SGS Thomson Microelectronics M36W832TE, M36W832BE Datasheet

32 Mbit (2Mb x16, Boot Block) Flash Memory
and 8 Mbit (512Kb x16) SRAM, Multiple Memory Product

FEATURES SUMMARY

SUPPLY VOLTAGE
–V –V –V
ACCESS TIMES: 70ns and 85ns
LOW POWER CONSUMPTION
ELECTRONIC SIGNATURE
– Manufacturer Code: 20h – Top Device Code, M36W832TE: 88BAh – Bottom Device Code, M36W832BE: 88BBh

FLASH MEMORY

32 Mbit (2Mb x16) BOOT BLOCK
– 8 x 4 KWord Parameter Blocks (Top or
PROGRAMMING TIME
– 10µ s typical – Double Word Programming Option – Quadruple Word Programming Option
BLOCK LOCKING
– All blocks locked at Power up – Any combination of blocks can be locked –WPF
AUTOMATIC STANDBY MODE
PROGRAM and ERASE SUSPEND
100,000 PROGRAM/ERASE CYCLES per
BLOCK
COMMON FLASH INTERFACE
SECURITY
– 128 bit user programmable OTP cells – 64 bit unique device identifier
= 2.7V to 3.3V
= V
DDS
= 12V for Fast Program (optional)
PPF
= 2.7V to 3.3V
DDQF
Bottom Location)
for Block Lock-Down
M36W832TE
M36W832B E

Figure 1. Packages

FBGA
Stacked LFBGA66 (ZA)
12 x 8mm

SRAM

8 Mbit (512Kb x 16)
ACCESS TIME: 70ns
LOW V
POWER DOWN FEATURES USING TWO
CHIP ENABLE INPUTS
DATA RETENTION: 1.5V
DDS
1/64May 2003
M36W832TE, M36W832BE

TABLE OF CONTENTS

SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. LFBGA Connections (Top view through package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Address Inputs (A0-A18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Address Inputs (A19-A20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Data Input/Output (DQ0-DQ15).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Chip Enable (EF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Flash Output Enable (GF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Write Enable (WF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Write Protect (WPF).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Flash Reset (RPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SRAM Chip Enable (E1S, E2S).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SRAM Write Enable (WS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
SRAM Output Enable (GS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
SRAM Upper Byte Enable (UBS).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SRAM Lower Byte Enable (LBS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
V
Supply Voltage (2.7V to 3.3V).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
DDF
V
and V
DDQF
Program Supply Voltage.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
V
PPF
V
and V
SSF
Supply Voltage (2.7V to 3.3V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
DDS
Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SSS
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 4. Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2. Main Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0
Flash Memory Componen t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. Flash Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. Flash Security Block and Protection Register Memory Map . . . . . . . . . . . . . . . . . . . 12
SRAM Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7. SRAM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
OPERATING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4
Flash Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Read.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Write.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Automatic Standby.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Flash Command Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5
Table 3. Flash Command Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Read Memory Array Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Read Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2/64
M36W832TE, M36W832BE
Read Electronic Signature Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Read CFI Query Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Double Word Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Quadruple Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Program/Erase Suspend Comma nd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Protection Register Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Block Lock Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Block Unlock Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 4. Flash Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Table 5. Flash Read Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 6. Flash Read Block Lock Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 7. Flash Read Protection Register and Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 8. Flash Program, Erase Times and Program/Erase Endurance Cycles . . . . . . . . . . . . 20
Flash Block Locking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Reading a Block’s Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Locked State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Unlocked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1
Lock-Down State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 9. Block Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 10. Protection Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Flash Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Erase Status (Bit 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Program Status (Bit 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
V
Status (Bit 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
PPF
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Block Protection Status (Bit 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Reserved (Bit 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 11. Flash Status Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
SRAM Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Standby/Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Data Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 12. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3/64
M36W832TE, M36W832BE
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7
Table 13. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 8. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 9. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 14. Device Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 15. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 10. Flash Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 16. Flash Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 11. Flash Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 17. Flash Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 12. Flash Write AC Waveforms, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 18. Flash Write AC Characteristics, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 13. Flash Power-Up and Reset AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 19. Flash Power-Up and Reset AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 14. SRAM Read Mode AC Waveforms, Address Controlled with UBS = LBS = V
Figure 15. SRAM Read AC Waveforms, GS Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Figure 16. SRAM Standby AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 17. SRAM Write AC Waveforms, E1S or E2S Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 20. SRAM Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 18. SRAM Write AC Waveforms, WS Controlled, GS High during Write . . . . . . . . . . . . . . . 38
Figure 19. SRAM Write AC Waveforms, WS Controlled with GS Low . . . . . . . . . . . . . . . . . . . . . . 38
Figure 20. SRAM Write Cycle Waveform, UBS and LBS Controlled GS Low, . . . . . . . . . . . . . . . . 39
Table 21. SRAM Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 21. SRAM Low V Figure 22. SRAM Low V Table 22. SRAM Low V
Data Retention AC Waveforms, E1S Controlled . . . . . . . . . . . . . . . . 41
DDS
Data Retention AC Waveforms, E2S Controlled . . . . . . . . . . . . . . . . 41
DDS
Data Retention Characteristic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
DDS
. . . . . . 36
IL
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 23. Stacked LFBGA66 12x8mm, 8x8 array, 0.8mm pitch, Bottom View Package Outline . . 42 Table 23. Stacked LFBGA66, 12x8mm, 8x8 ball array, 0.8mm pitch, Pa ckage Mechani ca l Data . 42 Figure 24. Stacked LFBGA66 Daisy Chain - Package Connections (Top view through package) . 43 Figure 25. Stacked LFBGA66 Daisy Chain - PCB Connections proposal (Top view through package)44
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 24. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 25. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
APPENDIX A. FLASH MEMORY BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 26. Top Boot Block Addresses, M36W832TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 27. Bottom Boot Block Addresses, M36W832BE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
APPENDIX B. COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 28. Query Structure Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Table 29. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Table 30. CFI Query System Interface Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
4/64
M36W832TE, M36W832BE
Table 31. Device Geometry Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Table 32. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 33. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
APPENDIX C. FLASH MEMORY FLOWCHARTS and PSEUDO CODES . . . . . . . . . . . . . . . . . . . . . 53
Figure 26. Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 27. Double Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 28. Quadruple Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 29. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 56
Figure 30. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 31. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 32. Locking Operations Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 33. Protection Register Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 60
APPENDIX D. FLASH MEMORY COMMAND INTERFACE and PROGRAM/ERASE CONTROLLER
STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 34. Write State Machine Current/Next, sheet 1 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 35. Write State Machine Current/Next, sheet 2 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 36. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
5/64
M36W832TE, M36W832BE

SUMMARY DESCRIPTION

The M36W832TE is a low voltage Multiple Memo­ry Product which combines two me mory devices; a 32 Mbit boot block Flash memory and an 8 M bit SRAM. Recommended operating conditions do not allow both the F lash and the S RAM t o be ac­tive at the same time.
The memory is offered in a Stacked LFBGA66 (12x8mm, 0.8 mm pitch) package and is s upplied
with all the bits erased (set to ‘1’).

Figure 2. Logic Diagram

V
V
DDF
DDQF
V
PPF
V
DDS

Table 1. Signal Names

A0-A18
A19-A20 Address Inputs for Flash Chip only DQ0-DQ15 Data Input/Output V
DDF
V
DDQF
V
PPF
V
SSF
V
DDS
Address Inputs common to the Flash and SRAM chips
Flash Power Supply Flash Power Supply for I/O Buffers Flash Optional Supply V oltage for Fast
Program & Erase Flash Ground SRAM Power Supply
A0-A20
EF
GF
WF
RPF
WPF
E1S E2S
GS
WS
UBS
LBS
21
M36W832TE M36W832BE
V
SSF
V
SSS
16
DQ0-DQ15
AI90161b
V
SSS
NC Not Connected Internally
Flash control functions
EF GF WF RPF WPF
SRAM control functions
, E2S Chip Enable inputs
E1S GS WS UBS LBS
SRAM Ground
Chip Enable input Output Enable input Write Enable input Reset input Write Protect input
Output Enable input Write Enable input Upper Byte Enable input Lower Byte Enable input
6/64

Figure 3. LFBGA Connections (Top view through package)

M36W832TE, M36W832BE
1211109
87654321
NCNC
DDQF
V
SSF
V
A12
A13A11A20NCNC
A15 A14
DQ7
DQ14
WS
DQ15A9A16
DQ5
DQ4
DQ6DQ13NCWF
DDF
V
DDS
V
E2SDQ12V
DQ3DQ2
DQ10
DQ11A19WPF
DQ1DQ0
DQ8DQ9GSLBS
E1SA1
A2A3A6A7A18
NC
NCNCGF
SSF
EFA0A4NCNC
AI90162b
A8 A10
A
B
C
RPF
SSS
D
PPF
V
E
UBS
F
A17
G
A5
NC V
H
7/64
M36W832TE, M36W832BE

Signal Descriptions

See Figure 2 Logic Diagram and Table 1,Signal Names, for a brief overview of the signals connect­ed to this device.

Address Inputs (A0-A18). Addresses A0-A18 are common inputs for the Flash an d the SRAM components. The Address Inputs select the cells in the memory array to access during Bu s Read operations. During Bus Write operations they con­trol the commands sent to the Command Interface of the internal state machine. The Flash memory is accessed through the Chip Enable ( Enable (WF

) signals, while the SRAM is accessed through two Chip Enable signals (E1S and the Write Enable signal (WS
EF) and Write
and E2S)
).

Address Inputs (A19-A20). Addresses A19-A20 are inputs for the Flash component only. The Flash memory is acc essed through the Chip E n­able (EF

) and Write Enable (WF) signals

Data Input/Output (DQ0-DQ15). The Data I/O outputs the data stored at the selected address during a Bus Read operation or inputs a command or the data to be programmed durin g a Write Bus operation.

Flash Chip Enable (EF
). The Chip Enable input
activates the Flash memory control logic, input buffers, decoders and sense amplifiers. When Chip Enable is at V is in active mode. When Chip Enable is at V
and Reset is at VIH the device
IL
IH
the memory is deselected, the outputs are high imped­ance and the power consumption is reduced to the standby level.
Flash Output Enable (GF
). The Output Enable
controls the data outputs during the Bus Read op­eration of the Flash memory.
Flash Write Enable (
WF). The Write Enable
controls the Bus Write operation of the Flash
memory’s Command I nterface. The data and ad­dress inputs are latched on the rising edge of Chip Enable, EF
, or Write Enable, WF, whichever oc-
curs first.
Flash Write Protect (WPF
). Write Protect is an
input that gives an additional hardware protection for each block. When Write Protect is at V
IL
, the Lock-Down is enabled and the protection status of the block cannot be changed. When Write Protect is at V
, the Lock-Down is disabled and the block
IH
can be locked or unlocked. (refer to T able 6, Read Protection Register and Protection Register Lock).
Flash Reset (RPF
). The Reset input provides a
hardware reset of the Flash memory. When Reset is at V
, the memory is in reset mode: the outputs
IL
are high impedance and the current consumption is minimized. After Reset all blocks are in the Locked state. When Reset is at V
, the device is
IH
in normal operation. Exiting reset mode the device enters read array mode, but a negative trans ition
of Chip Enable or a change of the address is re­quired to ensure valid data outputs.
SRAM Chip Enable (E1S
, E2S). The Chip En-
able inputs activate the SRAM memory control logic, input buffers and decoders. E1S E2S at V
deselects the memory and reduces the
IL
power consumption to the standby level. E1S
at VIH or
and E2S can also be used to control writing to the SRAM memory array, while WS is not allowed to set EF at V
at the same time.
IH
SRAM Write Enable (WS
at V
E1S at VIL and E2S
IL,
). The Write Enable in-
remains at V
IL.
It
put controls writing to the SRAM memory array.
is active low.
WS
SRAM Output Enable (GS)
. The Output Enable
gates the outputs through the data buffers during a read operation of t he SRAM memory. GS
is ac-
tive lo w .
SRAM Upper Byte Enable (UBS)
. The Upper
Byte Enable enables the upper bytes for SRAM (DQ8-DQ15). UBS
SRAM Lower Byte Enable (LBS
is active low.
). The Lower Byte Enable enables the lower bytes for SRAM (DQ0-DQ7). LBS
Supply Voltage (2.7V to 3.3V). V
V
DDF
is active low.
pro­vides the power supply to the internal core of the Flash Memory device. It is the main power s upply for all operations (Read, Program and Erase).
and V
V
DDQF
provides the power supply for the Flash
V
DDQF
memory I/O pins and V supply for
Supply Voltage (2.7V to 3.3V).
DDS
provides the power
DDS
the SRAM control pi ns. This allows all Outputs to be powered independently of the Flash core power supply, V V
DDS
V
Program Su pp ly V ol t age. V
PPF
. V
can be tied to
DDQF
PPF
is both a control input and a power suppl y pin for t he F lash memory. The two functions are selected by the voltage range applied to the pin. The S uppl y Volt­age V
and the Program Supply Vol tage V
DDF
PPF
can be applied in any order. If V
V age lower than V against program or erase, while V
is kept in a low voltage range (0V to 3.6V)
PPF
is seen as a control input. In this case a volt-
PPF
gives an absolute protection
PPLK
PPF
> V
PP1
en­ables these functions (see Table 15, DC Charac­teristics for the relevant values). V
PPF
is only sampled at the beginning of a program or erase; a change in its value after the operation has started does not have any effect on Program or Erase, however for Double or Q uadruple Word Program the results are uncertain.
If V power supply pin. In this con dition V
is in the range 11.4V to 12.6V it acts as a
PPF
PPF
must be stable until the Program/Erase algorit hm is com­pleted (see Table 17 and 18).
8/64
M36W832TE, M36W832BE
V
SSF
and V
Ground. V
SSS
SSF
and V
SSS
are the ground reference for all voltage measurements in the Flash and SRAM chips, respectively.
Note: Each device in a system should have V
DF
, V
DDQF
and V
decoupled with a 0.1µF ca-
PPF
D-

FUNCTIONAL DESCRIPTION

The Flash and SRAM components have separate power supplies and grounds and are distinguished by three chip enable inputs: EF ory and, E1S
and E2S for the SRAM.
for the Flash mem-
Recommended operating conditions do not allow both the Flash and the SRAM to be in active mode at the same time. The most common example is

Figure 4. Funct i on a l Bl ock D i agram

V
DDF
EF GF
WF
RPF
WPF
Flash Memory
32 Mbit (x16)
pacitor close to the pin. See Figure 9, AC Measurement Load Circuit. The PCB trace widths should be sufficient to carry the re­quired V
program and erase currents.
PPF
simultaneous read operations on the Flash and the SRAM which would resul t in a data bus con­tention. Therefore it is recommended to put the SRAM in the h igh impedance state whe n reading the Flash and vice versa (see Table 2 Main Oper­ation Modes for details).
V
DDQF
V
PPF
A19-A20
A0-A18
E1S E2S
GS
WS
UBS
LBS
V
DDS
SRAM
8 Mbit (x16)
V
SSS
V
SSF
DQ0-DQ15
AI90163
9/64
M36W832TE, M36W832BE

Table 2. Main Operation Modes

Operation
Mode
Read
Write
Block Locking
Standby
Flash Memory
Reset X X X Output
Disable
Read Flash must be disabled
Write Flash must be disabled
Standby/
SRAM
Power Down
Data Retention
Output Disable
Note: X = VIL or VIH, V
EF
GF WF RPF WPF
V
ILVILVIHVIH
V
ILVIHVILVIH
V
XX
IL
V
XX
IH
V
ILVIHVIHVIH
V
IH
V
IH
V
IL
Any Flash mode is allowable
Any Flash mode is allowable
Any Flash mode is allowable
= 12V ± 5%.
PPFH
V
E1S E2S WS GS UBS LBS DQ15-D Q8 DQ7-DQ0
PPF
X Don’t care SRAM must be disabled Data Output
V
or
DDF
X
V
PPFH
V
Don’t care SRAM must be disabled X
IL
SRAM must be disabled Data Input
X Don’t care Any SRAM mode is allowed Hi-Z X Don’t care Any SRAM mode is allowed Hi-Z
X Don’t care Any SRAM mode is allowed Hi-Z
XXV
V
ILVIHVIHVILVIHVIL
V
ILVIHVIHVILVILVIH
V
ILVIHVIL
V
ILVIHVIL
V
ILVIHVIL
V
IH
X
V
IH
X
V
ILVIHVIHVIH
IHVILVIL
X X X
X X X X X Hi-Z
V
XX
IL
X X X X X Hi-Z
V
X X X X Hi-Z
IL
V
IL
Data out
Hi-Z Data out
Data out Hi-Z
V
IL
V
IHVIL
V
ILVIH
V
IHVIH
V
IL
Data in
Hi-Z Data in
Data in Hi-Z
Hi-Z
X X Hi-Z
10/64
M36W832TE, M36W832BE

Flash Memory Componen t

The Flash Memory is a 32 Mbit (2 Mbit x 16) device that can be erased electrically at block level and programmed in-system on a Word-by-Word basis. These operations can be performed using a single low voltage (2.7 to 3.6V) supply. V
DDQF
allows to drive the I/O pin down to 1.65V. An optional 12V V
power supply is provided to speed up cus-
PPF
tomer programming. The device features an asymmetrical blocked ar-
chitecture with an array of 71 blocks: 8 Parameter Blocks of 4 KWords and 63 Main Blocks of 32 KWords. The M36W832TE has the Parameter Blocks at the top of the memory address space while the M36W832BE locates the Parameter Blocks starting from the bottom. The memory maps are shown in Figure 5, Block Addresses.
The Flash Memory features an instant, individual block locking scheme that allo ws any block to be locked or unlocked with no latency, enabling in­stant code and data protection. All blocks have three levels of protection. They can be locked and locked-down individually preventing any acciden­tal programming or erasure. There is an additional hardware protection against program and erase. When V
PPF
≤ V
all blocks are protected
PPLK
against program or erase. All blocks are locked at Power Up.
Each block can be erased separately. Erase can be suspended in order to perform either read or program in any other block and then resumed. Program can be s uspended to read data in any other block and then resumed. Each block can be programmed and erased over 100,000 cycles.
The device includes a Protection Register to in­crease the pro tection of a syste m design. The Pro­tection Register is divided into two segments, t he first is a 64 bit area which contains a unique device number written by ST, while the second is a 128 bit area, one-time-programmable by the user. The user programmable segment can be permanent ly protected. Figure 6, shows the Flash Security Block and Protection Register Memory Map.
Program and Erase command s are written to the Command Interface of the memory. An on-chip Program/Erase Controller takes care of the tim­ings necessary for program and erase operations. The end of a program or erase operation can be detected and any error conditions identified. The command set required to control the memory is consistent with JEDEC standards.

Figure 5. Flash Block Addresses

Top Boot Block Addresses
1FFFFF
1FF000
1F8FFF
1F8000
1F7FFF
1F0000
00FFFF
008000
007FFF
000000
4 KWords
4 KWords
32 KWords
32 KWords
32 KWords
Total of 8
4 KWord Blocks
Total of 63
32 KWord Blocks
Bottom Boot Block Addresses
1FFFFF
1F8000
1F7FFF
1F0000
00FFFF
008000
007FFF
007000
000FFF
000000
32 KWords
32 KWords
32 KWords
4 KWords
4 KWords
Total of 63
32 KWord Blocks
Total of 8
4 KWord Blocks
Note: Also see Appendix A, Tab l es 26 and 27 for a ful l l is t i ng of the Flash B l ock Address es.
AI90164
11/64
M36W832TE, M36W832BE

Figure 6. Flash Security Block and Protection Registe r Memory Ma p

PROTECTION REGISTER
8Ch
User Programmable OTP
85h 84h
81h 80h
Note: 1. Bit 2 of the Protection Registe r Lock must no t be program m ed to 0.
Unique device number
Protection Register Lock 2
(1)
10
AI90165b
12/64
M36W832TE, M36W832BE

SRAM C o m pone nt

The SRAM is an 8 Mbit asynchronous random ac­cess memory which features a super lo w voltage operation and low current consumption with an ac-

Figure 7. SRAM Block Diagram

DATA IN DRIVERS
A0-A10
ROW DECODER
512Kb x 16 RAM Array
2048 x 4096
COLUMN DECODER
A11-A18
cess time of 70ns in all conditions. The memory operations can be performed using a single low voltage supply, 2.7V to 3.3V, which is the same as the Flash voltage supply.
DQ0-DQ7
SENSE AMPS
DQ8-DQ15
UBS WS
GS
LBS
E2S E1S
POWER-DOWN
CIRCUIT
UBS LBS
E2S E1S
AI07964
13/64
M36W832TE, M36W832BE
OPERATING MODES Flash Bus Operations
There are six standard bus operations that control the device. These are Bus Read, Bus Wri te, Out­put Disable, Standby, Automatic Standby and Re­set. See Table 2, Main Operation Modes, for a summary.
Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations.

Read. Read Bus operations are used to output the contents of the Memory Array, the Electronic Signature, the Status Register and the Common Flash Interface. Both Chip Enable and Output En­able must be at VIL in order to perform a read op­eration. The Chip Enable in put should be us ed to enable the device. Out put E nable shoul d be used to gate data onto the output. The data read de­pends on the previous command written to the memory (see Command Interface section). See Figure 10, Flash Read Mode AC Waveforms, and Table 16, Flash Read AC Cha racteristics, for de­tails of when the output becomes valid.

Read mode is the default state of the device when exiting Reset or after power-up.

Write. Bus Write operations write Commands to the memory or latch Input Data to be programmed. A write operation is initiated when Chip Enable and Write Enable are at V V

. Commands, Input Data and Addresses are
IH
latched on the rising edge of Write Enable or Chip Enable, whichever occurs first.
with Output Enable at
IL
See Figures 11 and 12, Flash Write AC Wave­forms, and Tables 17 and 18, Write AC Character­istics, for details of the timing requirements.

Output Disa bl e . The data outputs are high im­pedance when the Output Enable is at V

.
IH

Standby. Stan dby disables most of the inte rnal circuitry allowing a substantial reduction of the cur­rent consumption. The memory is in stand-by when Chip Enable is at V

and the device is in
IH
read mode. The power consumption is reduced to the stand-by level and the o utputs are set to high impedance, independently from the Output Enable or Write Enable inputs. If Chip Enable switches to V
during a program or erase operation, t he de-
IH

vice enters Standby mode when finished. Automatic Standby. Automatic Standby pro-

vides a low power consumption state during Read mode. Following a read operation, the device en­ters Automatic Standby after 150ns of bus inactiv­ity even if Chip Enable is Low, V current is reduced to I
. The data I nputs/Out-
DD1
, and the supply
IL
puts will still output data if a bus Read operation is in progress.

Reset. During Reset mode when Output Enable is Low, V

, the memory is deselected and the out-
IL
puts are high impedance. The memory is in Reset mode when Reset is at V
. The power consump-
IL
tion is reduced to the Standby level, independently from the Chip Enable, Output Enable or Write En­able inputs. If Reset is pulled t o V
during a Pro-
SSF
gram or Erase, this operation is aborted and the memory content is no longer valid.
14/64

Flash Command Interface

All Bus Write operations t o the me mory are in ter­preted by the Command Interface. Commands consist of one or more sequential Bus Write oper­ations. An internal Program/Erase Controller han­dles all timings and verifies the correct execution of the Program and Erase commands. The Pro­gram/Erase Controller provides a S tatus Register whose output may be read at any time during, to monitor the progress of the operation, or the P ro­gram/Erase states. See Table 4, Command Codes, for a summary o f the c ommands and see Appendix 31, Table 34, Write State Machine Cur­rent/Next, for a summa ry of the Command Inter­face.
The Command Interface is reset to Read mode when power is first applied, when exiting from Re­set or whenever V
is lower than V
DDF
LKO
. Com­mand sequences must be followed exactly. Any invalid combination of commands will reset the de­vice to Read mode . Refe r to Table 3, Flas h Com ­mand Codes, in conjunction with the following text descriptions.

Table 3. Flash Command Codes

Hex Code Command
01h
10h Program 20h Erase
2Fh
30h 40h Program
50h Clear Status Register 55h Reserved 56h
60h
70h Read Status Register 90h Read Electronic Signature 98h Read CFI Query B0h Program/Erase Suspend C0h Protection Register Program
D0h
FFh Read Memory Array
Block Lock confirm
Block Lock-Down confirm Double Word Program
Quadruple Word Program Block Lock, Block Unlock, Block Lock-
Down
Program/Erase Resume, Block Unlock confirm
M36W832TE, M36W832BE
Read Memory Array Command. The Read
command returns the memory to its Read mode. One Bus Write cycle is required to issue the Read Memory Array command and return the memory to Read mode. Subsequent read operations will read the addressed location and output the data. When a device Reset occurs, the memory defaults to Read mode.
Read Status Register Command. The Status Register indicates when a program or erase oper­ation is complete and the success or failure of the operation itself. Issue a Read Status Register
command to read the Status Register’s cont ents. Subsequent Bus Read operations read the Status Register at any address, until another command is issued. See Table 11, Status Register Bits, for de­tails on the definitions of the bits.
The Read Status Register comm and may be is­sued at any time, even during a Program/Erase operation. Any Read attempt during a Program/ Erase operation will automatically output the con­tent of the Status Register.
Read Electronic Signature Command. The Read Electronic Signature command reads the Manufacturer and Device Codes and the Block Locking Status, or the Protection Register.
The Read Electronic Signature command consists of one write cycle, a subsequent read will output the Manufacturer Code, the Device Code, the Block Lock and Lock-Down Status, or the Protec­tion and Lock Register. See Tables 5, 6 and 7 for the valid address.
Read CFI Query Command. The Read Query Command is used to read data from the Common Flash Interface (CFI) Memory Area, allowing pro­gramming equipment or applications to automati­cally match their interface to the characteristics of the device. One Bus Write cycle is required to is­sue the Read Query Command. Once the com­mand is issued subsequ ent Bus Read operations read from the Common Flash Interface Memory Area. See Appendix B, Common Flash Interface, Tables 28, 29, 30, 31, 32 and 33 for details on the information contained in the Common Flash Inter­face memory area.
Block Erase Command. The Block Erase com­mand can be used to erase a bloc k. It set s all t he bits within the selected block to ’1’. All previous data in the block is lost. If the block is protected then the Erase operation will abort, the data in the block will not be changed and the S tatus Regi ster will output the e rr o r.
Two Bus Write cycles are required to issue the command.
The first bus cycle sets up the Erase command.
15/64
M36W832TE, M36W832BE
The second latches the block address in the
internal state machine and starts the Program/ Erase Controller.
If the second bus cycle is not Write Erase Confirm (D0h), Status Register bits b4 and b5 a re s et and the command aborts.
Erase aborts if Reset turns to V
. As data integrity
IL
cannot be guaranteed when the Erase operation is aborted, the block must be erased again.
During Erase operations the memory will accept the Read Status Re gister com mand and the P ro­gram/Erase Suspend command, all other com­mands will be ignored. Typical Erase times are given in Table 8, Flash Program, Erase Times and Program/Erase Endurance Cycles.
See Appendix C, Figure 30 , Erase Flowchart and Pseudo Code, for a suggested flowchart for using the Erase command.
Program Command. T he memory array can be programmed word-by-word. Two bus write cycles are required to issue the Program Command.
The first bus cycle sets up the Program
command.
The second latches the Address and the Data to
be written and starts the Program/Erase Controller.
During Program operations the memory will ac­cept the Read Status Register command and the Program/Erase Suspend command. Typical Pro­gram times are given in Table 8, Flash Program, Erase Times and Program/Erase Endurance Cy­cles .
Programming aborts if Reset goe s to V
. As data
IL
integrity cannot be guaranteed when the program operation is aborted, the block containing the memory location must be erased and repro­grammed.
See Appendix C, Figure 26, Program Flowchart and Pseudo Code, for the f lowchart for using the Program command.
Doubl e Word Program Comm a nd. This feature is offered to improve the programming throughput, writing a page of two adjacent words in paral­lel.The two words mus t di ffer on ly f or the address A0. Programming should n ot be attempted when V
is not at V
PPF
PPH
.
Three bus write cycles are necessary to issue the Double Word Program command.
The first bus cycle sets up the Double Word
Program Command.
The second bus cycle latches the Address and
the Data of the first word to be written.
The third bus cycle latches the Address and the
Data of the second word to be written and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has s tarted. Program­ming aborts if Reset goes to V
. As data integrity
IL
cannot be guaranteed when the program opera­tion is aborted, the block containing the memory location must be erased and reprogrammed.
See Appendix C, Figure 27, Double Word Pro­gram Flowchart and Pseudo Code, for the flow­chart for using the Double Word Program command.
Quadruple Word Program Command. This feature is offered to improve the programming throughput, writing a page of four adjacent words in parallel.The four words must differ only for the addresses A0 and A1. Programming should not be attempted when
is not at V
PPF
PPH
.
V
Five bus write cycles are necessary to issue the Quadruple Word Program command.
The first bus cycle sets up the Quadruple Word
Program Command.
The second bus cycle latches the Address and
the Data of the first word to be written.
The third bus cycle latches the Address and the
Data of the second word to be written.
The fourth bus cycle latches the Address and
the Data of the third word to be written.
The fifth bus cycl e latches the Addres s and th e
Data of the fourth word to be written and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has s tarted. Program­ming aborts if Reset goes to V
. As data integrity
IL
cannot be guaranteed when the program opera­tion is aborted, the block containing the memory location must be erased and reprogrammed.
See Appendix C, Figure 28, Quadruple Word Pro­gram Flowchart and Pseudo Code, for the flow­chart for using the Quadruple Word Program command.
Clear Status Register Command. The Clear Status Register command can be used to reset
bits 1, 3, 4 and 5 in the Status Register to ‘0’. One bus write cycle is required to issue the Clear Sta­tus Register command.
The bits in the Status Register do not automatical­ly return to ‘0’ when a new Program or Erase com­mand is issued. The error bits in the Status Register should be cleared before attempting a new Program or Erase command.
Program/Erase Suspend Command. The Pro­gram/Erase Suspend comm and is used to pause a Program or Erase operation. One bus write cycle is required to issue the Program/Erase c ommand and pause the Program/Erase controller.
During Program/Erase Suspend the Command In­terface will accept the Program/Erase Resume,
16/64
M36W832TE, M36W832BE
Read Array, Read Status Register, Read Electron­ic Signature and Read CFI Query commands. Ad­ditionally, if the suspend operation was Erase then the Program, Double Word Program, Quadruple Word Program, Block Lock, Block Lock -Down or Protection Program commands will also be ac­cepted. The block being erased may be protected by issuing the Block Protect, Block Lock or Protec­tion Program commands. When the Program/ Erase Resume com mand is issued the operation will complete. Only the blocks not being erased may be read or programmed correctly.
During a Program/Erase Suspend, the device can be placed in a pseudo-standby mode by taking Chip Ena ble to V Reset turns to V
. Program/Erase is aborted if
IH
.
IL
See Appendix C, Figure 2 9, Program or Doub le Word Program Suspend & Resume Flowchart and Pseudo Code, an d Figure 31, Erase Sus pend & Resume Flowchart and Pseudo Code for flow­charts for using the Program/Erase Suspend com­mand.
Program/Erase Resume Command. The Pro­gram/Erase Resume command can be used to re­start the Program/Erase Controller after a Program/Erase Suspend operat ion h as paused it. One Bus Write cycle is required to issue the com­mand. Once the command is issued subsequent Bus Read operations read the Status Register.
See Appendix C, Figure 2 9, Program or Doub le Word Program Suspend & Resume Flowchart and Pseudo Code, an d Figure 31, Erase Sus pend & Resume Flowchart and Pseudo Code for flow­charts for using the Program/Erase Resume com­mand.
Protection Regist er Program Command. The Protection Register Program c omm and is used to Program the 128 bit user One-Time-Programma­ble (OTP) segment of the Protection Register. The segment is programmed 16 bits at a time. When
shipped all bits in the segment are set to ‘1’. The user can only program the bits to ‘0’.
Two write cycles are required to issue the Protec­tion Register Program command.
The first bus cycle sets up the Protection
Register Program command.
The second latches the Address and the Data to
be written to the Protection Register and starts the Program/Erase Controller.
Read operations output the Status Register con­tent after the programming has started.
The segment can be protected by programming bit 1 of the Protection Lock Register (see Figure 6, Flash Security Block and Protection Register Memory Map). Attempting to program a previously protected Protection Register will result in a Status
Register error. The protection of the Protection Register is not reversible.
The Protection Register Program cannot be sus­pended.
Block Lock Command. The Block Lock com­mand is used to lock a block and prevent Program or Erase operations from changing the data i n it. All blocks are locked at power-up or reset.
Two Bus Write cycles are required to issue the Block Lock command.
The first bus cycle sets up the Block Lock
command.
The second Bus Write cycle latc hes the block
address.
The lock status can be monitored for each block using the Read Electronic Signature command. Table. 10 shows the protection status after issuing a Block Lock command.
The Block Lock bits are vo latile, once set they re­main set until a hardware reset or power-down/ power-up. They are cleared by a Blocks Unlock command. Refer to the section, Block Locking, for a detailed explanation.
Block Unlock Command. The Blocks Unlock command is used to unlock a block, allowing the block to be programmed or erased. Two Bus Write cycles are required to issue the Blocks Unlock command.
The first bus cycle sets up the Block Unlock
command.
The second Bus Write cycle latc hes the block
address.
The lock status can be monitored for each block using the Read Electronic Signature command. Table. 10 shows the protection status after issuing a Block Unlock command. Refer to the “Flash Block Locking” section, for a detailed explanation.
Block Lock-Down Command. A locked block cannot be Programmed or Erased, or have its pro­tection status changed when WPF When WPF
is high, V
the Lock-Down function is
IH,
is low, VIL.
disabled and the locked blocks can be individually unlocked by the Block Unlock command.
Two Bus Write cycles are required to issue the Block Lock-Down command.
The first bus cycle sets up the Block Lock
command.
The second Bus Write cycle latc hes the block
address.
The lock status can be monitored for each block using the Read Electronic Signature command. Locked-Down blocks revert to the locked (and not locked-down) state when the device is reset on power-down. Table. 10 sho ws the protection sta­tus after issuing a Block Lock-Down command.
17/64
M36W832TE, M36W832BE
Refer to the “Flash Block Locking” section for a de­tailed explanation.

Table 4. Flash Commands

Bus Write Operations
Commands
Read Memory Array
Read Status Register
Read Electronic Signature
Read CFI Query 1+ Write X 98h Read QA QD Erase 2 Write X 20h Write BA D0h
Program 2 Write X
Double Word Program
Quadruple Word Program
Clear Status Register
Program/Erase Suspend
Program/Erase Resume
Block Loc k 2 Write X 60h Write Block Unlock 2 Write X 60h Write Block Loc k-Down 2 Write X 60h Write Protection
Register Program
Note: X = Don’t Care.
(3)
(4)
1. The signature a ddresses are l i st ed in Tables 5, 6 and 7.
2. Addr 1 and Addr 2 must be consecu tive Addresses differi ng only for A0.
3. Program Addres ses 1 and 2 must be consecutive Addresses differing onl y for A0.
4. Program Addres ses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1.
5. 55h is reserved.
6. To be characterized.
1+ Write X FFh
1+ Write X 70h Read X SRD
1+ Write X 90h Read
1st Cycle 2nd Cycle 3rd Cycle 4th Cycle 5th Cycle
Cycles
Op. Add Data Op. Add Data Op. Add Data Op. Add Data Op. Add Data
RA RD
Read
(2)
IDh
SA
40h
or
Write PA PD
10h
3 Write X 30h Write PA1 PD1 Write PA2 PD2
5Write X
1 Write X 50h
1Write X B0h
1Write X D0h
(6)
Write PA1 PD1 Write PA2 PD2 Write PA3 PD3 Write PA4 PD4
56h
BA 01h
D0h
BA BA 2Fh
2 Write X C0h Write
PRA
PRD
18/64
M36W832TE, M36W832BE

Table 5. Flash Read Electronic Signature

Code Device EF GF WF A0 A1 A2-A7 A8-A11 A12-A20 DQ0-DQ7 DQ8-DQ15
Manufacture Code
Device Code
Note: RPF = VIH.
M36W832TE M36W832BE

Table 6. Flash Read Block Lock Signature

Block Status EF GF WF A0 A1 A2-A7 A8-A20 A12-A20 DQ0 DQ1 DQ2-DQ15
Locked Block Unlocked Block Locked-Down
Block
Note: 1. A Locked Block can be protected "DQ0 = 1" or unprotected "DQ0 = 0" ; see Block Locking section.

Table 7. Flash Read Protection Register and Lock Register

Word EF
Lock
Unique ID 0 Unique ID 1 Unique ID 2 Unique ID 3 OTP 0 OTP 1 OTP 2 OTP 3
GF WF A0-A7 A8-A20 DQ0 DQ1 DQ2 DQ3-DQ7 DQ8-DQ15
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIH
V
ILVILVIHVILVIL
V
ILVILVIHVIHVIL
V
ILVILVIHVIHVIL
V
ILVILVIHVILVIH
V
ILVILVIHVILVIH
V
ILVILVIHVILVIH
80h Don’t Care Don’t Care
81h Don’t Care ID data ID data ID data ID data ID data 82h Don’t Care ID data ID data ID data ID data ID data 83h Don’t Care ID data ID data ID data ID data ID data 84h Don’t Care ID data ID data ID data ID data ID data 85h Don’t Care OTP data OTP data OTP data OTP data OTP data 86h Don’t Care OTP data OTP data OTP data OTP data OTP data 87h Don’t Care OTP data OTP data OTP data OTP data OTP data 88h Don’t Care OTP data OTP data OTP data OTP data OTP data
0 Don’t Care 20h 00h
0 Don’t Care BAh 88h 0 Don’t Care BBh 88h
0 Don’t Care Block Address 1 0 00h 0 Don’t Care Block Address 0 0 00h
0 Don’t Care Block Address
OTP Prot.
data
Don’t Care
See note (1)
X
(1)
1 00h
Don’t Care
Don’t Care
V
IL
V
IL
V
IL
19/64
M36W832TE, M36W832BE

Table 8. Flash Program, Erase Times and Program /Era se Endu ranc e Cycles

Parameter Test Conditions
Min Typ Max
V
Word Program
Double Word Program Quadruple Word Program
Main Block Program
Parameter Block Program
Main Block Erase
Parameter Block Erase
= V
PPF
V
= 12V ±5%
PPF
V
= 12V ±5%
PPF
V
= 12V ±5%
PPF
= V
V
PPF
= 12V ±5%
V
PPF
= V
V
PPF
= 12V ±5%
V
PPF
= VDDV
V
PPF
V
= 12V ±5%
PPF
V
= V
PPF
DDF
DDF
DDF
DDF
DDF
Program/Erase Cycles (per Block) 100,000 cycles
Note: 1. Typical time to program a Main or Parameter Block using the Double Word Program and the Quadruple Word Program commands
respectively.
Flash Device
10 200 µs 10 200 µs 10 200 µs
0.16/0.08
(1)
5s
0.32 5 s
0.02/0.01
(1)
4s
0.04 4 s 110s 110s
0.4 10 s
0.4 10 s
Unit
20/64
Loading...
+ 44 hidden pages