SGS Thomson Microelectronics TS4890, TS4890IST, TS4890IDT, TS4890ID Datasheet

TS4890
RAIL TO RAIL OUTPUT 1W AUDIO POWER AMPLIFIER WITH
STANDBY MODE ACTIVE LOW
OPERATING FROM V
= 2.2V to 5.5V
CC
1W RAI L TO RAIL OUTPUT POWER @
Vcc=5V, THD=1%, f=1kHz, with 8
Load
ULTRA LOW CONSUMPTION IN STANDBY
75dB PSRR @ 217Hz from 5 to 2.2V
POP & CLICK REDUCTION CIRCUITRY
ULTRA LOW DISTORTION (0.1%)
UNITY GAIN STABLE
AVAILABLE IN SO8, MiniSO8 & DFN8
DESCRIPTION
The TS4890 (Min iSO8 & SO 8) is a n A udio P ower Amplifier capable of delivering 1W of continuous RMS. ouput power into 8
This Audio Am plifier is exhibiting 0.1% distortion level (THD) from a 5V supply for a Pout = 250mW RMS. An external standby mode cont rol reduces the supply current to less than 10n A. An internal thermal shutdown protection is also provided.
The TS4890 have b een designed for high quality audio applications such as m obile phones and t o minimize the number of external components.
The unity-gain stable amplifier can be configured by external gain setting resistors.
load @ 5V.
PIN CONNECTIONS (Top View)
TS4890ID, TS4890IDT - SO8
Standby
Bypass
V+
VIN-
Standby
Bypass
V+
IN
VIN-
STANDBY
STANDBY
BYPASS
BYPASS
1 2 3
IN
4
TS4890IST - MiniSO8
1 2 3 4
1
1 2
2
V
V
3
3
IN+
IN+
V
V
4
4
IN-
IN-
8
V2OUT
7
GND
6
CC
V
5
VOUT1
8
V2OUT
7
GND
6
CC
V
5
VOUT1
TS4890IQT - DFN8
V
V
8
8
OUT 2
OUT 2
7
7
GND
GND
6
6
Vcc
Vcc
V
V
5
5
OUT 1
OUT 1
APPLICATIONS
Mobile Phones (Cellular / Cordless)
Laptop / Notebook Computers
PDAs
Portable Audio Devices
ORDER CODE
Part
Number
Temperature
Range
TS4890 -40, +85°C
MiniSO & DFN only available in Tape & Reel: with T suffix. SO is available in Tube (D) and of Tape & Reel (DT)
June 2003
Package
Marking
SDQ
4890I
4890 4890
TYPICAL APPLICATION SCHEMATIC
Cfeed
Vcc
Rfeed
Audio Input
Vcc
Cin
Rstb
Rin
4
Vin-
Vin+
3
Bypass
2
Standby
1
Cb
6
Vcc
-
+
­Av=-1
+
Bias
GND
7
Vout1
Vout2
TS4890
Cs
5
RL 8 Ohms
8
1/32
TS4890
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V
T
T
R
Supply voltage
CC
V
iInput Voltage
Operating Free Air Temperature Range -40 to + 85 °C
oper
Storage Temperature -65 to +150 °C
stg
T
Maximum Junction Temperature 150 °C
j
Thermal Resistance Junction to Ambient
thja
SO8 MiniSO8 DFN8
Pd
Power Dissipation
ESD Human Body Model 2 kV ESD Machine Model 200 V
Latch-up Immunity Class A Lead Temperature (solde ring, 10sec ) 260 °C
1. All voltages values are measured with respect to the ground pin.
2. The magnitude of input signal must never exceed V
3. Device is protected in case of over temperature by a thermal shutdown active @ 150°C.
4. Exceeding the power derating curves during a long period may involve abnormal working of the device.
1)
2)
3)
6V
GND to V
CC
175 215
70
4)
+ 0.3V / GND - 0.3V
CC
See Power Derating Curves
Fig. 24
V
°C/W
W
OPERATING CONDITIONS
Symbol Parameter Value Unit
V
V
V
R
1. This thermal resistance can be reduced with a suitable PCB layout (see Power Derating Curves Fig. 24)
2. When mounted o n a 4 l ayers PCB
Supply Voltage 2.2 to 5.5 V
CC
+ 1V to V
Common Mode Input Voltage Range
ICM
G
ND
Standby Voltage Input :
STB
Device ON Device OFF
R
Load Resistor 4 - 32
L
Thermal Resistance Junction to Ambient
thja
SO8
1)
MiniSO8
2)
DFN8
1.5 ≤ V
G
ND
≤ VCC
STB
V
≤ 0.5
STB
150 190
41
CC
V
V
°C/W
2/32
TS4890
ELECTRICAL CHARACTERISTICS
= +5V, GND = 0V, T
V
CC
Symbol Parameter Min. Typ. Max. Unit
= 25°C (unless otherwise specified)
amb
I
CC
I
STANDBY
Voo
Po
THD + N
PSRR
Φ
GM
GBP
1. Standby mode is actived wh en Vstdby is tied to GND
2. Dynamic measurements - 20*log(r m s(Vout)/rms(Vripple)). Vripple is the surim posed sinus signal to Vc c @ f = 217Hz
V
= +3.3V, GND = 0V, T
CC
Supply Current
No input signal, no load
Standby Current
1)
No input signal, Vstdby = GND, RL = 8
Output Offset Voltage
No input signal, RL = 8
Output Power
THD = 1% Max, f = 1kHz, RL = 8
Total Harmonic Distortion + Noise
Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8
Power Supply Rejection Ratio
f = 217Hz, RL = 8
Phase Margin at Unity Gain
M
R
= 8Ω, CL = 500pF
L
Gain Margin
= 8Ω, CL = 500pF
R
L
Gain Bandwidth Product
= 8
R
L
amb
2)
RFeed = 22K
Ω,
Vripple = 200mV rms
Ω,
= 25°C (unless otherwise specified)
68mA
10 1000 nA
520mV
1W
0.15 %
77 dB
70 Degrees
20 dB
2MHz
Symbol Parameter Min. T yp. Max. Unit
I
CC
I
STANDBY
Voo
Po
THD + N
PSRR
Φ
GM
GBP
1. Standby mode is actived wh en Vstdby is tied to GND
2. Dynamic measurements - 20*log(r m s(Vout)/rms(Vripple)). Vripple is the surim posed sinus signal to Vc c @ f = 217Hz
Supply Current
No input signal, no load
Standby Current
1)
No input signal, Vstdby = GND, RL = 8
Output Offset Voltage
No input signal, RL = 8
Output Power
THD = 1% Max, f = 1kHz, RL = 8
Total Harmonic Distortion + Noise
Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8
Power Supply Rejection Ratio
f = 217Hz, RL = 8
Phase Margin at Unity Gain
M
= 8Ω, CL = 500pF
R
L
Gain Margin
= 8Ω, CL = 500pF
R
L
Gain Bandwidth Product
= 8
R
L
2)
RFeed = 22K
Ω,
Vripple = 200mV rms
Ω,
5.5 8 mA
10 1000 nA
520mV
450 mW
0.15 %
77 dB
70 Degrees
20 dB
2MHz
3/32
TS4890
VCC = 2.6V, GND = 0V, T
= 25°C (unless otherwise specified)
amb
Symbol Parameter Min. Typ. Max. Unit
I
CC
I
STANDBY
Voo
Po
THD + N
PSRR
Φ
GM
GBP
1. Standby mode is actived wh en Vstdby is tied to GND
2. Dynamic measurements - 20*log(r m s(Vout)/rms(Vripple)). Vripple is the surim posed sinus signal to Vc c @ f = 217Hz
Supply Current
No input signal, no load
Standby Current
1)
No input signal, Vstdby = GND, RL = 8
Output Offset Voltage
No input signal, RL = 8
Output Power
THD = 1% Max, f = 1kHz, RL = 8
Total Harmonic Distortion + Noise
Po = 200mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8
Power Supply Rejection Ratio
f = 217Hz, RL = 8
Phase Margin at Unity Gain
M
= 8Ω, CL = 500pF
R
L
Gain Margin
= 8Ω, CL = 500pF
R
L
Gain Bandwidth Product R
= 8
L
2)
RFeed = 22K
Ω,
Vripple = 200mV rms
Ω,
58mA
10 1000 nA
520mV
260 mW
0.15 %
77 dB
70 Degrees
20 dB
2MHz
= 2.2V, GND = 0V, T
V
CC
= 25°C (unless otherwise specified)
amb
Symbol Parameter Min. T yp. Max. Unit
I
CC
I
STANDBY
Voo
Po
THD + N
PSRR
Φ
GM
GBP
1. Standby mode is actived wh en Vstdby is tied to GND
2. Dynamic measurements - 20*log(r m s(Vout)/rms(Vripple)). Vripple is the surim posed sinus signal to Vc c @ f = 217Hz
Supply Current
No input signal, no load
Standby Current
1)
No input signal, Vstdby = GND, RL = 8
Output Offset Voltage
No input signal, RL = 8
Output Power
THD = 1% Max, f = 1kHz, RL = 8
Total Harmonic Distortion + Noise
Po = 200mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8
Power Supply Rejection Ratio
f = 217Hz, RL = 8
Phase Margin at Unity Gain
M
= 8Ω, CL = 500pF
R
L
Gain Margin
= 8Ω, CL = 500pF
R
L
Gain Bandwidth Product
= 8
R
L
2)
RFeed = 22K
Ω,
Vripple = 100mV rms
Ω,
58mA
10 1000 nA
520mV
180 mW
0.15 %
77 dB
70 Degrees
20 dB
2MHz
4/32
Components Functional Description
TS4890
Rin
Cin
Rfeed Feed back resistor which sets the closed loop gain in conjunction with Rin
Cs Supply Bypass capacitor which provides power supply filtering
Cb Bypass pin capacitor which provides half supply filtering
Cfeed
Rstb Pull-down resistor which fixes the right supply level on the standby pin
Gv Closed loop gain in BTL configuration = 2 x (Rfeed / Rin)
Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin))
Input coupling capacitor which blocks the DC voltage at the amplifier input terminal
Low pass filter capacitor allowing to cut the high frequency (low pass filter cut-off frequency 1 / (2 x Pi x Rfeed x Cfeed))
REMARKS
1. All measurements, except PSRR measurements, are made with a supply bypass capacitor Cs = 100µF.
1. External resistors are not needed for having better stability when supply @ Vcc down to 3V. The
quiescent current still remains the same.
2. The standby response time is about 1µs.
5/32
TS4890
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-240
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
Gain (dB)
Frequency (kHz)
Vcc = 3.3V ZL = 8Ω + 560pF Tamb = 25°C
Gain
Phase
Phase (Deg)
Fig. 1 : Open Loop Frequency Response
0
60
40
Phase
20
Gain (dB)
0
-20
-40
0.3 1 10 100 1000 10000
Gain
Frequency (kHz)
Vcc = 5V RL = 8 Tamb = 25°C
-20
-40
-60
-80
-100
-120
-140
-160
-180
-200
-220
Fig. 3 : Open Loop Frequency Response
80
60
40
20
Gain (dB)
0
-20
-40
0.3 1 10 100 1000 10000
Gain
Phase
Frequency (kHz)
Vcc = 3.3V RL = 8
Tamb = 25°C
0
-20
-40
-60
-80
-100
-120
-140
-160
-180
-200
-220
-240
Phase (Deg)
Phase (Deg)
Fig. 2 : Open Loop Frequency Response
0
60
40
Phase
20
Gain (dB)
0
-20
-40
0.3 1 10 100 1000 10000
Gain
Frequency (kHz)
Vcc = 5V ZL = 8Ω + 560pF Tamb = 25°C
-20
-40
-60
-80
-100
-120
-140
-160
-180
-200
-220
Fig. 4 : Open Loop Frequency Response
Phase (Deg)
Fig. 5 : Open Loop Frequency Response
80
Phase
Gain
60
40
20
Gain (dB)
0
-20
-40
0.3 1 10 100 1000 10000
6/32
Frequency (kHz)
Vcc = 2.6V RL = 8 Tamb = 25°C
Fig. 6 : Open Loop Frequency Response
0
-20
-40
-60
-80
-100
-120
-140
-160
Phase (Deg)
-180
-200
-220
-240
80
Vcc = 2.6V ZL = 8Ω + 560pF Tamb = 25°C
60
40
20
Gain (dB)
0
-20
-40
0.3 1 10 100 1000 10000
Gain
Phase
Frequency (kHz)
0
-20
-40
-60
-80
-100
-120
-140
-160
-180
-200
-220
-240
Phase (Deg)
TS4890
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
100
-240
-220
-200
-180
-160
-140
-120
-100
-80
Gain (dB)
Frequency (kHz)
Vcc = 3.3V CL = 560pF Tamb = 25°C
Gain
Phase
Phase (Deg)
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
100
-240
-220
-200
-180
-160
-140
-120
-100
-80
Gain (dB)
Frequency (kHz)
Vcc = 2.2V CL = 560pF Tamb = 25°C
Gain
Phase
Phase (Deg)
Fig. 7 : Open Loop Frequency Response
80
Phase
Gain
Frequency (kHz)
60
40
20
Gain (dB)
0
-20
-40
0.3 1 10 100 1000 10000
Vcc = 2.2V RL = 8 Tamb = 25°C
0
-20
-40
-60
-80
-100
-120
-140
-160
-180
-200
-220
-240
Fig. 9 : Open Loop Frequency Response
100
80
60
Gain
40
20
Gain (dB)
0
Vcc = 5V CL = 560pF
-20
Tamb = 25°C
-40
0.3 1 10 100 1000 10000
Phase
Frequency (kHz)
-80
-100
-120
-140
-160
-180
-200
-220
Phase (Deg)
Phase (Deg)
Fig. 8 : Open Loop Frequency Response
80
Vcc = 2.2V RL = 8Ω, + 560pF Tamb = 25°C
60
40
20
Gain (dB)
0
-20
-40
0.3 1 10 100 1000 10000
Gain
Phase
Frequency (kHz)
0
-20
-40
-60
-80
-100
-120
-140
-160
-180
-200
-220
-240
Fig. 10 : Open Loop Frequency Response
Phase (Deg)
Fig. 11 : Open Loop Frequency Response
100
80
60
Gain
40
20
Gain (dB)
0
Vcc = 2.6V
-20
CL = 560pF Tamb = 25°C
-40
0.3 1 10 100 1000 10000
Phase
Frequency (kHz)
-80
-100
-120
-140
-160
-180
-200
-220
-240
Fig. 12 : Open Loop Frequency Response
Phase (Deg)
7/32
TS4890
10 100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
Cfeed=680pF
Cfeed=330pF
Cfeed=150pF
Cfeed=0
Vcc = 5 to 2.2V Cb = 1µF & 0.1µF Rfeed = 22k Vripple = 200mVrms Input = floating RL = 8 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
10 100 1000 10000 100000
-60
-50
-40
-30
-20
-10
Cin=22nF
Cin=100nF
Cin=220nF
Cin=330nF
Cin=1µF
Vcc = 5 to 2.2V Rfeed = 22k, Rin = 22k Cb = 1µF Rg = 100, RL = 8 Tamb = 25°C
PSRR (dB)
Frequency (Hz)
Fig. 13 : Power Supply Rejection Ratio (PSRR) vs Power supply
-30
Vripple = 200mVrms Rfeed = 22k
-40
Input = floating RL = 8 Tamb = 25°C
-50
PSRR (dB)
-60
-70
-80
10 100 1000 10000 100000
Vcc = 5V to 2.2V Cb = 1µF & 0.1µF
Frequency (Hz)
Fig. 15 : Power Supply Rejection Ratio (PSRR) vs Bypass Capacitor
-10
-20
-30
-40
-50
PSRR (dB)
-60
-70
-80 10 100 1000 10000 100000
Cb=1µF
Cb=10µF
Cb=100µF
Vcc = 5 to 2.2V Rfeed = 22k Rin = 22k, Cin = 1µF Rg = 100, RL = 8 Tamb = 25°C
Cb=47µF
Frequency (Hz)
Fig. 14 : Power Supply Rejection Ratio (PSRR) vs Feedback Capacitor
Fig. 16 : Power Supply Rejectio n Ratio (PSRR) vs Input Capacitor
Fig. 17 : Power Supply Rejection Ratio (PSRR) vs Feedback Resistor
-10
Vcc = 5 to 2.2V
-20
Cb = 1µF & 0.1µF Vripple = 200mVrms
-30
Input = floating RL = 8
-40
Tamb = 25°C
-50
PSRR (dB)
-60
8/32
-70
-80
10 100 1000 10000 100000
Rfeed=110k
Rfeed=47k
Frequency (Hz)
Rfeed=22k
Rfeed=10k
Fig. 18 : Pout @ THD + N = 1% vs Supply Voltage vs RL
1.4
Gv = 2 & 10
1.2
Cb = 1µF F = 1kHz
1.0
BW < 125kHz Tamb = 25°C
0.8
0.6
0.4
0.2
Output power @ 1% THD + N (W)
0.0
2.5 3.0 3.5 4.0 4.5 5.0
Vcc (V)
4
8
6
16
32
TS4890
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
RL=16
RL=8
Vcc=5V F=1kHz THD+N<1%
RL=4
Power Dissipation (W)
Output Power (W)
0.0 0.1 0.2 0.3 0.4
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
RL=4
RL=8
Vcc=2.6V F=1kHz THD+N<1%
RL=16
Power Dissipation (W)
Output Power (W)
0 25 50 75 100 125 150
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
SO8
MiniSO8
QFN8
Power Dissipation (W)
Ambiant Temperature (°C)
Fig. 19 : Pout @ THD + N = 10% vs Supply Voltage vs RL
2.0
Gv = 2 & 10
1.8
Cb = 1µF F = 1kHz
1.6
BW < 125kHz
1.4
Tamb = 25°C
1.2
1.0
0.8
0.6
0.4
Output power @ 10% THD + N (W)
0.2
0.0
2.5 3.0 3.5 4.0 4.5 5.0
4
Vcc (V)
8
6
16
32
Fig. 21 : Power Dissipation vs Pout
0.6
Vcc=3.3V F=1kHz
0.5
THD+N<1%
0.4
RL=4
Fig. 20 : Power Dissipation vs Pout
Fig. 22 : Power Dissipation vs Pout
0.3
0.2
RL=8
Power Dissipation (W)
0.1
RL=16
0.0
0.0 0.2 0.4 0.6 0.8
Output Power (W)
Fig. 23 : Power Dissipation vs Pout
0.40
Vcc=2.6V
0.35
F=1kHz THD+N<1%
0.30
0.25
0.20
0.15
0.10
Power Dissipation (W)
0.05
0.00
0.0 0.1 0.2 0.3
RL=16
Output Power (W)
RL=8
RL=4
Fig. 24 : Power Derating Curves
9/32
TS4890
1E-3 0.01 0.1 1
0.1
1
10
RL = 4, Vcc = 3.3V Gv = 10 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C
20kHz
20Hz
1kHz
THD + N (%)
Output Power (W)
Fig. 25 : THD + N vs Output Power
10
Rl = 4 Vcc = 5V Gv = 2 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C
1
THD + N (%)
0.1 1E-3 0.01 0.1 1
20kHz
20Hz, 1kHz
Output Power (W)
Fig. 27 : THD + N vs Output Power
10
RL = 4, Vcc = 3.3V Gv = 2 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C
1
THD + N (%)
20kHz
Fig. 26 : THD + N vs Output Power
10
RL = 4, Vcc = 5V Gv = 10 Cb = Cin = 1µF BW < 125kHz, Tamb = 25°C
1
THD + N (%)
0.1 1E-3 0.01 0.1 1
20kHz
20Hz
Output Power (W)
Fig. 28 : THD + N vs Output Power
1kHz
0.1 1E-3 0.01 0.1 1
Output Power (W)
20Hz, 1kHz
Fig. 29 : THD + N vs Output Power
10
RL = 4, Vcc = 2.6V Gv = 2 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C
1
THD + N (%)
20kHz
20Hz, 1kHz
0.1
10/32
1E-3 0.01 0.1
Output Power (W)
Fig. 30 : THD + N vs Output Power
10
RL = 4, Vcc = 2.6V Gv = 10 Cb = Cin = 1µF BW < 125kHz Tamb = 25°C
1
THD + N (%)
0.1
1kHz
1E-3 0.01 0.1
20kHz
20Hz
Output Power (W)
Loading...
+ 22 hidden pages