRC
16 16*nRC
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 0 instead repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 2 instead repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 1 instead repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead repeat Sub-Loop 1, use BG[1:0]2 = 2, BA[1:0] = 3 instead repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0 instead
4
Data
A[2:0]
D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF
D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00
For x4 and x8 only
Rev. 1.7 / Jun.2016 63
Page 64
Table 5 - IDD2N, IDD2NA, IDD2NL, IDD2NG, IDD2ND, IDD2N_par, IPP2,IDD3N, IDD3NA and IDD3P
Measurement-Loop Pattern1
2
3
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
CS_n
Command
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
C[2:0]
BG[1:0]
BA[1:0]
A[9:7]
A12/BC_n
A[10]/AP
A[17,13,11]
A[6:3]
0 0 D, D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 D, D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 D#, D#1 1 1 1 1 0 0
2
3 0 0 0 7 F 0 0
3
Data
A[2:0]
4
3 D#, D#1 1 1 1 1 0 0
1 4-7
2 8-11
3 12-15
4 16-19
5 20-23
toggling
6 24-27
Static High
7 28-31
8 32-35
9 36-39
10 40-43
11 44-47
12 48-51
13 52-55
14 56-59
15 60-63
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. DQ signals are VDDQ.
repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 1 instead repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 3 instead repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 2 instead repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead repeat Sub-Loop 0, use BG[1:0]2 = 1, BA[1:0] = 0 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 1 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 3 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 2 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead repeat Sub-Loop 0, use BG[1:0]2 = 3, BA[1:0] = 0 instead
2
3 0 0 0 7 F 0 0
3
Rev. 1.7 / Jun.2016 64
Page 65
Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Pattern1
2
3
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
0 0 D, D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1 D, D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
2 D#, D# 1 1 1 1 1 0 0
3 D#, D# 1 1 1 1 1 0 0
1 4-7
2 8-11
3 12-15
4 16-19
5 20-23
6 24-27
toggling
7 28-31
Static High
8 32-35
9 36-39
10 40-43
11 44-47
12 48-51
13 52-55
14 56-59
15 60-63
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. DQ signals are VDDQ.
repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 1 instead repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 2 instead repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 3 instead repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 1 instead repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 2 instead repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 0, BA[1:0] = 3 instead repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 1, BA[1:0] = 0 instead repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 0 instead repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 1 instead repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 2 instead repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 3 instead repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 1 instead repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 2 instead repeat Sub-Loop 0, but ODT = 0 and BG[1:0]2 = 2, BA[1:0] = 3 instead repeat Sub-Loop 0, but ODT = 1 and BG[1:0]2 = 3, BA[1:0] = 0 instead
Command
CS_n
ACT_n
CAS_n/A15
RAS_n/A16
WE_n/A14
ODT
C[2:0]
BA[1:0]
BG[1:0]
2
3 0 0 0 7 F 0 -
3
2
3 0 0 0 7 F 0 -
3
4
Data
A[9:7]
A[6:3]
A12/BC_n
A[10]/AP
A[17,13,11]
A[2:0]
For x4 and x8
only
Rev. 1.7 / Jun.2016 65
Page 66
Table 7 - IDD4R, IDDR4RA, IDD4RB and IDDQ4R Measurement-Loop Pattern
2
3
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
CAS_n/A15
RAS_n/A16
WE_n/A14
ODT
C[2:0]
0 0 RD 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 D0=00, D1=FF
1 D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
2,3 D#, D# 1 1 1 1 1 0 0
2
3
1 4 RD 0 1 1 0 1 0 0 1 1 0 0 0 7 F 0 D0=FF, D1=00
5 D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
6,7 D#, D# 1 1 1 1 1 0 0
2 8-11
3 12-15
4 16-19
toggling
Static High
5 20-23
6 24-27
7 28-31
8 32-35
9 36-39
10 40-43
11 44-47
12 48-51
13 52-55
14 56-59
15 60-63
NOTE :
1. DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. Burst Sequence driven on each DQ signal by Read Command.
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead
2
3
A[9:7]
A[6:3]
BA[1:0]
BG[1:0]
A12/BC_n
A[10]/AP
A[17,13,11]
A[2:0]
3 0 0 0 7 F 0 -
3 0 0 0 7 F 0 -
Data
D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF
D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00
For x4 and x8 only
1
4
Rev. 1.7 / Jun.2016 66
Page 67
Table 8 - IDD4W, IDD4WA, IDD4WB and IDD4W_par Measurement-Loop Pattern
2
3
4
CKE
CK_t, CK_c
Sub-Loop
Command
CS_n
ACT_n
CAS_n/A15
RAS_n/A16
Cycle
Number
WE_n/A14
ODT
C[2:0]
0 0 WR 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 D0=00, D1=FF
1 D 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -
2,3 D#, D# 1 1 1 1 1 1 0
2
3
1 4 WR 0 1 1 0 1 1 0 1 1 0 0 0 7 F 0 D0=FF, D1=00
5 D 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -
6,7 D#, D# 1 1 1 1 1 1 0
2 8-11
3 12-15
4 16-19
toggling
Static High
5 20-23
6 24-27
7 28-31
8 32-35
9 36-39
10 40-43
11 44-47
12 48-51
13 52-55
14 56-59
15 60-63
NOTE :
1. DQS_t, DQS_c are used according to WR Commands, otherwise VDDQ.
2. BG1 is don’t care for x16 device
3. C[2:0] are used only for 3DS device
4. Burst Sequence driven on each DQ signal by Write Command.
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead
2
3
A[9:7]
A[6:3]
BA[1:0]
BG[1:0]
A12/BC_n
A[10]/AP
A[17,13,11]
A[2:0]
3 0 0 0 7 F 0 -
3 0 0 0 7 F 0 -
Data
D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF
D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00
For x4 and x8 only
1
Rev. 1.7 / Jun.2016 67
Page 68
Table 9 - IDD4WC Measurement-Loop Pattern
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
CAS_n/A15
RAS_n/A16
0 0 WR 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 D0=00, D1=FF
1,2 D, D 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -
3,4 D#, D# 1 1 1 1 1 1 0 5 WR 0 1 1 0 1 1 0 1 1 0 0 0 7 F 0 D0=FF, D1=00
6,7 D, D 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -
8,9 D#, D# 1 1 1 1 1 1 0
2 10-14
3 15-19
toggling
4 20-24
Static High
5 25-29
6 30-34
7 35-39
8 40-44
9 45-49
10 50-54
11 55-59
12 60-64
13 65-69
14 70-74
15 75-79
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device.
3. C[2:0] are used only for 3DS device.
4. Burst Sequence driven on each DQ signal by Write Command.
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead
ODT
WE_n/A14
1
b
c
C[2:0]
BA[1:0]
BG[1:0]
2
3
2
3
A12/BC_n
A[17,13,11]
3 0 0 0 7 F 0 -
3 0 0 0 7 F 0 -
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF
D8=CRC
D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00
D8=CRC
For x4 and x8 only
Data
d
Rev. 1.7 / Jun.2016 68
Page 69
Table 10 - IDD5B Measurement-Loop Patt ern
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
0 0 REF 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ­1 1 D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
2 D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
3 D#, D# 1 1 1 1 1 0 0
4 D#, D# 1 1 1 1 1 0 0
toggling
Static High
4-7
8-11
12-15
16-19
20-23
24-27
28-31
32-35
36-39
40-43
44-47
48-51
52-55
56-59
60-63
repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 1 instead repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 2 instead repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 3 instead repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 1 instead repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 2 instead repeat pattern 1...4, use BG[1:0]2 = 0, BA[1:0] = 3 instead repeat pattern 1...4, use BG[1:0]2 = 1, BA[1:0] = 0 instead repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 0 instead repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 1 instead repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 2 instead repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 3 instead repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 1 instead repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 2 instead repeat pattern 1...4, use BG[1:0]2 = 2, BA[1:0] = 3 instead repeat pattern 1...4, use BG[1:0]2 = 3, BA[1:0] = 0 instead
2 64 ... nRFC - 1 repeat Sub-Loop 1, Truncate, if necessary
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device.
3. C[2:0] are used only for 3DS device.
4. DQ signals are VDDQ.
Command
CS_n
ACT_n
CAS_n/A15
RAS_n/A16
WE_n/A14
1
2
3
4
ODT
C[2:0]
BA[1:0]
BG[1:0]
2
3
2
3
A12/BC_n
A[17,13,11]
3 0 0 0 7 F 0 - 3 0 0 0 7 F 0 -
A[10]/AP
A[9:7]
A[6:3]
Data
A[2:0]
For x4 and x8
only
Rev. 1.7 / Jun.2016 69
Page 70
Table 11 - IDD7 Measurement-Loop Pattern
CKE
CK_t, CK_c
Sub-Loop
Cycle
Number
0 0 ACT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1 RDA 0 1 1 0 1 0 0 0 0 0 1 0 0 0 D0=00, D1=FF
2 D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ­3 D# 1 1 1 1 1 0 0
... repeat pattern 2...3 until nRRD - 1, if nRRD > 4. Truncate if necessary
1 nRRD ACT 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 -
nRRD + 1 RDA 0 1 1 0 1 0 1 1 0 0 1 0 0 0 D0=FF, D1=00
... repeat pattern 2 ... 3 until 2*nRRD - 1, if nRRD > 4. Truncate if necessary
2 2*nRRD 3 3*nRRD
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 2 instead repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 3 instead
4 4*nRRD repeat pattern 2 ... 3 until nFAW - 1, if nFAW > 4*nRRD. Truncate if necessary
Command
CS_n
ACT_n
CAS_n/A15
RAS_n/A16
WE_n/A14
1
2
3
4
ODT
C[2:0]
BA[1:0]
BG[1:0]
A12/BC_n
A[17,13,11]
A[10]/AP
A[9:7]
A[6:3]
Data
A[2:0]
D2=FF, D3=00 D4=FF, D5=00 D6=00, D7=FF
2
3 0 0 0 7 F 0 -
3
D2=00, D3=FF D4=00, D5=FF D6=FF, D7=00
toggling
Static High
5 nFAW 6 nFAW + nRRD 7 nFAW + 2*nRRD 8 nFAW + 3*nRRD
repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 1 instead repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 2 instead repeat Sub-Loop 0, use BG[1:0]2 = 0, BA[1:0] = 3 instead repeat Sub-Loop 1, use BG[1:0]2 = 1, BA[1:0] = 0 instead
9 nFAW + 4*nRRD repeat Sub-Loop 4
10 2*nFAW 11 2*nFAW + nRRD 12 2*nFAW + 2*nRRD 13 2*nFAW + 3*nRRD
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 0 instead repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 1 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 2 instead repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 3 instead
14 2*nFAW + 4*nRRD repeat Sub-Loop 4
15 3*nFAW 16 3*nFAW + nRRD 17 3*nFAW + 2*nRRD 18 3*nFAW + 3*nRRD
repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 1 instead repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 2 instead repeat Sub-Loop 0, use BG[1:0]2 = 2, BA[1:0] = 3 instead repeat Sub-Loop 1, use BG[1:0]2 = 3, BA[1:0] = 0 instead
19 3*nFAW + 4*nRRD repeat Sub-Loop 4
20 4*nFAW repeat pattern 2 ... 3 until nRC - 1, if nRC > 4*nFAW. Truncate if necessary
NOTE :
1. DQS_t, DQS_c are VDDQ.
2. BG1 is don’t care for x16 device.
3. C[2:0] are used only for 3DS device.
4. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ
For x4 and x8
only
Rev. 1.7 / Jun.2016 70
Page 71

IDD Specifications

Module IDD values in the datasheet are only a calculation based on the component IDD spec and register power. The actual measurements may vary according to DQ loading cap.

4GB, 512M x 72 R-DIMM: HMA451R7AFR8N

Symbol
IDD0 6221564316mA
IDD0A 622 15 645 16 mA
IDD17161274513mA IDD1A 720 12 749 13 mA IDD2N49965136mA
IDD2NA54875717mA
IDD2NT53565576mA
IDD2NL 458 6 471 6 mA IDD2NG50265186mA IDD2ND49165046mA
IDD2NP 499 6 513 6 mA
IDD2P 301 6 313 6 mA IDD2Q49565096mA IDD3N59786218mA
IDD3NA59886218mA
IDD3P 383 8 400 8 mA
IDD4R1165812638mA IDD4RA1183812838mA IDD4RB1170812688mA
IDD4W1221813258mA IDD4WA1243813508mA IDD4WB1221813258mA IDD4WC1130812248mA IDD4WP1221813258mA
IDD5B 2014 286 2020 286 mA IDD5F2 2173 317 2178 320 mA IDD5F4 1728 229 1733 231 mA
IDD6N91159115mA
IDD6E 114 16 114 16 mA
IDD6R74117411mA
IDD6A 125 22 125 22 mA
IDD7 1502 87 1543 87 mA IDD8 39 16 39 16 mA
IDD IPP IDD IPP
2133 2400
unit note
Rev. 1.7 / Jun.2016 71
Page 72

8GB, 1G x 72 R-DIMM: HMA41GR7AFR8N

Symbol
IDD0 7452177422mA
IDD0A 795 22 835 23 mA
IDD18391887719mA IDD1A 893 19 939 19 mA IDD2N 622 12 645 12 mA
IDD2NA7211376113mA
IDD2NT6941273212mA
IDD2NL5401256112mA IDD2NG6291265512mA IDD2ND6071262612mA
IDD2NP6221264512mA
IDD2P 381 12 402 12 mA IDD2Q 614 12 637 12 mA IDD3N 819 16 860 16 mA
IDD3NA8201686116mA
IDD3P 545 16 576 16 mA
IDD4R128814139414mA IDD4RA 1356 15 1473 15 mA IDD4RB 1293 14 1400 14 mA
IDD4W134414145714mA IDD4WA 1416 15 1540 15 mA IDD4WB 1344 14 1457 14 mA IDD4WC 1254 14 1356 14 mA IDD4WP 1344 14 1457 14 mA
IDD5B 2137 292 2152 292 mA IDD5F2 2296 323 2310 326 mA IDD5F4 1851 235 1865 237 mA
IDD6N 177 30 177 30 mA
IDD6E 223 33 223 33 mA
IDD6R 142 22 142 22 mA
IDD6A 245 45 245 45 mA
IDD7 1626 93 1675 93 mA IDD8 73 32 73 32 mA
IDD IPP IDD IPP
2133 2400
unit note
Rev. 1.7 / Jun.2016 72
Page 73

8GB, 1G x 72 R-DIMM: HMA41GR7AFR4N

Symbol
IDD0 838 33 904 35 mA
IDD0A 838 33 909 34 mA
IDD1 964 27 1062 24 mA IDD1A 971 28 1076 29 mA IDD2N 622 13 645 13 mA
IDD2NA 721 15 761 15 mA
IDD2NT 694 13 732 13 mA
IDD2NL 540 14 561 14 mA IDD2NG 629 13 655 13 mA IDD2ND 607 14 626 14 mA
IDD2NP 622 13 645 13 mA
IDD2P 381 13 402 13 mA IDD2Q 614 13 637 13 mA IDD3N 819 18 860 18 mA
IDD3NA 820 18 861 18 mA
IDD3P 545 19 576 19 mA
IDD4R158818209718mA IDD4RA 1630 18 2138 18 mA IDD4RB 1637 18 2109 18 mA
IDD4W161219222319mA IDD4WA 1660 19 2272 19 mA IDD4WB 1658 19 2207 19 mA IDD4WC 1507 19 2020 19 mA IDD4WP 1612 19 2223 19 mA
IDD5B 3653 571 3658 571 mA IDD5F2 3970 634 3976 639 mA IDD5F4 3080 457 3085 461 mA
IDD6N 177 30 177 30 mA
IDD6E 223 33 223 33 mA
IDD6R 142 22 142 22 mA
IDD6A 245 45 245 45 mA
IDD7 2416 155 2832 200 mA IDD8 87 31 73 32 mA
IDD IPP IDD IPP
2133 2400
unit note
Rev. 1.7 / Jun.2016 73
Page 74

16GB, 2G x 72 R-DIMM: HMA42GR7AFR4N

Symbol
IDD0 1085 47 1168 48 mA
IDD0A118448128949mA
IDD1 1210 41 1326 41 mA IDD1A131643145744mA IDD2N 868 27 908 27 mA
IDD2NA 1067 30 1142 31 mA
IDD2NT 1013 26 1082 26 mA
IDD2NL 705 27 740 27 mA IDD2NG 883 27 929 27 mA IDD2ND 838 27 872 27 mA
IDD2NP 868 27 908 27 mA
IDD2P 542 27 579 27 mA IDD2Q 853 26 892 26 mA IDD3N126237133937mA
IDD3NA 1264 37 1340 37 mA
IDD3P 870 37 927 38 mA
IDD4R183432236132mA IDD4RA 1976 34 2518 34 mA IDD4RB 1883 32 2372 32 mA
IDD4W185832248632mA IDD4WA 2006 34 2652 34 mA IDD4WB 1904 32 2471 32 mA IDD4WC 1753 32 2284 32 mA IDD4WP 1858 32 2486 32 mA
IDD5B 3899 585 3922 585 mA IDD5F2 4216 647 4239 653 mA IDD5F4 3326 471 3349 475 mA
IDD6N 350 59 350 59 mA
IDD6E 440 66 440 66 mA
IDD6R 279 43 279 43 mA
IDD6A 485 89 485 89 mA
IDD7 2663 169 3095 213 mA IDD8 169 62 141 63 mA
IDD IPP IDD IPP
2133 2400
unit note
Rev. 1.7 / Jun.2016 74
Page 75

Module Dimensions

0.85
0.60± 0.03
Detail of Contacts A, F
1.50 ±0.05
0.2
±
0.15
0.20 ±0.15
5.95
3.85
±
0.1
4.30
Detail of Contacts E
2.10
2.60
9.35
10.20
Detail of Contacts B
Pin 35 Pin 47
2.10
2.60
9.35
10.20
Detail of Contacts C
Pin 117Pin 105
2.10
Non-matarized keep out area
Max 0.30
Max 0.35
Max 0.25
0.85
0.60± 0.03
Detail of Contacts D
2.60
Non-matarized keep out area
Max 0.30
Max 0.35
Max 0.25
3.35
Detail E
2.10
64.60
56.10
2.70
±
0.15
Front
30.75
17.10
Back
133.35
129.55
Registering
Clock Driver
SPD/TS
1.40±0.1mm
Side
max
3.98mm max
Detail A
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
2x R0.60 Max
14.10
3.00
Pin 35 Pin 47
Pin 1
Pin 105 Pin 117
Detail B Detail D Detail C
8.00
11.00
31.25
±
0.15
Detail F

512Mx72 - HMA451R7AFR8N

Rev. 1.7 / Jun.2016 75
Page 76

1Gx72 - HMA41GR7AFR8N-TF

3.35
Detail E
2.10
64.60
56.10
2.70
±
0.15
Front
30.75
17.10
Back
133.35
129.55
1.40±0.1mm
Side
max
3.98mm max
Detail A
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
2x R0.60 Max
14.10
3.00
Pin 35 Pin 47
Pin 1
Pin 105 Pin 117
Detail B Detail D Detail C
8.00
11.00
Registering
Clock Driver
SPD/TS
0.85
0.60± 0.03
Detail of Contacts A, F
1.50 ±0.05
0.2
±
0.15
0.20 ±0.15
5.95
3.85
±
0.1
4.30
Detail of Contacts E
2.10
2.60
9.35
10.20
Detail of Contacts B
Pin 35 Pin 47
2.10
2.60
9.35
10.20
Detail of Contacts C
Pin 117Pin 105
2.10
Non-matarized keep out area
Max 0.30
Max 0.35
Max 0.25
0.85
0.60± 0.03
Detail of Contacts D
Non-matarized keep out area
Max 0.30
Max 0.35
Max 0.25
31.25
±
0.15
Detail F
Rev. 1.7 / Jun.2016 76
Page 77

1Gx72 - HMA41GR7AFR8N-UH

3.35
Detail E
2.10
64.60
56.10
2.70
±
0.15
Front
30.75
17.10
Back
133.35
129.55
1.40±0.1mm
Side
max
3.98mm max
Detail A
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
2x R0.60 Max
14.10
3.00
Pin 35 Pin 47
Pin 1
Pin 105 Pin 117
Detail B Detail D Detail C
8.00
11.00
Registering
Clock Driver
SPD/TS
0.85
0.60± 0.03
Detail of Contacts A, F
1.50 ±0.05
0.2
±
0.15
0.20 ±0.15
5.95
3.85
±
0.1
4.30
Detail of Contacts E
2.10
2.60
9.35
10.20
Detail of Contacts B
Pin 35 Pin 47
2.10
2.60
9.35
10.20
Detail of Contacts C
Pin 117Pin 105
2.10
Non-matarized keep out area
Max 0.30
Max 0.35
Max 0.25
0.85
0.60± 0.03
Detail of Contacts D
Non-matarized keep out area
Max 0.30
Max 0.35
Max 0.25
31.25
±
0.15
Detail F
Rev. 1.7 / Jun.2016 77
Page 78

1Gx72 - HMA41GR7AFR4N-TF

3.35
Detail E
2.10
64.60
56.10
2.70
±
0.15
Front
30.75
17.10
Back
133.35
129.55
1.40±0.1mm
Side
max
3.98mm max
Detail A
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
2x R0.60 Max
14.10
3.00
Pin 35 Pin 47
Pin 1
Pin 105 Pin 117
Detail B Detail D Detail C
8.00
11.00
Registering
Clock Driver
SPD/TS
0.85
0.60± 0.03
Detail of Contacts A, F
1.50 ±0.05
0.2
±
0.15
0.20 ±0.15
5.95
3.85
±
0.1
4.30
Detail of Contacts E
2.10
2.60
9.35
10.20
Detail of Contacts B
Pin 35 Pin 47
2.10
2.60
9.35
10.20
Detail of Contacts C
Pin 117Pin 105
2.10
Non-matarized keep out area
Max 0.30
Max 0.35
Max 0.25
0.85
0.60± 0.03
Detail of Contacts D
Non-matarized keep out area
Max 0.30
Max 0.35
Max 0.25
31.25
±
0.15
Detail F
Rev. 1.7 / Jun.2016 78
Page 79

1Gx72 - HMA41GR7AFR4N-UH

3.35
Detail E
2.10
64.60
56.10
2.70
±
0.15
Front
30.75
17.10
Back
133.35
129.55
1.40±0.1mm
Side
max
3.98mm max
Detail A
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
2x R0.60 Max
14.10
3.00
Pin 35 Pin 47
Pin 1
Pin 105 Pin 117
Detail B Detail D Detail C
8.00
11.00
Registering
Clock Driver
SPD/TS
0.85
0.60± 0.03
Detail of Contacts A, F
1.50 ±0.05
0.2
±
0.15
0.20 ±0.15
5.95
3.85
±
0.1
4.30
Detail of Contacts E
2.10
2.60
9.35
10.20
Detail of Contacts B
Pin 35 Pin 47
2.10
2.60
9.35
10.20
Detail of Contacts C
Pin 117Pin 105
2.10
Non-matarized keep out area
Max 0.30
Max 0.35
Max 0.25
0.85
0.60± 0.03
Detail of Contacts D
Non-matarized keep out area
Max 0.30
Max 0.35
Max 0.25
31.25
±
0.15
Detail F
Rev. 1.7 / Jun.2016 79
Page 80

2Gx72 - HMA42GR7AFR4N-TF

3.35
Detail E
2.10
64.60
56.10
2.70
±
0.15
Front
30.75
17.10
Back
133.35
129.55
1.40±0.1mm
Side
max
3.98mm max
Detail A
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
2x R0.60 Max
14.10
3.00
Pin 35 Pin 47
Pin 1
Pin 105 Pin 117
Detail B Detail D Detail C
8.00
11.00
Registering
Clock Driver
SPD/TS
0.85
0.60± 0.03
Detail of Contacts A, F
1.50 ±0.05
0.2
±
0.15
0.20 ±0.15
5.95
3.85
±
0.1
4.30
Detail of Contacts E
2.10
2.60
9.35
10.20
Detail of Contacts B
Pin 35 Pi n 47
2.10
2.60
9.35
10.20
Detail of Contacts C
Pin 117Pin 105
2.10
Non-matarized keep out area
Max 0.30
Max 0.35
Max 0.25
0.85
0.60± 0.03
Detail of Contacts D
Non-matarized keep out area
Max 0.30
Max 0.35
Max 0.25
31.25
±
0.15
Detail F
Rev. 1.7 / Jun.2016 80
Page 81

2Gx72 - HMA42GR7AFR4N-UH

3.35
Detail E
2.10
64.60
56.10
2.70
±
0.15
Front
30.75
17.10
Back
133.35
129.55
1.40±0.1mm
Side
max
3.98mm max
Detail A
Note:
1. tolerance on all dimensions unless otherwise stated.
0.13
Units: millimeters
2x R0.60 Max
14.10
3.00
Pin 35 Pin 47
Pin 1
Pin 105 Pin 117
Detail B Detail D Detail C
8.00
11.00
Registering
Clock Driver
SPD/TS
0.85
0.60± 0.03
Detail of Contacts A, F
1.50 ±0.05
0.2
±
0.15
0.20 ±0.15
5.95
3.85
±
0.1
4.30
Detail of Contacts E
2.10
2.60
9.35
10.20
Detail of Contacts B
Pin 35 Pi n 47
2.10
2.60
9.35
10.20
Detail of Contacts C
Pin 117Pin 105
2.10
Non-matarized keep out area
Max 0.30
Max 0.35
Max 0.25
0.85
0.60± 0.03
Detail of Contacts D
Non-matarized keep out area
Max 0.30
Max 0.35
Max 0.25
31.25
±
0.15
Detail F
Rev. 1.7 / Jun.2016 81
Loading...