SGS Thomson Microelectronics ST92F150, ST92F150CR1, ST92F124R9, ST92F124, ST92F250CV2 Datasheet

...
December 2002 1/398
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without not ice .
Rev. 1.3
ST92F124/ST92F150/ST92F250
8/16-BIT SINGLE VOLTAGE FLASH MCU FAMILY WITH RAM,
E
3 TM
(EMULATED EEPROM), CAN 2.0B AND J1850 BLPD
PRELIMINARY DATA
Memories
– Internal Memory : Single Voltage FLASH up to 256
Kbytes, RAM up to 8Kbytes, 1K byte E
3 TM
(Emulat-
ed EEPROM)
– In-Application Programming (IAP) – 224 general purpose re gisters (regist er file) ava ila-
ble as RAM, accumulators or index pointers
Clock, Re set and Supply M a nagement
– Register-oriented 8/16 bit CORE with RUN, WFI,
SLOW, HALT and STOP modes – 0-24 MHz Operation (Int. Clock), 4.5-5.5 V range – PLL Clock Generator (3-5 MHz crystal) – Minimum instruction time: 83 ns (24 MHz int. clock)
80, 77 or 48 I/O pins (depending on device)
Interrupt Management
– 80, 77 or 48 I/O pins (depending on device) – 4 external fast interrupts + 1 NMI – Up to 16 pins programmable as wake-up or addition-
al external interrupt with multi-level interrupt handler – DMA controller for reduced processor overhead
Timers
– 16-bit Timer with 8-bit Prescaler, and Watchdog Tim-
er (activated by software or by hardware) – 16-bit Standar d Tim er th at ca n be used to genera te
a time base independent of PLL Clock Generator – Two 16-bit indepe ndent Extended Functio n Timers
(EFTs) with Prescaler, 2 Input Captures and two
Output Compares (100-pin devices only) – Two 16-bit Multifunction Timers, with Prescaler, 2 In-
put Captures and two Output Compares
Communication Interfaces
– Serial Peripheral Interface (SPI) with Selectable
Master/Slave mode
– One Multiprotocol Serial Com munications Interface
with asynchronous and synchronous capabilities
– One asynchronous Serial Communications Interface
(on 100-pin versions only) with 13-bit LIN Synch Break generation capability
– J1850 Byte Level Protocol Decoder (JBLPD)
(on F150J versions only)
– One or two full I²C mu ltiple Maste r/Slave Inte rfaces
supporting Access Bus
– One or two CAN 2.0B (150 version only) Active inter-
faces
10-bit Analog to Digital Converter allowing up to 16
input channels on 100-pin devices or 8 input channels on 64-pin devices
Development Tools
– Free High performance Development environment
(IDE) based on Visual Debugger, Assembler, Linker, and C-Comp iler; Real Tim e Ope rating Syste m (OS ­EK OS, CMX) and CAN drivers
– Hardware Emula tor and Flash Pro gramming Board
for development and ISP Flasher for production
DEVICE SUMMARY
1) see Section 12.3 on page 396 for important information
2) see Table 70 on page 393
PQFP100
14x20
TQFP64
14x14
TQFP100
14x14
Features ST92F124R9 ST92F124V1 ST92F150C(R/V)1 ST92F150JDV1 ST92F250CV2
FLASH - bytes 64K 128K 128K 128K 256K RAM - bytes 2K 4K 4K 6K 8K E
3 TM
- bytes 1K 1K 1K 1K 1K
Timers and Serial
Interface
2 MFT, STIM,
WD, SCI, SPI,
I²C
2 MFT, 2 EFT,
STIM, WD,
2 SCI, SPI, I²C
2 MFT, 0/2 EFT,
STIM, WD,
1/2 SCI, SPI, I²C
2 MFT, 2 EFT,
STIM, WD,
2 SCI, SPI, I²C
2 MFT, 2 EFT, STIM,
WD, 2 SCI,
SPI, 2 I²C
1)
ADC 8 x 10 bits 16 x 10 bits 8/16 x 10 bits 16 x 10 bits Network Interface - CAN 2 CAN, J1850 CAN, LIN Master
Temp. Range -40°C to 85°C -40°C to 105°C
-40°C to 105°C ,
-40°C to 125°C
2)
-40oC to 125oC
-40°C to 105°C ,
-40°C to 125°C
2)
Packages TQFP64 PQFP100
P/TQFP100 and
TQFP64
P/TQFP100
9
2/398
Table of Contents
398
9
1 GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 VOLTAGE REGULATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 I/O PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 ALTERNATE FUNCTIONS FOR I/O PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6 OPERATING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2 DEVICE ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1 CORE ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 MEMORY SPACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 SYSTEM REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5 MEMORY MANAGEMENT UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 ADDRESS SPACE EXTENSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.7 MMU REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.8 MMU USAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3 SINGLE VOLTAGE FLASH & E3 TM (EMULATED EEPROM) . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 WRITE OPERATION EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 PROTECTION STRATEGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6 FLASH IN-SYSTEM PROGRAMMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4 REGISTER AND MEMORY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 MEMORY CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 ST92F124/F15 0/F250 RE GI STE R MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 INTERRUPT VECTORING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 INTERRUPT PRIORITY LEVELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 PRIORITY LEVEL ARBITRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5 ARBITRATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.6 EXTERNAL INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.7 STANDARD INTERRUPTS (CAN AND SCI-A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.8 TOP LEVEL INTERRUPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.9 DEDICATED ON-CHIP PERIPHERAL INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.10 INTERRUPT RESPONSE TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.11 INTERRUPT REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.12 WAKE-UP / INTERRUPT LINES MANAGEMENT UNIT (WUIMU) . . . . . . . . . . . . . . . . 109
6 ON-CHIP DIRECT MEMORY ACCESS (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 DMA PRIORITY LEVELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3 DMA TRANSACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.4 DMA CYCLE TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.5 SWAP MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 20
3/398
Table of Con tents
9
6.6 DMA REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7 RESET AND CLOCK CONTROL UNIT (RCCU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.2 CLOCK CONTROL UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.3 CLOCK MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.4 CLOCK CONTROL REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.5 CRYSTAL OSCILLATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.6 RESET/STOP MANAGER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8 EXTERNAL MEMORY INTERFACE (EXTMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.2 EXTERNAL MEMORY SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.3 REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9 I/O PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.2 SPECIFIC PORT CONFIGURATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.3 PORT CONTROL REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.4 INPUT/OUTPUT BIT CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.5 ALTERNATE FUNCTION ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.6 I/O STATUS AFTER WFI, HALT AND RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
10 ON-CHIP PERIPHERALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
10.1 TIMER/WATCHDOG (WDT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
10.2 ST ANDARD TIMER (STIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
10.3 EXTENDED FUNCTION TIMER (EFT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.4 MULTIFUNCTION TIMER (MFT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.5 MULTIPROTOCOL SERIAL COMMUNICATIONS INTERFACE (SCI-M) . . . . . . . . . . . 209
10.6 ASYNCHRONOUS SERIAL COMMUNICATIONS INTERFACE (SCI-A) . . . . . . . . . . . 234
10.7 SERIAL PERIPHERAL INTERFACE (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
10.8 I2C BUS INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
10.9 J1850 BYTE LEVEL PROTOCOL DECODER (JBLPD) . . . . . . . . . . . . . . . . . . . . . . . . 281
10.10 CONTROLLER AREA NETWORK (BXCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
10.11 10-BIT ANALOG TO DIGITAL CONVERTER (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
11 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
12 GENERAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
12.1 O RDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
12.2 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
12.3 D EVELOPMENT TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
13 SUMMARY OF CHANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
4/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
1 GENERAL DESCRIPTIO N
1.1 INTRODUCTION
The ST92F124/F150 /F250 m icroco ntroller is de­veloped and manufactured by STM icroelectronics using a proprietary n-well HCMOS process. Its performance derives from the use of a flexible 256-register programming model for ultra-fast con­text switching and real-time event response. The intelligent on-chip peripherals offload the ST9 core from I/O and data management processing tasks allowing critical application tasks to get the maxi­mum use of core resources. The new-gene ration ST9 MCU devices now also support low power consumption and low voltage operation for power­efficient and low-cost embedded systems.
1.1.1 ST9+ Core
The advanced Core consists of the Central Processing Unit (CPU), the Register File, the Inter­rupt and DMA controller, and the Memory Man­agement Unit. The MMU allows a single linear ad­dress space of up to 4 Mbytes.
Four independent buses are controlled by the Core: a 22-bit memory bus, an 8 -bit register data bus, an 8-bit register address bus and a 6-bit inter­rupt/DMA bus which connects the interrupt and DMA controllers in the on-chip peripherals with the core.
This multiple bus architecture makes the ST9 fam­ily devices highly efficient for accessing on and off­chip memory and fast exchange of data with the on-chip peripherals.
The general-purpose registers can be used as ac­cumulators, index registers, or address pointers. Adjacent register pairs make up 16-bit registers for addressing or 16-bit processing. Although the ST9 has an 8-bit ALU, the chip handles 16-bit opera­tions, including arithmetic, loads/stores, and mem­ory/register and memory/memory exchanges.
The powerful I/O capabilities demanded by m icr o­controller applications are fulfilled by the ST92F150/F124 with 48 (64-pin devices) or 77 (100-pin devices) I/O lines dedicated to digital In­put/Output and with 80 I/O lines by the ST92F250. These lines are grouped into up to ten 8-bit I/O Ports and can be configu red on a bit basis un der software control to provide timing, status signals, an address/data bus for interfacing to the external memory, timer inputs an d outputs, an alog inputs, external interrupts and serial or parallel I/O. Two memory spaces are available to support this wide range of configurations: a combined Program/ Data Memory Space and the internal Register File,
which includes the control and st atus registers of the on-chip peripherals.
1.1.2 External Memory Interface
100-pin devices have a 22-bit external address bus allowing them to address up to 4M bytes of ex­ternal memory. 64-pin devices have an 11-bit ex­ternal address bus for addressing up to 2K bytes.
1.1.3 On-chip Peripherals
Two 16-bit Multifunction Timers, each with an 8 bit Prescaler and 12 operating modes allow simple use for complex waveform generation and meas­urement, PWM functions and many other system timing functions by the usage of the two associat­ed DMA channels for each timer.
On 100-pin dev ices, two Extende d Function Ti m­ers provide further timing and signal generation capabilities.
A Standard Timer can be used to ge nerate a sta­ble time base independent from the PLL.
An I
2
C interface (two in the ST9 2F250) provides
fast I
2
C and Access Bus support.
The SPI is a synchronous serial interface for Mas­ter and Slave device communi cation. It supports single master and multimaster systems.
A J1850 Byte Level Protocol Decoder is available (on some devices onl y) for communicating with a J1850 network.
The bxCAN (basic extended) interface supports
2.0B Active protocol. It has 3 transmit mailboxes, 2 independent receive FIFOs and 8 filters.
In addition, there is an 16 channel Analog to Digital Converter with integral sample and hold, fast con­version time and 10-bit resolution. In the 64-pin version only 8 input channels are available.
There is one Multiprotocol Serial Communications Interface with an integral generator, asynchronous and synchronous capability (fully programmable format) and associated address/wake-up option, plus two DMA channels.
On some devices, there is an additional asynchro­nous Serial Communications interface.
Finally, a programmable PLL Clock Generat or al­lows the usage of standard 3 to 5 MHz crystals to obtain a large range of internal frequencies up to 24MHz. Low power Run (SLOW), Wait For Inter­rupt, low power Wait For Interrupt, STOP and HALT modes are also available.
9
5/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
Figure 1. ST92F124R9: Architectural Block Diagram
256 bytes
Register File
RAM
2 Kbytes
ST9 CORE
8/16 bits
CPU
Interrupt
Management
MEMORY BUS
RCCU
REGISTER BUS
WATCHDOG
NMI
MISO MOSI SCK SS
ST. TIMER
SPI
SDA SCL
I2C BUS
SCI M
FLASH
64 Kbytes
TXCLK RXCLK SIN DCD SOUT CLKOUT RTS
WDOUT
HW0SW1
STOUT
Fully
Prog.
I/Os
P0[7:0] P1[2:0] P2[7:0] P3[7:4] P4[7:4] P5[7:0] P6[5:2,0] P7[7:0]
MF TIMER 0
TINPA0
TOUTA0
TINPB0
TOUTB0
TINPA1
TOUTA1
TINPB1
TOUTB1
INT[5:0]
WKUP[13:0]
MF TIMER 1
E
3 TM
1 Kbyte
OSCIN
OSCOUT
RESET
CLOCK2/8
INTCLK
CK_AF
ADC
AV
DD
AV
SS
AIN[15:8] EXTRG
V
REG
VOLTAGE
REGULATOR
The alternate functions (
Italic characters
) are mapped on Port 0, Port 1, Port2, Port3, Port4, Port5, Port6
and Port7.
9
6/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
Figure 2. ST92F124V1: Architectural Block Diagram
256 bytes
Register File
RAM
4 Kbytes
ST9 CORE
8/16 bits
CPU
Interrupt
Management
MEMORY BUS
RCCU
Ext. MEM.
ADDRESS
DATA Port0
Ext. MEM.
ADDRESS
Ports
1,9
REGISTER BUS
WATCHDOG
AS DS
RW
WAIT
NMI
DS2
RW*
MISO MOSI SCK SS
A[10:8] A[21:11]
A[7:0] D[7:0]
ST. TIMER
SPI
SDA SCL
I2C BUS
FLASH
128 Kbytes
WDOUT
HW0SW1
STOUT
Fully
Prog.
I/Os
P0[7:0] P1[7:3] P1[2:0] P2[7:0] P3[7:4] P3[3:1] P4[7:4] P4[3:0] P5[7:0] P6[5:2,0] P6.1 P7[7:0] P8[7:0] P9[7:0]
MF TIMER 0
TINPA0
TOUTA0
TINPB0
TOUTB0
TINPA1
TOUTA1
TINPB1
TOUTB1
INT[5:0]
INT6
WKUP[13:0]
WKUP[15:14]
MF TIMER 1
E
3 TM
1 Kbyte
OSCIN
OSCOUT
RESET
CLOCK2/8
INTCLK
CK_AF
ADC
AV
DD
AV
SS
AIN[15:8] AIN[7:0] EXTRG
V
REG
VOLTAGE
REGULATOR
The alternate functions (
Italic characters
) are mapped on Port 0, Port 1, Port2, Port3, Port4, Port5, Port6, Port7,
Port8 and Port9.
ICAPA0
OCMPA0
ICAPB0
OCMPB0
EXTCLK0
ICAPA1
OCMPA1
ICAPB1
OCMPB1
EXTCLK1
EF TIMER 0
EF TIMER 1
SCI M
TXCLK RXCLK SIN DCD SOUT CLKOUT RTS
SCI A
RDI TDO
9
7/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
Figure 3. ST92F150CV1: Architectural Block Diagram
256 bytes
Register File
RAM
4 Kbytes
ST9 CORE
8/16 bits
CPU
Interrupt
Management
MEMORY BUS
RCCU
Ext. MEM.
ADDRESS
DATA Port0
Ext. MEM.
ADDRESS
Ports
1,9*
REGISTER BUS
WATCHDOG
AS DS
RW
WAIT
NMI DS2 RW*
MISO MOSI SCK SS
A[10:8] A[21:11]*
A[7:0] D[7:0]
ST. TIMER
SPI
SDA SCL
I2C BUS
FLASH
128 Kbytes
WDOUT
HW0SW1
STOUT
* Not available on 64-pin version.
Fully
Prog.
I/Os
P0[7:0] P1[7:3]* P1[2:0] P2[7:0] P3[7:4] P3[3:1]* P4[7:4] P4[3:0]* P5[7:0] P6[5:2,0] P6.1* P7[7:0] P8[7:0]* P9[7:0]*
MF TIMER 0
TINPA0
TOUTA0
TINPB0
TOUTB0
TINPA1
TOUTA1
TINPB1
TOUTB1
INT[5:0]
INT6
*
WKUP[13:0]
WKUP[15:14]*
MF TIMER 1
E
3 TM
1 Kbyte
OSCIN
OSCOUT
RESET
CLOCK2/8
INTCLK
CK_AF
ADC
AV
DD
AV
SS
AIN[15:8] AIN[7:0]* EXTRG
RX0 TX0
CAN_0
V
REG
VOLTAGE
REGULATOR
The alternate functions (
Italic characters
) are mapped on Port 0, Port 1, Port2, Port3, Port4, Port5, Port6, Port7,
Port8* and Port9*.
ICAPA0
OCMPA0
ICAPB0
OCMPB0
EXTCLK0
ICAPA1
OCMPA1
ICAPB1
OCMPB1
EXTCLK1
EF TIMER 0 *
EF TIMER 1 *
SCI M
TXCLK RXCLK SIN DCD SOUT CLKOUT RTS
SCI A*
RDI TDO
9
8/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
Figure 4. ST92F150JDV1: Architectural Block Diagram
256 bytes
Register File
ST9 CORE
8/16 bit
CPU
Interrupt
Management
MEMORY BUS
RCCU
REGISTER BUS
WATCHDOG
AS DS
RW
WAIT
NMI DS2
RW
MISO MOSI SCK SS
EF TIMER 0
ST. TIMER
SPI
SCI M
TXCLK RXCLK SIN DCD SOUT CLKOUT RTS
WDOUT
HW0SW1
STOUT
ICAPA0
OCMPA0
ICAPB0
OCMPB0
EXTCLK0
Fully Prog.
I/Os
P0[7:0] P1[7:0] P2[7:0] P3[7:1] P4[7:0] P5[7:0] P6[5:0] P7[7:0] P8[7:0] P9[7:0]
RDI TDO
MF TIMER 0
TINPA0
TOUTA0
TINPB0
TOUTB0
ICAPA1
OCMPA1
ICAPB1
OCMPB1
EXTCLK1
TINPA1
TOUTA1
TINPB1
TOUTB1
INT[6:0]
WKUP[15:0]
EF TIMER 1
MF TIMER 1
SCI A
OSCIN
OSCOUT
RESET
CLOCK2/8
CLOCK2
INTCLK
CK_AF
ADC
AV
DD
AV
SS
AIN[15:0] EXTRG
SDA SCL
I2C BUS
VPWI
VPWO
J1850
JBLPD
A[7:0] D[7:0]
A[21:8]
Ext. MEM.
ADDRESS
DATA Port0
Ext. MEM.
ADDRESS
Ports 1,9
RAM
6 Kbytes
FLASH
128 Kbytes
E
3 TM
1K byte
The alternate functions (
Italic characters
) are mapped on Port0, Port1, Port2, Port3, Port4, Port5, Port6, Port7,
RX0 TX0
CAN_0
RX1 TX1
CAN_1
V
REG
VOLTAGE
REGULATOR
Port8 and Port9.
RDI TDO
FLASH 128 Kbytes
1
9/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
Figure 5. ST92F250CV2: Architectural Block Diagram
256 bytes
Register File
ST9 CORE
8/16 bit
CPU
Interrupt
Management
MEMORY BUS
RCCU
REGISTER BUS
WATCHDOG
AS DS
RW
WAIT
NMI DS2
RW
MISO MOSI SCK SS
EF TIMER 0
ST. TIMER
SPI
SCI M
TXCLK RXCLK SIN DCD SOUT CLKOUT RTS
WDOUT
HW0SW1
STOUT
ICAPA0
OCMPA0
ICAPB0
OCMPB0
EXTCLK0
Fully Prog.
I/Os
P0[7:0] P1[7:0] P2[7:0] P3[7:0] P4[7:0] P5[7:0] P6[7:0] P7[7:0] P8[7:0] P9[7:0]
RDI TDO
MF TIMER 0
TINPA0
TOUTA0
TINPB0
TOUTB0
ICAPA1
OCMPA1
ICAPB1
OCMPB1
EXTCLK1
TINPA1
TOUTA1
TINPB1
TOUTB1
INT[6:0]
WKUP[15:0]
EF TIMER 1
MF TIMER 1
SCI A
OSCIN
OSCOUT
RESET
CLOCK2/8
CLOCK2
INTCLK
CK_AF
ADC
AV
DD
AV
SS
AIN[15:0] EXTRG
SDA1 SCL1
I2C BUS _1
A[7:0] D[7:0]
A[21:8]
Ext. MEM.
ADDRESS
DATA Port0
Ext. MEM.
ADDRESS
Ports 1,9
RAM
8 Kbytes
FLASH
256 Kbytes
E
3 TM
1K byte
The alternate functions (
Italic characters
) are mapped on Port0, Port1, Port2, Port3, Port4, Port5, Port6, Port7,
RX0 TX0
CAN_0
V
REG
VOLTAGE
REGULATOR
Port8 and Port9.
SDA0 SCL0
I2C BUS _0
1
10/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
1.2 PIN DESCRIPTI ON AS
. Address Strobe (output, active low, 3-state).
Address Strobe is pulsed low o nce at the begin­ning of each memory cycle. The rising edge of AS indicates that address, Read/Write (RW), and Data signals are valid for memory transfers.
DS
. Data Strobe (output, active low, 3-state). Data
Strobe provides the timing for data movement to or from Port 0 for each memory transfer. During a write cycle, data out is valid at the leading edge of DS
. During a read cycle, Data In must be valid pri-
or to the trailing edge of D S
. When the ST9 ac-
cesses on-chip memory, DS
is held high during
the whole memory cycle.
RESET
. Reset (input, active low). The ST 9 is ini-
tialised by the Reset signal. Wi th the d eactivation of RESET
, program execution begins from the Program memory location pointed to by the vector contained in program memory locations 00h and 01h.
RW
. Read/Write (output, 3-state). Read/Write de-
termines the direction of data transfer for external memory transactions. RW
is low when writing to external memory, and high for all other transac­tions .
OSCIN, OSCOUT. Oscillator (input and output). These pins connect a pa rallel-resonant crystal, or an external source to the on-chip clock oscillator and buffer. OSCIN is the input of the os cillator in­verter; OSCOUT is the output of the oscillator in­vert er .
HW0SW1. When connect ed to V
DD
through a 1K pull-up resistor, the software watchdog option is selected. When connected to V
SS
through a 1K pull-down resistor, the hardware watchdog option is selected.
VPWO. This pin is the output line of the J1850 pe­ripheral (JBLPD). It is available only on some de­vices.
RX1/WKUP6. Receive Data input of CAN1 and Wake-up line 6. Available only on some devices. When the CAN1 peripheral is disabled, a pull-up resistor is connected internally to this pin.
TX1. Transmit Data ou tput of CAN1. A vailable on some devices.
P0[7:0], P1[7:0] or P9[7:2]
(Input/Output, TTL or
CMOS compatible)
. 11 lines (64-pin devices) or 22 lines (100-pin devices) providing the external memory interface for addressing 2K or 4M bytes of exte r nal memory.
P0[7:0], P1[2:0], P2[7:0], P3[7:4], P4.[7:4], P5[7:0], P6[5:2,0], P7[7:0]
I/O Port Lines (Input/
Output, TTL or CMOS compatible)
. I/O lines
grouped into I/O ports of 8 bits, bit programmable under software control as general purp ose I/O or as alternate functions.
P1[7:3], P3[3:1], P4[3:0], P6.1, P8[7:0], P9[7:0]
Additional I/O Port Lines available on 100-pin ver­sions only.
P3.0, P6[7:6]
Additional I/O Port Line s available
on ST92F250 version only.
AVDD. A nalog VDD of the Analog to Digital Con- verter (common for ADC 0 and ADC 1). AVDD can be switched off when the ADC is not in use.
AV
SS
. Analog VSS of the Analog t o Digital Con-
verter (common for ADC 0 and ADC 1).
V
DD
. Main Power Supply Voltage. Four pins are
available on 100-pin versions, two on 64-pin ver­sions. The pins are internally connected.
V
SS
. Digital Circuit Ground. Four pins are ava ila-
ble on 100-pin v ersions, two on 64-pin v ersions. The pins are internally connected.
V
TEST
Power Supply Voltage for Flash test pur-
poses. This pin must be kept to 0 in user mode.
V
REG
. Stabilization capacitors for the internal volt-
age regulator. The user must connect external sta­bilization capacitors to these pins. Refer to
Figure
16.
1.2.1 Electromagnetic Compatibility (EMC)
To reduce the electromagnetic interference the fol­lowing features have been implemented:
– A low power oscillator is included with a control-
led gain to reduce EMI and the power consump­tion.
– Two or Four pairs of digital power supply pins
(V
DD
, VSS) are located on each side of the 100-
pin package (2 pairs on 64-pin package).
– Digital and analog power supplies are complete-
ly separated.
– Digital power supplies for internal logic and I/O
ports are separated internally.
– Digital power supplies managed by Internal Volt-
age Regulator
Note: Each pair of d igital V
DD/VSS
pins should be externally connected by a 10 µF tanta lum capaci­tor and a 100 nF ceramic capacitor.
1.2.2 I/O Port Alternate Functions
Each pin of the I/ O ports of the ST92F124/F150/ F250 may assume software programmabl e Alter­nate Functions as shown in Section 1.4.
9
11/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
1.2.3 Termination of Unused Pins
The ST9 device is implemented using CMOS tech­nology; therefore unused pins must be properly terminate d in order to av oid applic ation reliability problems. In fact, as shown in Figure 6, the stand­ard input circuitry is based on the CMOS inverter structure.
Figure 6. CMOS basic inverter
When an input is kept at logic zero, the N-channel transistor is off, while the P-channel is on and can conduct. The opposite occurs when an input is kept at logic one. CMOS transistors are essentially linear devices with relatively broad switching points. During commutation, the input passes through midsupply, and there is a region of input voltage values where both P and N-channel tran­sistors are on. Since normally the transitions are fast, there is a very short time in which a current can flow: once the s wi tchin g is co mplete d there is no longer current. This phenomenon explains why the overall current depends on the switching rate: the consumption is directly proportional to the number of transistors inside the device which are in the linear region during transitions, charging and discharging internal capacitances.
In order to avoid extra power supply current, it is important to bias input pins properly when not used. In fact, if the input impedance is very high, pins can float, when not connected, either to a midsupply level or can os cilla te (injecting n oise i n the device).
Depending on the specific configuration of each I/O pin on different ST9 devices, it can be more or less critical to leave un used pins float ing. For this reason, on most pins, the configuration after RE­SET enables an internal weak pull-up transistor in order to avoid floating conditions. For other pins this is intrinsically forbidden, like for the true open-
drain pins. In any case, the application software must program the right state for unused pins to avoid conflicts with ex ternal circuitry (whichev er it is: pull-up, pull-down, floating, etc.).
The suggested method of termi nating unused I/O is to connect an external individual pull-up or pull­down for each pin, e ven though initialization sof t­ware can force outputs to a spec ified and defined value, during a particular phase of the RESET rou­tine there could be an undetermined status at the input section.
Usage of pull-ups and/or pull-downs is preferable in place of direct connection to V
DD
or VSS. If pull­up or pull-down resistors are used, inputs can be forced for test purposes to a different value, and outputs can be programmed to both digital levels without generating high current drain due to the conflict.
Anyway, during system verification flow, attention must be paid to reviewing the connection of each pin, in order to avoid potential problems.
1.2. 4 A voidan ce of P i n Damage
Although integrated circuit data sheets provide the user with conservative limits and conditions in or­der to prevent damage, sometim es it is useful for the hardware system designer to know the internal failure mechanis ms: the risk of expos ure to ille gal voltages and conditions can be reduced by smart protection design.
It is not possible to classify and to predict all the possible damage resulting from violating maxi­mum ratings and conditions, due to the large number of variables that come into play in defining the failures: in fact, when an overvoltage condition is applied, the effects on the device can vary s ig­nificantly depending on lot-to-lot process varia­tions, operating temperature, e xternal interfacing of the ST9 with other devices, etc.
In the following sections, background technical in­formation is given in order to help system design­ers to reduce risk of damage to the ST9 device.
1.2.4.1 Electrostatic Discharge and Latchup
CMOS integrated circuits are generally sensitive to exposure to high voltage static electricity, which can induce permanent damage to the device: a typical failure is the breakdown of thin oxides, which causes high leakage current and sometimes shorts.
Latchup is another typical phenomenon occurring in integrated circuits: unwanted turning on of para­sitic bipolar structures, or silicon-controlled rectifi-
P
N
INOUT
V
DD
V
SS
9
12/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
ers (SCR), may overheat and rapi dly destroy the device. These unintentional structures are com­posed of P and N regions wh ich work as em itters, bases and collectors of parasitic bipolar transis­tors: the bulk resistance of the silicon in the wells and substrate act as resistors on the SCR struc­ture. Applying voltages below V
SS
or above VDD, and when the level of current is able to generate a voltage drop across the SCR parasitic resistor, the SCR m ay be turned o n; to turn of f the SC R it is necessary to remove the power supply from the device.
The present ST9 design implements layout and process solutions to decrease the effec ts of elec­trostatic discharges (ESD) and la tchup. Of course it is not possible to test all devices, due to the de­structive nature of the mechanism; in order to guarantee product relia bility, destructi ve tests are carried out on groups of devices, according to STMicroelectronics internal Quality Assurance standards and recommendations.
1.2.4.2 Protective Interface
Although ST9 input/output circuitry has been de­signed taking ESD and Latchup problems into ac­count, for those applications an d systems where ST9 pins are exposed to illegal voltages and h igh current injections, the user is strongly recommend­ed to implement ha rdware s olu tions which reduc e the risk of damage to the microcontroller: low-pass filters and clamp diodes are usually sufficient in preventing stress conditions.
The risk of having out-of-range voltages an d cur­rents is greater for those signals coming from out­side the system, where noise effect or uncon­trolled spikes could occur with higher probability than for the internal signals; it must be underlined that in some cases, adoption of filters or other ded­icated interface circuitries might affect global mi­crocontroller performance, inducing undesired tim­ing delays, and impacting the global system speed.
Figure 7. Digital Input/Output - Push-Pull
PIN
OUTPUT BUFFER
P
N
P
N
N
IN PUT
BUFFER
P
ESD PROTECTION
CIRCUITRY
PORT CIRCUITRY
I/O CIRCUITRY
P
EN
EN
9
13/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
1.2.4.3 Internal Circuitry: Digital I/O pin
In Figure 7 a schematic repres entation of an S T9 pin able to operate either as an input or as an out­put is shown. The circuitry imple men ts a stand ard input buffer and a push-pull configuration for the output buffer. It is evident that although it is possi­ble to disable the output buffer when the input sec­tion is used, the MOS transistors of the buffer itself can still affect the behaviour of the pin when ex­posed to illegal conditions. In f act, the P-channel transistor of the output buffer implements a direct diode to V
DD
(P-diffusion of the drain connected to
the pin and N-well connected to V
DD
), while the N­channel of the output buffer implements a diode to V
SS
(P-substrate connected to V SS and N-diffu­sion of the drain connected to the pin). In parallel to these diodes, dedicated circuitry is implemented to protect the logic from ESD events (MOS, diodes and input series resistor).
The most important characteristic of these extra devices is that they must not disturb normal oper­ating modes, while acting during exposure t o over
limit conditions, avoiding permanent damage to the logic circuitry.
All I/O pins can generally be programmed to work also as open-drain outputs, by simply writing in the corresponding register of the I/O Port. The gate of the P-channel of t he o utpu t buffer i s disabl ed: it is important to highlight that physically the P-channel transistor is still present, so the diode to V
DD
works. In some applications it can occur that the voltage applied to the pin is higher than the V
DD
value (supposing the external line is kept high, while the ST9 power supply is turned off): this con­dition will inject current throug h the diode , risking permanent damages to the device.
In any case, programming I/O pins as open -drain can help when several pins in the system are tied to the same point: of course software must pay at­tention to program only one of them as output at any time, to avoid output driver contentions; it is advisable to configure these pins a s output open­drain in order to reduce the risk of current conten­tions.
Figure 8. Digital Input/Output - True Open Drain Output
PIN
OUTPUT
BUFFER
N
P
N
N
IN P UT
BUFFER
ESD PROTECTION
CIRCUITRY
PORT CIRCUITRY
I/O CIRCUITRY
P
EN
EN
9
14/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
In Figure 8 a true open-drain pin schematic is shown. In this case all pa ths to V
DD
are removed (P-channel driver, ESD protection diode, internal weak pull-up) in order to allow the system to turn off the power supply of the microcontroller and keep the voltage level at the pin high without in­jecting current in the device. This is a typical con­dition which can occur when several devices inter­face a serial bus: if one device is not involved in the communication, it can be disabled by turning off its power supply to reduce the system current consumption.
When an illegal negative voltage level is appl ied to the ST9 I/O pins (both versions, push-pull and true open-drain output) the clamp diode is always present and active (see ESD protection circuitry and N-channel driver).
1.2.4.4 Internal Circuitry: Analog Input pin
Figure 9 shows the internal circuitry used for ana-
log input. It is substantially a digital I/O with an added analog multipl exer for the selection of the input channel of the Analog to Digital Converter (ADC).
The presence of the multiplexer P-channel and N­channel can affect the behaviour of the pin when exposed to ille gal voltage condi tions. These tran­sistors are controlled by a low noise logic, biased through AV
DD
and AVSS including P-channel N­well: it is important t o always verify the i nput vol t­age value with respect to both analog power sup­ply and digital power supply, in order to avoi d un­intended current injections which (if not limited) could destroy the device.
Figure 9. Digital Input/Output - Push-Pull Output - Analog Multiplexer Input
PIN
OUTPUT
BUFFER
P
N
P
N
N
INP UT
BUFFER
P
E
SD PROTECTION
CIRCUITRY
PORT CIRCUITRY
I/O CIRC UIT RY
P
EN
EN
N
P
P
9
15/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
1.2.4.5 Power Supply and Ground
As already said for the I/O pins, in order to guaran­tee ST9 compliancy with respect to Quality Assu r­ance recommendations concerning ESD and Latchup, dedicated circuits are added to the differ­ent power supply and ground pins (digital and an­alog). These structures create preferred paths for the high current injected during discharges, avoid­ing damage to active logic and circuitry. It is impor­tant for the system designer to take this added cir­cuitry into account, which is not always t ranspar­ent with respect to the relative level of voltages ap­plied to the different power supply and ground pins. Figure 10 shows schematically the protection net implemented on ST9 devices, composed of di­odes and other special structures.
The clamp structure between the V
DD
and V
SS
pins is designed to be active during very fast tran-
sitions (typical of electrostat ic discharges). Other paths are implemented throu gh diodes: they limit the possibility of positively differentiating AV
DD
and VDD (i.e. AVDD > VDD); similar considerations are valid for AV
SS
and VSS due to the back-to­back diode structure implemented between the two pins. Anyw ay, it mus t be highlighted t hat, be­cause V
SS
and AVSS are connected to the sub­strate of the silicon die (even though in different ar­eas of the die itself), they represent the reference point from which all other voltages are measured, and it is recommended to never differentiate AV
SS
from VSS. Note: If more than one pair of pins for V
SS
and
V
DD
is available on the device, they are connected internally and the protec tion net diagram rem ains the same as shown in Figure 10.
Figure 10. P ower Supply an d Gro und Configurat i on
N
P
P
N
V
DD
V
SS
AV
DD
AV
SS
V
TEST
9
16/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
Figure 11. ST92F124/S T92 F150: Pin Configuration (Top-view TQ FP64)
TX0*/WAIT/WKUP5/P5.0
RX0*/WKU P6/WDOUT/P5.1
SIN/WKUP2 /P5.2
WDIN/SOUT /P5.3
TXCLK/CLKOUT /P5.4
RXCL0/WKUP7 /P5.5
DCD/WKUP8 /P5.6
WKUP9/RTS /P5.7
WKUP4/P4.4
EXTRG/STOUT /P4.5
SDA/P4.6
WKUP1/SCL /P4.7
S
S/P3.4 MISO/P3.5 MOSI/P3.6
SCK/WKUP0 /P3.7
HW0SW1
RESET
OSCOUT
OSCIN
VDDVSSP7.7/AIN15 /WKUP13
P7.6/AIN14 /WKUP12
P7.5/AIN13 /WKUP11
P7.4/AIN12 /WKUP3
P7.3/AIN11
P7.2/AIN10
P7.1/AIN9
P7.0/AIN8
/
CK_AF
AV
SSAVDD
N.C P6.5/WKUP1 0/INTCLK P6.4/NMI P6.3/INT3/IN T5 P6.2/INT2/IN T4 P6.0/INT0/IN T1/CLOCK2/8 P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0 Reserved** Reserved**
Reserved**
TINPA0/P2.0
TINPB0/P2.1
TOUTA0/P2.2
TOUTB0/P2.3
TINPA1/P2.4
TINPB1/P2.5
TOUTA1/P2.6
TOUTB1/P2.7
V
SS
V
DD
V
REG
V
TEST
P1.0
P1.1
P1.2
6463 62616059 58 57 56 55545352515049
48
47 46 45 44 43
42
41
40
39
38
37
36
35
34
33
1718192021222324 2930 31 3225262728
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ST92F124 /
* Not available on ST92F124 version
ST92F150
1718192021222324 2930 31 3225262728
* * Reserved for ST tests, must be left unconnected
9
17/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
Figure 12. ST92F150: Pin Configuration (Top-view PQFP100)
A17/P9.3 A18/P9.4 A19/P9.5 A20/P9.6 A21/P9.7
TX0/WAIT
/WKUP5/P5 .0
RX0/WKUP6/ WDOUT/P5.1
SIN/WKUP2/P5 .2
WDIN/SOUT/P5 .3
TXCLK/CLKO UT/P5.4
RXCLK/WKU P7/P5.5
DCD/WKUP8/P5 .6
WKUP9/RTS/P5 .7
ICAPA1/P4.0
CLOCK2/P4 .1
OCMPA1/P4 .2
V
SS
V
DD
ICAPB1/OCMP B1/P4.3
EXTCLK1/WKU P4/P4.4
EXTRG/STO UT/P4.5
SDA/P4.6
WKUP1/SCL/P4 .7
ICAPB0/P3.1
ICAPA0/OCMP A0/P3.2
OCMPB0/P3 .3
EXTCLK0/S S
/P3.4 MISO/P3.5 MOSI/P3.6
SCK/WKUP0/P3 .7
P9.2/A16
P9.1/TDO
P9.0/RDI
HW0SW1
RESET
OSCOUT
OSCIN
VDDVSSP7.7/AIN15/7/W KUP13
P7.6/AIN14/WK UP12
P7.5/AIN13/WK UP11
P7.4/AIN12/WK UP3
P7.3/AIN11
P7.2/AIN10
P7.1/AIN9
P7.0/AIN8
/
CK_AF
AV
SSAVDD
P8.7/AIN7
P8.6/AIN6 P8.5/AIN5 P8.4/AIN4 P8.3/AIN3 P8.2/AIN2 P8.1/AIN1/WKU P15 P8.0/AIN0/WKU P14 VPWO* P6.5/WKUP10/I NTCLK/VPW P6.4/NMI P6.3/INT3/INT5 P6.2/INT2/INT4 /DS2 P6.1/INT6/RW P6.0/INT0/INT1 /CLOCK2/8 P0.7/A7/D7 V
DD
V
SS
P0.6/A6/D6 P0.5/A5/D5 P0.4/A4/D4 P0.3/A3/D3 P0.2/A2/D2 P0.1/A1/D1 P0.0/A0/D0 AS DS P1.7/A15 P1.6/A14 P1.5/A13 P1.4/A12
V
REG
RW
TINPA0/P2.0
TINPB0/P2.1
TOUTA0/P2.2
TOUTB0/P2.3
TINPA1/P2.4
TINPB1/P2.5
TOUTA1/P2.6
TOUTB1/P2.7
V
SS
V
DD
V
REG
V
TEST
A8/P1.0
A9/P1.1
A10/P1.2
A11/P1.3
**RX1/WKUP6
**TX1
1
50
30
ST92F150
2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
80
51
79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52
49484746454443424140393837363534333231
81
828384858687888990919293
94
9596979899100
*On devices without JPBLD peripheral, this pin must not be connected. **On devices without CAN1 peripheral, these pins must not be connected.
9
18/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
Figure 13. ST92F150: Pin Configuration (Top-view TQ FP100)
* V
TEST
must be kept low in standard operating mode.
**On devices without CAN1 peripheral, these pins must not be connected.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26
2728 29 3031 3233 343536 3738 39 4041 4243 4445 46 4748 4950
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
10099 98 9796 9594 9392 91 9089 8887 868584 8382 81 8079 7877 76
ST92F150
P8.4/AIN4 P8.3/AIN3 P8.2/AIN2 P8.1/AIN1/WKUP15 P8.0/AIN0/WKUP14 VPWO P6.5/WKUP10/INTCLK/VPW P6.4/NMI P6.3/INT3/INT5 P6.2/INT2/INT4/DS2 P6.1/INT6/RW P6.0/INT0/INT1/CLOCK2/8 P0.7/A7/D7 V
DD
V
SS
P0.6/A6/D6 P0.5/A5/D5
P0.3/A3/D3 P0.2/A2/D2 P0.1/A1/D1 P0.0/A0/D0 AS DS
P0.4/A4/D4
P1.7/A15
A20/P9.6
TX0/WAIT
/WKUP5/P5.0
RX0/WKUP6/WDOUT/P5.1
TXCLK/CLKOUT/P5.4
OCMPA1/P4.2
V
DD
A21/P9.7
WDIN/SOUT/P5.3
DCD/WKUP8/P5.6
V
SS
ICAPB1/OCMPB1/P4.3
SDA/P4.6
SIN/WKUP2/P5.2
RXCLK/WKUP7/P5.5
CLOCK2/P4.1
EXTCLK1/WKUP4/P4.4
ICAPB0/P3.1
ICAPA0/OCMPA0/P3.2
WKUP9/RTS/P5.7
ICAPA1/P4.0
EXTRG/STOUT/P4.5
WKUP1/SCL/P4.7
OCMPB0/P3.3
EXTCLK0/SS
/P3.4
MISO/P3.5
P9.5/A19
P9.4/A18
P9.2/A16
HW0SW1
P7.7/AIN15/7/WKUP13
P7.4/AIN12/WKUP3
P9.3/A17
P9.0/RDI
RESET
P7.6/AIN14/WKUP12
P7.5/AIN13/WKUP11
P7.1/AIN9
P9.1/TDO
OSCIN
V
SS
P7.3/AIN11
P7.0/AIN8/CK_AF
P8.7/AIN7
OSCOUT
V
DD
P7.2/AIN10
AVSSAVDDP8.6/AIN6
P8.5/AIN5
MOSI/P3.6
SCK/WKUP0/P3.7
RW
TOUTA0/P2.2
V
SS
*V
TEST
V
REG
TINPB0/P2.1
TOUTB0/P2.3
V
DD
V
REG
A10/P1.2
TINPA0/P2.0
TINPB1/P2.5
TOUTB1/P2.7
A8/P1.0
A11/P1.3
A12/P1.4
TINPA1/P2.4
TOUTA1/P2.6
A9/P1.1
**RX1/WKUP6
**TX1
A13/P1.5
A14/P1.6
9
19/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
Figure 14. ST92F250: Pin Configuration (Top-view PQFP100)
* V
TEST
must be kept low in standard operating mode.
SDA1/A17/P9.3
SCL1/A18/P9.4
A19/P9.5 A20/P9.6 A21/P9.7
TX0/WAIT
/WKUP5/P5.0
RX0/WKUP6/WDOUT/P5.1
SIN/WKUP2/P5.2
WDIN/SOUT/P5.3
TXCLK/CLKOUT/P5.4
RXCLK/WKUP7/P5.5
DCD/WKUP8/P5.6
WKUP9/RTS/P5.7
ICAPA1/P4.0
CLOCK2/P4.1
OCMPA1/P4.2
V
SS
V
DD
ICAPB1/OCMPB1/P4.3
EXTCLK1/WKUP4/P4.4
EXTRG/STOUT/P4.5
SDA0/P4.6
WKUP1/SCL0/P4.7
ICAPB0/P3.1
ICAPA0/OCMPA0/P3.2
OCMPB0/P3.3
EXTCLK0/SS
/P3.4 MISO/P3.5 MOSI/P3.6
SCK/WKUP0/P3.7
P9.2/A16
P9.1/TDO
P9.0/RDI
HW0SW1
RESET
OSCOUT
OSCIN
VDDVSSP7.7/AIN15/7/WKUP13
P7.6/AIN14/WKUP12
P7.5/AIN13/WKUP11
P7.4/AIN12/WKUP3
P7.3/AIN11
P7.2/AIN10
P7.1/AIN9
P7.0/AIN8/CK_AF
AVSSAVDDP8.7/AIN7
P8.6/AIN6 P8.5/AIN5 P8.4/AIN4 P8.3/AIN3 P8.2/AIN2 P8.1/AIN1/WKUP15 P8.0/AIN0/WKUP14 P3.0 P6.5/WKUP10/INTCLK P6.4/NMI P6.3/INT3/INT5 P6.2/INT2/INT4/DS2 P6.1/INT6/RW P6.0/INT0/INT1/CLOCK2/8 P0.7/A7/D7 V
DD
V
SS
P0.6/A6/D6 P0.5/A5/D5 P0.4/A4/D4 P0.3/A3/D3 P0.2/A2/D2 P0.1/A1/D1 P0.0/A0/D0 AS DS P1.7/A15 P1.6/A14 P1.5/A13 P1.4/A12
V
REG
RW
TINPA0/P2.0
TINPB0/P2.1
TOUTA0/P2.2
TOUTB0/P2.3
TINPA1/P2.4
TINPB1/P2.5
TOUTA1/P2.6
TOUTB1/P2.7
V
SS
V
DD
V
REG
*V
TEST
A8/P1.0
A9/P1.1
A10/P1.2
A11/P1.3
P6.6
P6.7
1
50
30
ST92F250
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
80
51
79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52
49484746454443424140393837363534333231
81
828384858687888990919293949596979899100
9
20/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
Figure 15. ST92F250: Pin Configuration (Top-view TQ FP100)
* V
TEST
must be kept low in standard operating mode.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26
2728 29 3031 3233 3435 36 3738 3940 4142 43 4445 4647 48 49 50
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
10099 98 97 96 9594 9392 91 9089 8887 8685 84 8382 8180 7978 7776
ST92F250
P8.4/AIN4 P8.3/AIN3 P8.2/AIN2 P8.1/AIN1/WKUP15 P8.0/AIN0/WKUP14 P3.0 P6.5/WKUP10/INTCLK P6.4/NMI P6.3/INT3/INT5 P6.2/INT2/INT4/DS2 P6.1/INT6/RW P6.0/INT0/INT1/CLOCK2/8 P0.7/A7/D7 V
DD
V
SS
P0.6/A6/D6 P0.5/A5/D5
P0.3/A3/D3 P0.2/A2/D2 P0.1/A1/D1 P0.0/A0/D0 AS DS
P0.4/A4/D4
P1.7/A15
A20/P9.6
TX/WAIT
/WKUP5/P5.0
RX/WKUP6/WDOUT/P5.1
TXCLK/CLKOUT/P5.4
OCMPA1/P4.2
V
DD
A21/P9.7
WDIN/SOUT/P5.3
DCD/WKUP8/P5.6
V
SS
ICAPB1/OCMPB1/P4.3
SDA0/P4.6
SIN/WKUP2/P5.2
RXCLK/WKUP7/P5.5
CLOCK2/P4.1
EXTCLK1/WKUP4/P4.4
ICAPB0/P3.1
ICAPA0/OCMPA0/P3.2
WKUP9/RTS/P5.7
ICAPA1/P4.0
EXTRG/STOUT/P4.5
WKUP1/SCL0/P4.7
OCMPB0/P3.3
EXTCLK0/SS
/P3.4
MISO/P3.5
P9.5/A19
P9.4/A18/SCL1
P9.2/A16
HW0SW1
P7.7/AIN15/7/WKUP13
P7.4/AIN12/WKUP3
P9.3/A17/SDA1
P9.0/RDI
RESET
P7.6/AIN14/WKUP12
P7.5/AIN13/WKUP11
P7.1/AIN9
P9.1/TDO
OSCIN
V
SS
P7.3/AIN11
P7.0/AIN8/CK_AF
P8.7/AIN7
OSCOUT
V
DD
P7.2/AIN10
AVSSAVDDP8.6/AIN6
P8.5/AIN5
MOSI/P3.6
SCK/WKUP0/P3.7
RW
TOUTA0/P2.2
V
SS
*V
TEST
V
REG
TINPB0/P2.1
TOUTB0/P2.3
V
DD
V
REG
A10/P1.2
TINPA0/P2.0
TINPB1/P2.5
TOUTB1/P2.7
A8/P1.0
A11/P1.3
A12/P1.4
TINPA1/P2.4
TOUTA1/P2.6
A9/P1.1
P6.6
P6.7
A13/P1.5
A14/P1.6
9
21/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
Table 1. ST92F124/F 150/F250 Power Supply Pins
Table 2. ST92F124/F150/F250 Primary Function Pins
Note 1: ST92F150JDV1 only.
Name Function TQFP64 P QFP100 TQFP100
V
DD
Main Power Supply Voltage
(Pins internally connected)
-1815
27 42 39
-6562
60 93 90
V
SS
Digital Circuit Ground
(Pins internally connected)
-1714
26 41 38
-6461
59 92 89
AV
DD
Analog Circuit Supply Voltage 49 82 79
AV
SS
Analog Circuit Ground 50 83 80
V
TEST
Must be kept low in standard operating mode 29 44 41
V
REG
Stabilization capacitor(s) for internal voltage regulator 28
31 43
28 40
Name Function TQFP64 PQFP100 TQFP100
AS
Address Strobe - 56 53
DS
Data Strobe - 55 52
RW
Read/Write - 32 29
OSCIN Crystal Oscillator Input 61 94 91
OSCOUT Crystal Oscillator Output 62 95 92
RESET
Reset to initialize the Microcontroller 63 96 93
HW0SW1 Watchdog HW/SW enabling selection 64 97 94
VPWO
1)
J1850 JBLPD Output - 73 70
RX1/WKUP6
1)
CAN1 Receive Data / Wake-up Line 6 - 49 46
TX1
1)
CAN1 Transmit Data. - 50 47
9
22/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
1.3 VOLTAGE REGULATOR
The internal Voltage Regulator (VR) is used to power the microcontroller starting from the exter­nal power supply. The VR comprises a M ain volt­age regulator and a Low-power regulator.
– The Mai n voltage regulator generates sufficient
current for the microcontroller to operate in any mode. It has a static power consum ption (300 µA typ.).
– The separate Low-Power regulator consumes
less power is used only wh en t he m icrocont rol­ler is in Low Power mode. It has a different de­sign from the main VR a nd generates a lower,
non-stabilized and non- ther m ally- com pens at ed voltage sufficient for maintaining the data in RAM and the Register File.
For both the Main VR and the Low-Power VR, sta­bilization is achieved by an external capacitor, connected to on e of the V
REG
pins. The minimum recommended value is 300 nF, and care must be taken to minimize distance between the chip and the capacitor. Care should also be taken to limit the serial inductance to less than 60nH.
Figure 16. Recommended Connections for V
REG
IMPORTANT: The V
REG
pin cannot be used to drive external devices.
Figure 17. Minimum Required Connections for V
REG
Note: Pin 31 of PQFP100 or pin 28 of TQFP100 can be left unconnnected. A secondary stabilization net-
work can also be connected to these pins.
PQFP100
QFP64
C
L
L = Ferrite bead for EMI protection.
Pin 28
C
L
Pin 43
Pin 31
TQFP100
C
L
Pin 40
Pin 28
Suggested type: Murata BLM18BE601FH1: (Imp. 600 at 100 M Hz).
C = 300 to 600nF
C
PQFP100 QFP64
C
Pin 43Pin 31 Pin 28
C
TQFP100
Pin 40Pin 28
C = 300 to 600nF
9
23/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
1.4 I/O PORTS
Port 0, Port 1 and Port 9[7:2] provide the external memory interface. All the ports of the device ca n be programmed as Inp ut/Output or i n I nput m ode, compatible with TTL or CMOS levels (except where Schmitt Trigger is present). Each bit can be programmed individually (Refer to the I/O ports chapter).
Internal Weak Pull-up
As shown in Table 3, not all input sections imple- ment a Weak P ull-up. Thi s m eans that t he pull -up must be connected externally when the p in is not used or programmed as bidirectional.
TTL/CMO S I np ut
For all those port bits where no input schmitt trig­ger is implemented, it is always possible to pro­gram the input level as TTL or CMOS compatible by programming the relevant PxC2.n control bit.
Refer I/O Ports Chapter to the section titled “Input/ Output Bit Configuration”.
Schmitt Tr ig ger I nput
Two different kinds of Schmitt Trigger circuitries are implemented: Standard and High Hysteresis. Standard Schmitt Trigger is w idely used (see Ta-
ble 3), while the High Hysteresis Schmitt Trigger is
present on ports P4[7:6] and P6[5:4]. All inputs which can be used for detecting interrupt
events have been configured with a “Standard” Schmitt Trigger, apart from the NMI pin which i m­plements the “High Hysteresis” version. In this way, all interrupt lines are guaranteed as “level sensitive”.
Push-Pull/OD Output
The output buffer can be programmed as push­pull or open-drain: attention must be paid to the fact that the open-drain option corresponds only to a disabling of P-channel MOS transistor of the buffer itself: it is still present and physically con­nected to the pin. Consequently it is not possible to increase the output voltage on the pin over V
DD
+0.3 Volt, to avoid direct junction biasing.
Pure Open-Drain Output
The user can increase t he voltage on an I/O pin over V
DD
+0.3 Volt where the P-channel MOS tran­sistor is physically absent: this is allowed on all “Pure Open Drain” pins. In this case, the push-pull option is not available and a ny weak pull-up m ust be implemented externally.
Table 3. I/O Port Characteristics
Legend: WPU = Weak Pull-Up, OD = Open Drain. Note 1: Port 3.0 and Port6 [7:6] present on ST92F250 version only.
Input Output Weak Pull-Up Reset State
Port 0[7:0] TTL/CMOS Push-Pull/OD No Bidirectional Port 1[7:0] TTL/CMOS Push-Pull/OD No Bidirectional Port 2[1:0]
Port 2[3:2] Port 2[5:4] Port 2[7:6]
Schmitt trigger TTL/CMOS Schmitt trigger TTL/CMOS
Push-Pull/OD Pure OD Push-Pull/OD Push-Pull/OD
Yes No Yes Yes
Input Input CMOS Input Input CMOS
Port 3[2:0]
1)
Port 3.3 Port 3[7:4]
Schmitt trigger TTL/CMOS Schmitt trigger
Push-Pull/OD Push-Pull/OD Push-Pull/OD
Yes Yes Yes
Input Input CMOS Input
Port 4.0, Port 4.4 Port 4.1 Port 4.2, Port 4.5 Port 4.3 Port 4[7:6]
Schmitt trigger Schmitt trigger TTL/CMOS Schmitt trigger High hysteresis Schmitt trigger
Push-Pull/OD Push-Pull/OD Push-Pull/OD Push-Pull/OD Pure OD
No Yes Yes Yes No
Input Bidirectional WPU Input CMOS Input Input
Port 5[2:0], Port 5[7:4] Port 5.3
Schmitt trigger TTL/CMOS
Push-Pull/OD Push-Pull/OD
No Yes
Input Input CMOS
Port 6[3:0] Port 6[5:4] Port 6[7:6]
1)
Schmitt trigger High hysteresis Schmitt trigger Schmitt trigger
Push-Pull/OD Push-Pull/OD Push-Pull/OD
Yes Yes Yes
Input Input
Input Port 7[7:0] Schmitt trigger Push-Pull/OD Yes Input Port 8[1:0]
Port 8[7:2]
Schmitt trigger Schmitt trigger
Push-Pull/OD Push-Pull/OD
Yes Yes
Input
Bidirectional WPU Port 9[7:0] Schmitt trigger Push-Pull/OD Yes Bidirectional WPU
9
24/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
How to Configure the I/O Ports
To configure the I/O ports, use the information in
Table 3, Table 4 and the Port Bit Configuration Ta-
ble in the I/O Ports Chapter (See page 149).
Input Note = the hardware characteristics fixed for each port line in Table 3.
– If Input note = TTL/CMOS, either TTL or CMOS
input level can be selected by software.
– If Input note = Schmitt trigger, selecting CMOS
or TTL input by software has no effect, the input will always be Schmit t Trigger.
Alternate Functions (AF) = More than one AF cannot be assigned to an I/O pin at the same time:
An alternate function can be selected as follows. AF Inputs: – AF is selected implicitly by enabling the corre-
sponding peripheral. Exception to this are ADC inputs which must be explicitly selected as AF in-
put by software. AF Outputs or Bidirectional Lines: – In the case of Outputs or I/Os, AF is selected ex-
plicitly by sof twar e.
Example 1: SCI-M input
AF: SIN, Port: P5.2. Schmitt Trigger input. Write the port configuration bits: P5C2.2=1
P5C1.2=0 P5C0.2 =1
Enable the SCI peripheral by software as de­scribed in the SCI chapter.
Example 2: SCI-M output
AF: SOUT, Port: P5.3, Push-Pull/OD output. Write the port configuration bits (for AF OUT PP): P5C2.3=0
P5C1.3=1 P5C0.3 =1
Example 3: External Memory I/O AF: A0/D0, Port : P0.0, Input Note: TTL/CMOS in-
put. Write the port configuration bits: P0C2.0=1
P0C1.0=1 P0C0.0 =1
Example 4: Analog input AF: AIN8, Port : 7.0, Analog input. Write the port configuration bits: P7C2.0=1
P7C1.0=1 P7C0.0 =1
9
25/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
1.5 Alternat e Functions for I/O Ports
All the ports in the following table are useable for general purpose I/O (input, output or bidirectional).
Table 4. I/O Port Alternate Functions
Port
Name
Pin No.
Alternate Functions
TQFP64 PQFP100 TQFP100
P0.0 - 57 54 A0/D0 I/O Address/Data bit 0 P0.1 - 58 55 A1/D1 I/O Address/Data bit 1 P0.2 - 59 56 A2/D2 I/O Address/Data bit 2 P0.3 - 60 57 A3/D3 I/O Address/Data bit 3 P0.4 - 61 58 A4/D4 I/O Address/Data bit 4 P0.5 - 62 59 A5/D5 I/O Address/Data bit 5 P0.6 - 63 60 A6/D6 I/O Address/Data bit 6 P0.7 - 66 63 A7/D7 I/O Address/Data bit 7 P1.0 - 45 42 A8 I/O Address bit 8 P1.1 - 46 43 A9 I/O Address bit 9 P1.2 - 47 44 A10 I/O Address bit 10 P1.3 - 48 45 A11 I/O Address bit 11 P1.4 - 51 48 A12 I/O Address bit 12 P1.5 - 52 49 A13 I/O Address bit 13 P1.6 - 53 50 A14 I/O Address bit 14 P1.7 - 54 51 A15 I/O Address bit 15 P2.0 18 33 30 TINPA0 I Multifunction Timer 0 - Input A P2.1 19 34 31 TINPB0 I Multifunction Timer 0 - Input B P2.2 20 35 32 TOUTA0 O Multifunction Timer 0 - Output A P2.3 21 36 33 TOUTB0 O Multifunction Timer 0 - Output B P2.4 22 37 34 TINPA1 I Multifunction Timer 1 - Input A P2.5 23 38 35 TINPB1 I Multifunction Timer 1 - Input B P2.6 24 39 36 TOUTA1 O Multifunction Timer 1 - Output A P2.7 25 40 37 TOUTB1 O Multifunction Timer 1 - Output B
P3.0
1)
-7370
P3.1 - 24 21 ICAPB0 I Ext. Timer 0 - Input Capture B
P3.2 - 25 22
ICAPA0 I Ext. Timer 0 - Input Capture A OCMPA0 O Ext. Timer 0 - Output Compare A
P3.3 - 26 23 OCMPB0 O Ext. Timer 0 - Output Compare B
P3.4 - 27 24
EXTCLK0 I Ext. Timer 0 - Input Clock
SS I SPI - Slave Select P3.5 14 28 25 MISO I/O SPI - Master Input/Slave Output Data P3.6 15 29 26 MOSI I/O SPI - Master Output/Slave Input Data
9
26/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
P3.7 16 30 27
SCK I SPI - Serial Input Clock
WKUP0 I Wake-up Line 0
SCK O SPI - Serial Output Clock P4.0 - 14 11 ICAPA1 I Ext. Timer 1 - Input Capture A P4.1 - 15 12 CLOCK2 O CLOCK2 internal signal P4.2 - 16 13 OCMPA1 O Ext. Timer 1 - Output Compare A
P4.3 - 19 16
ICAPB1 I Ext. Timer 1 - Input Capture B
OCMPB1 O Ext. Timer 1 - Output Compare B
P4.4 - 20 17
EXTCLK1 I Ext. Timer 1 - Input Clock
WKUP4 I Wake-up Line 4
P4.5 10 21 18
EXTRG I ADC Ext. Trigger
STOUT O Standard Timer Output P4.6 11 22 19 SDA0 I/O I
2
C 0 Data
P4.7 12 23 2 0
WKUP1 I Wake-up Line 1
SCL0 I/O I
2
C 0 Clock
P5.0 1 6 3
WAIT
I External Wait Request WKUP5 I Wake-up Line 5 TX0
1)
O CAN 0 output
P5.1 2 7 4
WKUP6 I Wake-up Line 6 RX0
1)
I CAN 0 input WDOUT O Watchdog Timer Output
P5.2 3 8 5
SIN0 I SCI-M - Serial Data Input WKUP2 I Wake-up Line 2
P5.3 4 9 6
WDIN I Watchdog Timer Input SOUT O SCI-M - Serial Data Output
P5.4 5 10 7
TXCLK I SCI-M - Transmit Clock Input CLKOUT O SCI-M - Clock Output
P5.5 6 11 8
RXCLK I SCI-M - Receive Clock Input WKUP7 I Wake-up Line 7
P5.6 7 12 9
DCD I SCI-M - Data Carrier Detect WKUP8 I Wake-up Line 8
P5.7 8 13 10
WKUP9 I Wake-up Line 9 RTS O SCI-M - Request To Send
P6.0 43 67 64
INT0 I Ext ernal Interr upt 0 INT1 I Ext ernal Interr upt 1 CLOCK2/8 O CLOCK2 divided by 8
P6.1 - 68 65
INT6 I Ext ernal Interr upt 6 RW
O Read/Wr ite
Port
Name
Pin No.
Alternate Functions
TQFP64 PQFP100 TQFP100
9
27/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
P6.2 44 69 66
INT2 I Ext ernal Interr upt 2 INT4 I Ext ernal Interr upt 4 DS2 O Data Strobe 2
P6.3 45 70 67
INT3 I Ext ernal Interr upt 3 INT5 I Ext ernal Interr upt 5
P6.4 46 71 68 NMI I Non Maskable Interrupt
P6.5 47 72 69
WKUP10 I Wake-up Line 10 VPWI
1)
I JBLPD input INTCLK O Internal Main Clock
P6.6
1)
-4946
P6.7
1)
-5047
P7.0 51 84 81
AIN8 I Analog Data Input 8 CK_AF I Clock Alternative Source
P7.1 52 85 82 AIN9 I Analog Data Input 9 P7.2 53 86 83 AIN10 I Analog Data Input 10 P7.3 54 87 84 AIN11 I Analog Data Input 11
P7.4 55 88 85
WKUP3 I Wake-up Line 3 AIN12 I Analog Data Input 12
P7.5 56 89 86
AIN13 I Analog Data Input 13 WKUP11 I Wake-up Line 11
P7.6 57 90 87
AIN14 I Analog Data Input14 WKUP12 I Wake-up Line 12
P7.7 58 91 88
AIN15 I Analog Data Input 15 WKUP13 I Wake-up Line 13
P8.0 - 74 71
AIN0 I Analog Data Input 0 WKUP14 I Wake-up Line 14
P8.1 - 75 72
AIN1 I Analog Data Input 1 WKUP15 I Wake-up Line 15
P8.2 - 76 73 AIN2 I Analog Data Input 2 P8.3 - 77 74 AIN3 I Analog Data Input 3 P8.4 - 78 75 AIN4 I Analog Data Input 4 P8.5 - 79 76 AIN5 I Analog Data Input 5 P8.6 - 80 77 AIN6 I Analog Data Input 6 P8.7 - 81 78 AIN7 I Analog Data Input 7 P9.0 - 98 95 RDI
1)
I SCI-A Receive Data Input
P9.1 - 99 96 TDO
1)
O SCI-A Transmit Data Output
P9.2 - 100 97 A16 O Address bit 16
Port
Name
Pin No.
Alternate Functions
TQFP64 PQFP100 TQFP100
9
28/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
Note 1: Available on some devices only. Note 2: For the ST92F250 device, since A [18:17]
share the same pins as SDA1 and SCL1 of I²C_1, these address bits are not available when the I²C_1 is in use (when I2CCR.PE bit is set).
P9.3 - 1 9 8
A17
2)
O Address bit 17
SDA1
1)
I/O I²C 1 Data
P9.4 - 2 9 9
A18
2)
O Address bit 18
SCL1
1)
I/O I²C 1 Clock P9.5 - 3 100 A19 O Address bit 19 P9.6 - 4 1 A20 O Address bit 20 P9.7 - 5 2 A21 O Address bit 21
Port
Name
Pin No.
Alternate Functions
TQFP64 PQFP100 TQFP100
9
29/398
ST92F124/F150/F250 - GENER AL DESCRIPTION
1.6 OPERATING MODES
To optimize the performance versus the power consumption of the device, the ST92F124/F150/ F250 supports different ope rating m odes that can be dynamically selected depending on the per­formance and functionality requirements of the ap­plication at a given moment.
RUN MODE: This is the full speed execution mode with CPU and peripherals running at the maximum clock speed delivered by the Phase Lo cked Loo p (PLL) of the Clock Control Unit (CCU).
SLOW MODE: Power consumption can be signifi­cantly reduced by running the CPU and the pe­ripherals at reduced clock speed us ing the CPU Prescaler and CCU Clock Divider.
WAIT FOR INTERRUPT MODE: The Wait For In­terrupt (WFI) instruction suspends program exe­cution until an interrupt request is ac knowledged. During WFI, the CPU clock is halted while the pe­ripheral and interrupt controller keep running at a frequency depending on the CCU programming.
LOW POWER WAIT FOR INTERRUPT MODE: Combining SLOW mode and Wait For Interrupt mode it is possible to reduce the power consum p­tion by more than 80%.
STOP MODE: When the STOP is requested by executing the STOP bit writing sequence (see dedicated section on Wake-up Management Unit paragraph), and if NMI is kept low, the CPU and the peripherals stop operating. Operations resume
after a wake-up line is activated (16 wake-up lines plus NMI pin). See the RCCU and Wake-up Man­agement Unit paragraphs i n the following for the details. The difference with the HALT mode con­sists in the way the CPU exits this state: when the STOP is executed, the status of the registers is re­corded, and when the system exits from the STOP mode the CPU continues the execution with the same status, without a system reset.
When the MCU enters STOP mode the Watchdog stops counting. After the MCU exits from STOP mode, the Watchdog resumes counting from where it left off.
When the MCU exits from STOP mode, the oscil­lator, which was sleeping too, requires about 5 ms to restart working prope rly (at a 4 MHz oscillator frequency). An internal counter is pre sent to guar­antee that all operations after exiting STOP Mode, take place with the clock stabilised.
The counter is active only when the oscillation has already taken place. This means that 1-2 ms must be added to take into account the first phase of the oscillator restart.
HALT MODE: When executing the HALT instruc­tion, and if the W atchdo g is not enabled, the CPU and its peripherals stop operating and the status of the machine remains frozen (the clock is also stopped). A reset is necessary to exit from Halt mode.
9
30/398
ST92F124/F150/F250 - DEVICE ARCHITECTURE
2 DEVICE ARCHITECTURE
2.1 CORE ARCHITECTURE
The ST9 Core or Central Processing Unit (CPU) features a highly optimised instruction set, capable of handling bit, byte (8-bit) and word (16-bit) data, as well as BCD and Boolean formats; 14 address­ing modes are available.
Four independent buses are controlled by the Core: a 16-bit Memory bus, an 8-bi t Registe r data bus, an 8-bit Register ad dress bus an d a 6-bit In­terrupt/DMA bus which connect s th e in terrupt an d DMA controllers in the on-chip peripherals with the Core.
This multiple bus architecture affords a high de­gree of pipelining and parallel operation, thus mak­ing the ST9 family devices highly efficient, both for numerical calculation, data handling and with re­gard to communication with on-chip peripheral re­sources.
2.2 MEMORY SPACES
There are two separate memory spaces:
– The Register File, which comprises 240 8-bit
registers, arranged as 15 groups (Group 0 to E), each containing sixteen 8-bit registers plus up to 64 pages of 16 registers mapped in Group F,
which hold data and control bits for the on-chip peripherals and I/Os.
– A sing le linear memory space acc ommodating
both program and data. All of the physically sep­arate memory areas, including the internal ROM, internal RAM and ex ternal memory are mapped in this common address space. The total ad­dressable memory space of 4 Mbytes (limited by the size of on-chip memory and the number of external address pins) is arranged as 64 seg­ments of 64 Kbytes. Each segment is further subdivided into four pages of 16 Kbytes, as illus­trated in Figure 18. A Memory Management Unit uses a set of pointer registers to address a 22-bit memory field using 16-bit address-based instruc­tions.
2.2.1 Register File
The Register File consists of (see Figure 19): – 224 general purpose registers (Group 0 to D,
registers R0 to R223)
– 6 system registers in the System Group (Group
E, registers R224 to R239)
– Up to 64 pages, depending on device configura-
tion, each containing up to 16 registers, mapped to Group F (R240 to R255), see Figure 20.
Figure 18. Sin gl e Pro gram and Data Memory Address Space
3FFFFFh
3F0000h 3EFFFFh
3E0000h
20FFFFh
02FFFFh 020000h
01FFFFh 010000h
00FFFFh 000000h
8 7 6 5 4 3 2 1 0
63
62
2
1
0
Address 16K Pages 64K Segments
up to 4 Mbytes
Data
Code
255 254 253 252 251 250 249 248 247
9
10
11
21FFFFh 210000h
133
134
135
33
Reserved
132
9
+ 368 hidden pages