Sagem HILONC APPLICATION NOTE User Manual

HILONC V2 APPLICATION NOTE
~ Freedom of speech
This page is intentionally left blank
FICHE RECAPITULATIVE / REVISION HISTORY
Ed Date
Date
1 03/09/2010 URD1 OTL 5665.3 003 72238 ed 01 all Document creation 2 02/24/2011 URD1 OTL 5665.3 003 72238 ed 02 17, 21, 24, 25,
Référence Reference
Pages modifiées / Changed pages
34, 37, 41
Observations
Comments
Surge and transient on Vbat and protection example and POK_IN relative waveforms and warnings
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 3/66
SOMMAIRE / CONTENTS
1. OVERVIEW...................................................................................................................................................................8
1.1 OBJECT OF THE DOCUMENT......................................................................................................................... 8
1.2 REFERENCE DOCUMENTS .............................................................................................................................8
1.3 MODIFICATION OF THIS DOCUMENT .......................................................................................................... 8
1.4 CONVENTIONS ...................................................................................................................................................8
2. BLOCK DIAGRAM....................................................................................................................................................... 9
3. HILONC FAMILY LEGACY......................................................................................................................................10
3.1 PADS OUT AND NEW FEATURES................................................................................................................10
3.2 EASY MIGRATION FROM HILONC (V1) TO HILONC V2..........................................................................11
3.2.1 Migration without the use of new features ..............................................................................................11
3.2.2 Migration with the use of new features ...................................................................................................11
4. FUNCTIONAL INTEGRATION.................................................................................................................................11
4.1 HOW TO CONNECT TO A SIM CARD .......................................................................................................... 12
4.2 HOW TO CONNECT THE AUDIOS? .............................................................................................................14
4.2.1 Connecting microphone and speaker .....................................................................................................14
4.2.2 Recommended characteristics for the microphone and speaker........................................................16
4.2.3 DTMF OVER GSM NETWORK ...............................................................................................................17
4.3 PWM ....................................................................................................................................................................17
4.3.1 PWM outputs ..............................................................................................................................................17
4.3.2 PWM for Buzzer connection .....................................................................................................................17
4.4 NETWORK LED .................................................................................................................................................18
4.5 POWER SUPPLY ..............................................................................................................................................18
4.5.1 Burst conditions.......................................................................................................................................... 19
4.5.2 Ripples and drops ......................................................................................................................................19
4.6 EXAMPLE OF POWER SUPPLIES ................................................................................................................ 20
4.6.1 DC/DC Power supply from a USB or PCMCIA port..............................................................................20
4.6.2 Simple high current low dropout voltage regulator................................................................................ 20
4.6.3 Simple 4V boost converter. ......................................................................................................................21
4.7 UART ................................................................................................................................................................... 21
4.7.1 Signals reminder ........................................................................................................................................21
4.7.2 Complete V24 – connection HiLoNC V2 - host .....................................................................................22
4.7.3 Complete V24 interface with PC .............................................................................................................. 23
4.7.4 Partial V24 (RX-TX-RTS-CTS) – connection HiLoNC V2 - host .........................................................24
4.7.5 Partial V24 (RX-TX) – connection HiLoNC V2 - host ...........................................................................25
4.8 UART0 .................................................................................................................................................................27
4.9 GPIO ....................................................................................................................................................................27
4.10 ADC.................................................................................................................................................................. 27
4.11 PCM .................................................................................................................................................................27
4.12 RF BURST INDICATOR ............................................................................................................................... 28
4.13 BACKUP BATTERY ......................................................................................................................................28
4.13.1 Backup battery function feature ...............................................................................................................28
4.13.2 Current consumption on the backup battery .......................................................................................... 29
4.13.3 Charge by internal HiLoNC V2 charging function .................................................................................29
4.13.4 Backup Battery technology .......................................................................................................................30
4.14 START THE MODULE PROPERLY AND AVOID POWER UP ISSUES. ............................................. 31
4.14.1 Power domains...........................................................................................................................................31
4.14.2 IO DC PRESENCE BEFORE POWER ON. ..........................................................................................32
4.14.3 SIDE EFFECTS OF A RETRO SUPPLY (CURRENT RE-INJECTION) ...........................................32
4.14.4 EXAMPLE OF A CURRENT RE-INJECTION ON U.A.R.T. ................................................................ 33
4.14.5 ADVICES FOR EVERY POWER DOMAIN............................................................................................34
4.14.6 CASE OF VBAT RISE TIME ....................................................................................................................35
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 4/66
4.14.7 START- UP ................................................................................................................................................. 35
4.15 UART SIGNALS AT POWER ON................................................................................................................36
4.16 POWER ON AND SLEEP DIAGRAMS ......................................................................................................38
4.17 MODULE RESET...........................................................................................................................................40
4.18 MODULE SWITCH OFF ............................................................................................................................... 40
4.19 SLEEP MODE MANAGEMENT AND POWER CONSUMPTION .......................................................... 41
5. RECOMMENDED I/OS AND COMPONENTS ON THE FINAL PRODUCT .........................................................43
6. ESD & EMC RECOMMENDATIONS .......................................................................................................................43
6.1 HILONC V2 ALONE........................................................................................................................................... 43
6.2 HANDLING THE MODULE ..............................................................................................................................43
6.3 Customer’s product with HiLONC V2..............................................................................................................43
6.4 Analysis ............................................................................................................................................................... 43
6.5 Recommendations to avoid ESD issues ........................................................................................................44
7. RADIO INTEGRATION..............................................................................................................................................44
7.1 ANTENNA ...........................................................................................................................................................44
7.2 GROUND LINK AREA....................................................................................................................................... 45
7.3 LAYOUT ..............................................................................................................................................................46
7.4 MECHANICAL SURROUNDING .....................................................................................................................47
7.5 OTHER RECOMMENDATIONS – TESTS FOR PRODUCTION/DESIGN ............................................... 47
8. AUDIO INTEGRATION .............................................................................................................................................47
8.1 MECHANICAL INTEGRATION AND ACOUSTICS ......................................................................................47
8.2 ELECTRONICS AND LAYOUT .......................................................................................................................48
9. RECOMMENDATIONS ON LAYOUT OF CUSTOMER’S BOARD ......................................................................48
9.1 GENERAL RECOMMENDATIONS ON LAYOUT......................................................................................... 48
9.1.1 Ground.........................................................................................................................................................48
9.1.2 Power supplies ........................................................................................................................................... 48
9.1.3 Clocks ..........................................................................................................................................................49
9.1.4 Data bus and other signals .......................................................................................................................49
9.1.5 Radio............................................................................................................................................................ 49
9.1.6 Audio............................................................................................................................................................49
9.2 EXAMPLE OF LAYOUT FOR CUSTOMER’S BOARD................................................................................50
10. RECOMMANDATIONS FOR CUSTOMER PRODUCTION ............................................................................... 50
10.1 MOISTURE LEVEL........................................................................................................................................50
10.2 PACKAGE.......................................................................................................................................................50
10.3 STENCIL .........................................................................................................................................................52
10.4 SOLDER PASTE............................................................................................................................................52
10.5 PROFILE FOR REFLOW SOLDERING .....................................................................................................53
10.6 SMT MACHINE ..............................................................................................................................................53
10.6.1 Nozzles ........................................................................................................................................................54
10.6.2 Fiducials ......................................................................................................................................................55
10.7 UNDERFILL ....................................................................................................................................................55
10.8 SECOND REFLOW SOLDERING............................................................................................................... 56
10.9 HAND SOLDERING ......................................................................................................................................56
10.10 UNSOLDERING .............................................................................................................................................56
11. LABEL .....................................................................................................................................................................57
12. REFERENCE DESIGN: HiLoNC V2 DEVELOPMENT KIT ................................................................................58
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 5/66
FIGURES LIST
Figure 1: Block diagram of HiLoNC module ........................................................................................................................... 9
Figure 2: Postage stamp sized HiLoNC V2 51 pads out front side ........................................................................................12
Figure 3: Postage stamp sized HiLoNC V2 51 pads out back side......................................................................................... 12
Figure 4: SIM Card signals..................................................................................................................................................... 12
Figure 5: Protections: EMC and ESD components close to the SIM .....................................................................................13
Figure 6: Protections: Serial resistors for long SIM bus lines. ...............................................................................................14
Figure 7: Audio connection .................................................................................................................................................... 14
Figure 8 : Filter and ESD protection of microphone ..............................................................................................................15
Figure 9: Filter and ESD protection of 32 ohms speaker........................................................................................................15
Figure 10: Example of D class TPA2010D1 1Watt audio amplifier connections. ................................................................. 16
Figure 11: Buzzer connection .................................................................................................................................................17
Figure 12: Network LED connection ..................................................................................................................................... 18
Figure 13: Over voltage protection on VBatt ......................................................................................................................... 18
Figure 14: GSM/GPRS Burst Current rush ............................................................................................................................ 19
Figure 15: GSM/GPRS Burst Current rush and VBAT drops and ripples ...............................................................................19
Figure 16: Example of power supply based on a DC/DC step down converter......................................................................20
Figure 17: Example of power supply based on regulator MIC29302WU ..............................................................................20
Figure 18: Example with Linear LT1913 ............................................................................................................................... 21
Figure 19: Complete V24 connection between HiLoNC V2 and host....................................................................................22
Figure 20: CTS versus POK_IN signal during the power on sequence. .................................................................................23
Figure 21: connection to a data cable .....................................................................................................................................23
Figure 22: Example of a connection to a data cable with a MAX3238E................................................................................ 24
Figure 23: Partial V24 connection (4 wires) between HiLoNC V2 and host ......................................................................... 24
Figure 24: CTS versus POK_IN signal during the power on sequence. .................................................................................25
Figure 25: Partial V24 connection (2 wires) between HiloNC V2 and host........................................................................... 26
Figure 26: CTS versus POK_IN signal during the power on sequence. .................................................................................26
Figure 27: PCM interface timing ............................................................................................................................................28
Figure 28: RF_TX burst indicator ..........................................................................................................................................28
Figure 29: Backup battery or 10µ F Capacitor internally charged ..........................................................................................29
Figure 30: Charging curve of backup battery ......................................................................................................................... 30
Figure 31 : HiLoNC V2 51 pads with their power domains ...................................................................................................31
Figure 32 : HiLoNC V2 51 pads with their power domains…continued ...............................................................................32
Figure 33: Digital Pad-out clamp diode..................................................................................................................................33
Figure 34: Hardware interface diodes solution between HiLoNC V2 and host......................................................................34
Figure 35: Hardware interface buffers solution between HiLoNC V2 and host.....................................................................34
Figure 36: Power ON sequence ..............................................................................................................................................36
Figure 37: Full UART signals during the power on sequence................................................................................................37
Figure 38: Diagram for the power on ..................................................................................................................................... 38
Figure 39: Diagram for the sleep mode ..................................................................................................................................39
Figure 40: Reset command of the HiLoNC V2 by an external GPIO ....................................................................................40
Figure 41: Power supply command by a GPIO ......................................................................................................................40
Figure 42: Power OFF sequence for POK_IN, VGPIO and CTS...........................................................................................41
Figure 43: Power consumption at DRX9 (with RS-NGMO2 power supply) ......................................................................... 42
Figure 44: Antenna connection...............................................................................................................................................44
Figure 45: Antenna detection circuit ......................................................................................................................................45
Figure 46: Mandatory area for varnish ...................................................................................................................................46
Figure 47: Connection of RF lines with different width.........................................................................................................46
Figure 48: Layout of audio differential signals on a layer n ...................................................................................................49
Figure 49: Adjacent layers of audio differential signals .........................................................................................................49
Figure 50: layer allocation for a 6 layers circuit ..................................................................................................................... 50
Figure 51: Factory Tape dimensions ......................................................................................................................................51
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 6/66
Figure 52 : Solder mask design .............................................................................................................................................. 52
Figure 53 : Typical thermal profile.........................................................................................................................................53
Figure 54 : Flexjet nozzle 340F ..............................................................................................................................................54
Figure 55 : Siemens nozzle 417.............................................................................................................................................. 54
Figure 56 : Fiducials positions................................................................................................................................................55
Figure 57 : Underfill injection holes.......................................................................................................................................56
Figure 58 : Laboratory hot plate to unsolder the module........................................................................................................57
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 7/66
1. OVERVIEW
1.1 OBJECT OF THE DOCUMENT
The aim of this document is to describe some examples of hardware solutions for developing products around the SAGEMCOM HiLoNC V2 GPRS Module. Most parts of these solutions are not mandatory. Use them as suggestions of what should be done to have a working product and what should be avoided thanks to our experiences. This document suggests how to integrate the HiLoNC V2 GPRS module in machine devices such as automotive, AMM (Automatic Metering Management), tracking system: connection with external devices, layout advises, external components (decoupling capacitors…).
1.2 REFERENCE DOCUMENTS
URD1 OTL 5665.3 001 71927 - HiLoNC V2 technical specification URD1 OTL 5635.1 008 70248 - AT Command Set for SAGEM HiLo Modules
1.3 MODIFICATION OF THIS DOCUMENT
The information presented in this document is supposed to be accurate and reliable. SAGEMCOM assumes no responsibility for its use, nor any infringement of patents or other rights of third parties which may result from its use.
This document is subject to change without notice. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.
1.4 CONVENTIONS
SIGNAL NAME: All signal names available on the pads of the HiLoNC V2 module is written in italic.
Specific attention must be granted to the information given here.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 8/66
2. BLOCK DIAGRAM
Figure 1: Block diagram of HiLoNC module
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 9/66
3. HILONC FAMILY LEGACY
3.1 PADS OUT AND NEW FEATURES
HiLoNC Pads
E1 E2
E3 E4 E5 E6 E7 E8
E9 E10 E11 E12 E13
E14 E15 E16 E17
E18 E19 E20
E21 E22 E23 E24
E25
E26 E27 E28 E29 E30 E31
E32
E33 E34 E35 E36 E37 E38 E39 E40 E41 E42 E43
HiLoNC V2
Signal Name
/INTMIC_P AUDIO
/AUX_ADC0 ADC
GND POWER
VGPIO EXT_VDD
VBACKUP EXT_VDD
/PWM0 PWM
/RESET_IN RESET SAGEMCOM FACTORY USE SAGEMCOM FACTORY USE SAGEMCOM FACTORY USE
NTRST JTAG/FACTORY SAGEMCOM FACTORY USE SAGEMCOM FACTORY USE
/GPIO2 GPIO
/GPIO1 GPIO
/RF_TX RF
/PCM_CLK PCM
/PCM_SYNC PCM
/PCM_OUT PCM
/PCM_IN PCM
GND POWER
/ JTAG1 JTAG
/JTAG2 JTAG
/TEST JTAG
/UART0_RXD Trace UART 0
/GPIO3 GPIO
GND RF
/ANTENNA RF
GND RF VBATT POWER VBATT POWER
/UART0_TXD Trace UART 0 /UART1_DSR UART 1 /UART1_DCD UART 1
/UART1_RI UART 1 /UART1_DTR UART 1 /UART1_RTS UART 1
/UART1_RX UART 1
/UART1_TX UART 1
/UART1_CTS UART 1
/POK_IN POWER ON
/PWM2 PWM /PWM1 PWM
HiLoNC V2
Function
HiLoNC V1
Signal Name
/INTMIC_P AUDIO P2P Compliant
/AUX_ADC0 ADC P2P Compliant
GND POWER P2P Compliant
VGPIO EXT_VDD P2P Compliant
VBACKUP EXT_VDD P2P Compliant
/PWM0 PWM P2P Compliant
/RESET_IN RESET P2P Compliant SAGEMCOM FACTORY P2P Compliant SAGEMCOM FACTORY P2P Compliant SAGEMCOM FACTORY P2P Compliant /JTAG_TRST JTAG P2P Compliant SAGEMCOM FACTORY P2P Compliant
SAGEMCOM FACTORY P2P Compliant
/GPIO2 GPIO P2P Compliant
/GPIO1 GPIO P2P Compliant
/GPIO8_SPI_IN SPI
/SCL_SPI_OUT SPI
/SDA_SPI_SEL SPI
/GPIO6_SPI_IRQ SPI
/GPIO7_SPI_CLK SPI
GND POWER P2P Compliant /TEST_GPIO1 GPIO P2P Compliant /TEST_GPIO2 GPIO P2P Compliant
/TEST JTAG P2P Compliant
/GPIO4 GPIO
/GPIO3 GPIO P2P Compliant
GND RF P2P Compliant
/ANTENNA RF P2P Compliant
GND RF P2P Compliant
VBATT POWER P2P Compliant
VBATT POWER P2P Compliant
/GPIO5 GPIO
/UART1_DSR UART P2P Compliant
/UART1_DCD UART P2P Compliant
/UART1_RI UART P2P Compliant
/UART1_DTR UART P2P Compliant
/UART1_RTS UART P2P Compliant
/UART1_RX UART P2P Compliant
/UART1_TX UART P2P Compliant
/UART1_CTS UART P2P Compliant
/POK_IN POWER ON P2P Compliant
/PWM2 PWM P2P Compliant
/PWM1 PWM P2P Compliant
HiLoNC V1
Function
Delta
New Feature New Feature New Feature New Feature New Feature
New Feature
New Feature
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 10/66
E44 E45 E46 E47 E48 E49 E50 E51
As seen in the table above, the two modules are almost pad to pad (P2P) compliant for the main important signals, however the new HiLoNC V2 M2M module introduce some new interesting features as the digital audio on the PCM bus and the RF bust indicator signal.
/SIM_CLK SIM /SIM_RST SIM
/SIM_DATA SIM
VSIM SIM
VBATT POWER
GND POWER /HSET_OUT_P AUDIO /HSET_OUT_N AUDIO
/SIM_CLK SIM P2P Compliant
/SIM_RST SIM P2P Compliant
/SIM_DATA SIM P2P Compliant
VSIM SIM P2P Compliant
VBATT POWER P2P Compliant
GND POWER P2P Compliant
/HSET_OUT_P AUDIO P2P Compliant
/HSET_OUT_N AUDIO P2P Compliant
3.2 EASY MIGRATION FROM HILONC (V1) TO HILONC V2
3.2.1 Migration without the use of new features
When upgrading from the HiLoNC V1 to the HiLoNC V2, the SPI bus formerly used was supposed to be left as test points on your design, then simply left the design as it is, therefore the new PCM bus and RF burst indicator signals will remain not used. For the former GPIO4 and GPIO5, if there were both not used, simply add if possible two test points on those signals to be able to connect a trace cable in case of need. Otherwise, if one or both former GPIO4 and GPIO5 were used, you have to reallocate those pads to GPIO1, GPIO2 or GPIO3 which remain pad to pad compliant.
3.2.2 Migration with the use of new features
When upgrading from the HiLoNC V1 to the HiLoNC V2, the former SPI bus which was supposed to be left on test points is now used as the digital audio PCM bus and also the RF indicator signal, simply connect the new signals as described below in the respective chapter. The former GPIO4 and GPIO5 signals are now used to connect the UART TXD / RXD trace bus, then add if possible two test points on those signals to be able to connect a trace cable in case of need.
4. FUNCTIONAL INTEGRATION
The improvement of Silicon technologies heads toward functionality improvement, less power consumption. The postage stamp sized HiLoNC V2 module meets all these requirement, uses the last high end technology in a very compact design of only 24 x 24 x 2.6 mm and weighs less than 3 grams.
All digital I/Os among the 51 pads are in 2.8V domain which is suitable for most systems except SIM I/O's
with can also be in the 1.8V domain depending on the used SIM card and POK_IN at 3Vdomain
Analogical I/Os are in the following power domains
VSIM (the SIM I/Os at 1.8V or 2.9V domain).
VBACKUP 3V domain
VGPIO 2.8V domain
VBAT (from 3.2V to 4.5V domain)
AUX_ADC0 2.8V domain
INTMIC_P 2.85V domain
HSET_OUT_P/N VBAT domain
ANTENNA (RF power Amplifier is on VBAT domain)
Do not power the module I/O with a voltage over the specified limits, this could damage the module.
Acoustic engineering competences are mandatory to get accurate audio performance on customer’s
product
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 11/66
1
51 14
40
1
Radio engineering competences are mandatory to get accurate radio performance on customer’s product.
26
Figure 2: Postage stamp sized HiLoNC V2 51 pads out front side
Figure 3: Postage stamp sized HiLoNC V2 51 pads out back side
4.1 HOW TO CONNECT TO A SIM CARD
Figure 4: SIM Card signals
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 12/66
HiLoNC V2 module provides the SIM signals on the 51 pads. A SIM card holder with 6 pads needs to be adopted to use the SIM function.
Decoupling capacitors have to be added on SIM_CLK, SIM_RST, VSIM and SIM_DATA signals as close
as possible to the SIM card connector to avoid EMC issues and pass the SIM card tests approvals .
Use ESD protection components to protect SIM card and module I/Os against Electro Static Discharges.
The following schematic shows how to protect the SIM access for 6 pads connector, this should be apply every time a SIM card holder is accessible by the final customer.
Figure 5: Protections: EMC and ESD components close to the SIM
In case of long SIM bus lines over 10cm, it is recommended to also use serial resistors to avoid electrical
overshoots on SIM bus signals. Use 56 for the clock line and 10 for the reset and data lines.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 13/66
Figure 6: Protections: Serial resistors for long SIM bus lines.
The schematic here above includes the hardware SIM card presence detector. It can be connected to any GPIO and managed with an AT command.
SIM card must not be removed from its holder while it is still powered. First switch the module off properly
with the AT command, then remove the SIM card from its holder.
4.2 HOW TO CONNECT THE AUDIOS?
The HiLoNC V2 module features one input audio path and one output audio path. The input path is single-end while the output path is differential. In this following chapter examples of design will be given including protections against EMC and ESD and some notes about the routing rules to follow to avoid the TDMA noise sometimes present in this sensitive area of design.
customer’s product.
4.2.1 Connecting microphone and speaker
The HiLoNC V2 module can manage an external microphone (INTMIC_P) in single-end mode and an external speaker (HSET_OUT_P / HSET_OUT_N) in differential mode. Thus, one speaker and one microphone can be connected to the module. The 2.4V voltage to bias the microphone is implemented in the module.
Note that acoustic engineering competences are mandatory to get accurate audio performance on
The speaker connected to the module should be 32 ohms.
HiLoNC V2
If the design is ESD or EMC sensitive we strongly recommend reading the notes below. A poor audio quality could either come from the PCB routing and placement or from the chosen components (or even both).
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HSET_OUT_P
HSET_OUT_N
INTMIC_P
Filter and
ESD
protection
Figure 7: Audio connection
32ohms speaker
MIC
HiLoNC V2 Application Note
11 March 2011 - page 14/66
4.2.1.1 Notes for microphone
Pay attention to the microphone device, it must not be sensitive to RF disturbances.
If you need to have deported microphone out of the board with long wires, you should pay attention to the
EMC and ESD effect. It is also the case when your design is ESD sensitive. In those cases, add the following protections to improve your design.
voltage to be re-injected inside the module.
4.2.1.2 Notes for speaker
To ensure proper operation of such sensitive signals, they have to be isolated from the others by
analogue ground on customer’s board layout. (Refer to Layout design chapter)
HiLoNC V2
To use an external bias voltage for the microphone, simply use a capacitor of 10µF to prevent this bias
As explained for the microphone, if the speaker is deported out of the board or is sensitive to ESD, use the schematic here after to improve the audio.
INTMIC_P
Figure 8 : Filter and ESD protection of microphone
Ferrite Bead
MIC
18pF
ESD protection
18pF
HiLoNC V2
HSET_OUT_P, HSET_OUT_N tracks must be larger than other tracks: 0.1 mm.
As described in the layout chapter, differential signals have to be routed in parallel (HSET_OUT_P and
HSET_OUT_N signals)
The impedance of audio chain (filter + speaker) must be lower than 32.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HSET_OUT_P
HSET_OUT_N
Figure 9: Filter and ESD protection of 32 ohms speaker
Ferrite Bead
Ferrite Bead
18pF
ESD protection
speaker
ESD protection
HiLoNC V2 Application Note
11 March 2011 - page 15/66
To use an external audio amplifier connected to a loud-speaker, use serial capacitors of 10nF on HiLoNC
audio outputs to connect the audio amplifier.
Figure 10: Example of D class TPA2010D1 1Watt audio amplifier connections.
4.2.2 Recommended characteristics for the microphone and speaker
4.2.2.1 Recommended characteristics for the microphone
Item to be inspected Acceptance criterion
Sensitivity - 40 dB SPL +/-3 dB (0 dB = 1 V/Pa @ 1kHz)
Frequency response Limits (relatives values)
Freq. (Hz) Lower limit Upper limit 100 -1 1 200 -1 1 300 -1 1 1000 0 0 2000 -1 1 3000 -1.5 1.5 3400 -2 2 4000 -2 2
Current consumption 1 mA (maximum) Operating voltage DC 1 to 3 V (minimum) S / N ratio 55 dB minimum (A-Curve at 1 kHz, 1 Pa) Directivity Omni-directional Maximum input sound pressure level 100 dB SPL (1 kHz)
Maximum distortion 1%
Radio frequency protection Over 800 -1200 MHz and 1700 -2000 MHz, S/N ratio 50
dB minimum (signal 1 kHz, 1 Pa)
4.2.2.2 Recommended characteristics for the speaker
Item to be inspected Acceptance criterion
Input power: rated / max 0.1W (Rate)
Audio chain impedance 32 ohm +/- 10% at 1V 1KHz
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 16/66
Frequency Range
300 Hz ~ 4.0 KHz
Sensitivity (S.P.L) >105 dB at 1KHz with IEC318 coupler,
Distortion 5% max at 1K Hz, nominal input power
4.2.3 DTMF OVER GSM NETWORK
Former systems used to transmits data through DTMF modulation on RTC telephone lines.
Audio DTMF tones are not guarantee over GSM network
This is due to the nature of the GSM Voice CODEC - it is specifically designed for the human voice and does not faithfully transmit DTMF. When you press the buttons on your GSM handset during a call, this goes in the Signalling channel - it does not generate in-band DTMF; the actual DTMF tones are generated in the network.
Therefore if your design needs the DTMF functionality, you should know their transmission over the network is not at all guaranteed (because of voice codec). This could work or fail depending very strongly to the GSM network provider. SAGEMCOM does not guarantee any success on using this function.
However tests on HiLoNC V2 shown this feature can work on some GSM Networks. Successful transmissions and receptions have been done with 300ms of characters duration and 200mVpp as input level on microphone input.
If this function is needed, first try with your network and those parameters then (if success) try to tune
them to fit your specification.
4.3 PWM
4.3.1 PWM outputs
The HiLoNC V2 module can manage two PWM outputs. They can be configured with appropriate AT command (for more details refer to AT command set for SAGEMCOM HiLoNC V2 module specification).
User application can set for each output:
Frequency between : 25.6KHz and 1083.3KHz
Duty range from: 0 to 100%
4.3.2 PWM for Buzzer connection
The HiLoNC V2 module can manage a dedicate PWM output to drive a buzzer. The buzzer can be used to alarm for abnormal state.
Resistors should be added to protect the buzzer. The value of these resistors depends on the buzzer and
the transistor. Normally, they can be set as 1K.
VBAT
HiloNC
R1
R2
PWM2
Figure 11: Buzzer connection
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 17/66
GPIO or
4.4 NETWORK LED
The HiLoNC V2 module can manage a network LED. The LED can be connected either to one of the available GPIO or to a PWM (but not the one dedicated to the buzzer). The transistors can be found a in a single package referenced as UMDXX or PUMDXX Family. Value of resistor R depends on characteristic of chosen LED; it is used to limit the current through the diode. Use the AT command to set the GPIO or PWM used to control the LED.
PWM
HiLoNC V2
VBAT
R
Figure 12: Network LED connection
4.5 POWER SUPPLY
The HiLoNC V2 module can be supplied by a battery or any DC/DC converter compliant with the module supply range 3.2V to 4.5V and 2.2 A.
Warning: The HiLoNC V2 module is not supposed to be supplied w ith a voltage over 4.5V even in transient. However the module can resist to over voltage transient lower than 6.8V. If the system main board pow er supply unit i or over in case of transient voltage presence on the circuit, the HiLoNC V2 module power amplifier may be severely damaged.
To avoid such issue, simply add a voltage limiter to the module power supply lines so the VBATT signal Pads may never receive a surge voltage over 6.8V. The limiter can be as simple as a Zener diode as shown here under or in the annex development kit schematic of this document.
s not stable or if the system main board is supplied w ith 9V
Figure 13: Over voltage protection on VBatt
The PCB tracks must be well dimensioned to support 2.2 A maximum current (Burst current 1.8A plus the
extra current for the other used I/Os). The voltage ripple caused by serial resistance of power supply path (Battery internal resistance, tracks and contact resistance) could result in the voltage drops.
To prevent any issue in the power up procedure the typical rise time for VBAT should be 1ms.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 18/66
The HiLoNC V2 module does not manage the battery charging.
4.5.1 Burst conditions
- Communication mode (worst case: 2 continuous GSM time-slot pulse):
Figure 14: GSM/GPRS Burst Current rush
A 47µF with Low ESR capacitor is highly recommended for VBAT and close to the module pads 30 & 31.
4.5.2 Ripples and drops
Current burst at 1.8A 33dBm
GSM TX Lev 5
Ripple
VBAT drop
3.2V Min
Figure 15: GSM/GPRS Burst Current rush and VBAT drops and ripples
The minimum voltage during the drop of VBAT must be 3.2V at 33dBm at pads 30 and 31 for the full
range of the required functioning temperature. To reach this aim, adapt the VBAT tracks width to minimize the loss: the shorter and thicker is the track; the lower is the serial impedance.
To check the serial resistor, any CAD software can be used or by experiment by measuring it on the PCB by injecting 1A into the VBAT track on connector side and shorting to GND the other side, this could be done using a laboratory power supply set to few volts with a limitation in current to 1A. Then the measure of the drop voltage leads to the serial resistor.
Noise on VBAT due to drops could result in poor audio quality.
Serial resistor should be less than 250m including the impedance of connectors if any.
Ripple has to be minimised to have a clean RF signal. This can be improved by filtering the output of the
power supply when AC/DC or DC/DC components are used. Refer to the power converter chip supplier application note for more information and advises.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 19/66
To have 3.7V out R1=560K & R2=271.8K
(270K+1.8K)
4.6 EXAMPLE OF POWER SUPPLIES
4.6.1 DC/DC Power supply from a USB or PCMCIA port.
It the following application note from Linear Technology LTC3440, this schematic is an example of a DC/DC power supply able to power 3.6V under 2A. This can be use with a AC/DC 5V unit or an USB or PCMCIA bus as input power source. C6 to C9 can be followed by a serial MOS transistor to avoid a slow rise signal at VOUT.
Figure 16: Example of power supply based on a DC/DC step down converter
4.6.2 Simple high current low dropout voltage regulator.
If the whole power consumption is not an issue, this example of a simple voltage regulator preceded by an AC/DC to 5V converter, can be use to power the module.
The voltage output is given by: VOUT = 1.235V × [1 + (R1 / R2)]
Figure 17: Example of power supply based on regulator MIC29302WU
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 20/66
4.6.3 Simple 4V boost converter.
Simple boost converter with Linear LT1913 (see LT1316 evaluation kit document). The input can be preceded by an AC/DC converter to get the 5V. PGOOD signal can be checked before the ignition of the module.
Figure 18: Example with Linear LT1913
4.7 UART
The HiLoNC V2 module features a V24 interface to communicate with the host through AT commands or for easy firmware upgrading purpose.
It is recommended to manage an external access to the V24 interface, in order to allow easy software
upgrade (baud rate up to 460.8kbps, validated with ATEN USB/Serial converter).
DTR, DSR, DCD and RI signals are internally pull upped to VGPIO with a 100K.
RI signal is a stand alone signal that can be used with anyone of the following configurations. Consult the
AT command specification for more information about this signal and its use.
4.7.1 Signals reminder
The following table quickly sums up the use of the different signals from UART
Signal name Signal use(DTE point of view)
RX
TX DCD DSR DTR
RTS CTS
RI
Receive data Transmit data Signal data connections in progress (GPRS or CSD) Signal UART interface is ON Prevent the HiLoNC V2 to enter into sleep mode Switch between data and command modes Wake up the module,… Wakes up the module when Ksleep=1 is used Signal HiLoNC V2 is ready to receive AT commands, has waken up Signal incoming calls (voice and data), SMS,…
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 21/66
Consult the AT command Specification document for the use of the UART signals.
Unused signals can be left not connected.
4.7.2 Complete V24 – connection HiLoNC V2 - host
A V24 interface is provided on the 51 pads of the HiLoNC V2 module with the following signals: RTS/CTS, RXD/TXD, DSR, DTR, DCD, RI.
The use of this complete V24 connection is recommended as soon as your application needs to exchange
data (over GPRS or CSD).
HiLoNC V2 Module
39 40 33 34 35
36 38 37
TXD
CTS DSR
DCD
RI
DTR RXD
RTS
RXD
CTS DSR
DCD
RI
DTR TXD
RTS
DTE Device
2.8V signals
Note: GND is not represented
DCE point of view
Figure 19: Complete V24 connection between HiLoNC V2 and host
This configuration allows to use the flow control RTS & CTS to avoid any overflow error during the data transfer, CTS is moreover used to signal when the HiLoNC V2 is ready to receive an AT command after a power up sequence or a wake up from sleep mode. This configuration allows as well all the signalling signals like:
RI signal used when programmed to indicate an incoming voice or data call or SMS incoming etc…
DCD signal used to signal the GPRS connections
DSR signal used to signal the module UART interface is ON
DTR signal used to prevent the HiLoNC V2 module from entering into sleep mode or to switch between
Data and AT commands or to hang up a call or to wake up the module etc…
DTE point of view
2.8V signals
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 22/66
1
6 9
5
sequence.
Avoid supplying the UART before the HiLoNC V2 module is ON, this could result in bad power up
Figure 20: CTS versus POK_IN signal during the power on sequence.
4.7.3 Complete V24 interface with PC
It supports speeds up to 115.2 Kbps and may be used in auto bauding mode. To use the V24 interface, some adaptation components are necessary to convert the +2.8V signals from the HiLoNC V2 to +/- 5V signals compatible with a PC.
HiLoNC V2 Module
2.8V signals
TXD
39
CTS
40
DSR
33
DCD
34
RI
35
DTR
36
RXD
38
RTS
37
DCE point of view
RS232 Transceiver
IN IN IN IN IN OUT OUT OUT
3.1V to +/-5.5V
Figure 21: connection to a data cable
OUT OUT OUT OUT OUT
IN IN IN
signals
RXD
CTS
DSR
DCD
RI
DTR TXD
RTS
DTE point of view
2 8 6 1 9
4 3 7
SUBD9 Female Note: pin 5 is GND
sequence. To have a proper behaviour use the signal VGPIO to enable the RS232 Transceiver.
To create your own data cable (for software download purpose…etc…) refer to the following schematic as an example with a MAX3238E:
Avoid supplying the UART before the HiLoNC V2 module is ON, this could result in bad power up
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 23/66
VCC_3V1 is an LDO output (VBAT to VCC_3V1) enabled by VGPIO from the module.
180 are serial resistors aimed to limit the EMC and ESD propagation.
Figure 22: Example of a connection to a data cable with a MAX3238E
4.7.4 Partial V24 (RX-TX-RTS-CTS) – connection HiLoNC V2 - host
When using only RX/TX/RTS/CTS instead of the complete V24 link, the following schematic could be used.
HiLoNC V2 Module
TXD
39
CTS
40
DSR
33
DCD
34
RI
35
DTR
36
RXD
38
RTS
37
2.8V signals
DCE point of view
Figure 23: Partial V24 connection (4 wires) between HiLoNC V2 and host
Note: GND is not represented
RXD
CTS
DSR
DCD
RI
DTR TXD
RTS
DTE point of view
DTE Device
2.8V signals
electrical level), therefore AT command AT+Ksleep can switch between the two sleeps mode available for the HiLoNC V2.
As DSR is active (low electrical level) once the HiLoNC V2 is switched on, DTR is also active (low
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 24/66
DTR input signal is internally pull upped to VGPIO with a 100K, this result in 28µA of extra consumption.
DCD and RI can stay not connected and floating when not used.
RI signal is a stand alone signal that can be used with anyone of the following configuration. Consult the
AT command specification for more information about this signal and its use.
This configuration allows to use the flow control RTS & CTS to avoid any overflow error during the data transfer, CTS is moreover used to signal when the HiLoNC V2 is ready to receive an AT command after a power up sequence or a wake up from sleep mode.
Figure 24: CTS versus POK_IN signal during the power on sequence.
However this configuration does not allow the signalling signals like:
RI signal used when programmed to indicate an incoming voice or data call or SMS incoming etc…
DCD signal used to signal the GPRS connections
DSR signal used to signal the module UART interface is ON
DTR signal used to prevent the HiLoNC V2 module from entering into sleep mode or to switch between
Data and AT commands or to hang up a call or to wake up the module etc…
Consult the AT command Specification document for the uses of the UART signals.
4.7.5 Partial V24 (RX-TX) – connection HiLoNC V2 - host
When using only RX/TX instead of the complete V24 link, the following schematic could be used.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 25/66
HiLoNC V2 Module
39 40 33 34 35
36 38 37
TXD
CTS DSR
DCD
RI
DTR RXD
RTS
RXD
CTS
DSR
DCD
RI
DTR TXD
RTS
DTE Device
2.8V signals
DCE point of view DTE point of view
Figure 25: Partial V24 connection (2 wires) between HiloNC V2 and host
electrical level), therefore AT command AT+Ksleep can switch between the two sleep modes available for the HiLoNC V2.
 
electrical level), therefore AT command AT+Ksleep can switch between the two sleep modes available for the HiLoNC V2. The HiLoNC V2's firmware allows the rise of CTS during the sleep state even when looped to RTS signal.
 
AT command specification for more information about this signal and its use.
This configuration does not allow to use the flow control RTS & CTS. Those signals are used to avoid any overflow error during the data transfer, CTS is moreover used to signal when the HiLoNC V2 is ready to receive an AT command after a power up sequence or a wake up from sleep mode.
As DSR is active (low electrical level) once the HiLoNC V2 is switched on, DTR is also active (low
DTR input signal is internally pull upped to VGPIO with a 100K, this result in 28µA of extra consumption.
As CTS is active (low electrical level) once the HiLoNC V2 is switched on, RTS is also active (low
DCD and RI can stay not connected and floating when not used.
RI signal is a stand alone signal that can be used with anyone of the following configuration. Consult the
Note: GND is not represented
2.8V signals
Figure 26: CTS versus POK_IN signal during the power on sequence.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 26/66
Moreover this configuration does not allow the signalling signals like:
RI signal used when programmed to indicate an incoming voice or data call or SMS incoming etc…
DCD signal used to signal the GPRS connections
DSR signal used to signal the module UART interface is ON
DTR signal used to prevent the HiLoNC V2 module from entering into sleep mode or to switch between
Data and AT commands or to hang up a call or to wake up the module etc…
Consult the AT command Specification document for the uses of the UART signals.
4.8 UART0
HiLoNC V2 module manages a 2-wire UART interface. This UART interface is only dedicated for software traces.
SAGEMCOM strongly recommends leaving this interface externally accessible for trace (e.g. access by
test point pads).
4.9 GPIO
There are Three GPIOs available on HiloNC V2. All GPIOs have internal pull-up resistors. GPIOs can directly be controlled with dedicated AT commands. Thanks to some other special AT commands, GPIOs can for example be used:
to make an I/O toggling while the module is attached to the network
to make an I/O toggling when a programmed temperature is reached
as input to detect the presence of an antenna (with some external additional electronic)
as input to detect the SIM card presence …etc
4.10 ADC
There is one ADC input pad which can be used to read the value of the voltage applied. Following characteristics must be met to allow proper performances:
The input signal voltage must be within 0V and up to 3V
The input impedance of the pad is 150K
The input capacitance is typically 10pF.
The AT command AT+KADC will give voltage value with following characteristics:
10 bits resolution
Maximum sampling frequency is 200 KHz.
Consult the AT command Specification document for more information about KADC AT command.
4.11 PCM
There is a master PCM interface available on HiLoNC V2. The PCM interface can be configured by dedicate AT commands. Following characteristics must be met:
16 bits PCM data word length
Configurable PCM clock rate must not exceed 1MHz
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 27/66
Figure 27: PCM interface timing
4.12 RF BURST INDICATOR
There is one digital output named RF_TX available on HiLoNC V2 to indicate the RF transmission. This output can not be controlled by AT commands and can not be used for other purpose.
This output can only connect to a transistor but not to drive a LED directly. Otherwise, the RF
transmission will be unexpected affected.
VBAT
R
RF_TX
HiLoNC
V2
Figure 28: RF_TX burst indicator
4.13 BACKUP BATTERY
4.13.1 Backup battery function feature
4.13.1.1 With backup battery
A backup battery can be connected to the module in order to supply internal RTC (Real Time Clock) when the main power supply is removed. Thus, when the main power supply is removed, the RTC is still supplied and the module keeps the time register running.
With external backup battery:
If VBAT < 3V, internal RTC is supplied by VBACKUP.
If VBAT 3V, internal RTC is supplied by VBAT.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 28/66
4.13.1.2 Without backup battery
Without backup battery
If VBAT 1.5V, internal RTC is supplied by VBAT.
If VBAT < 1.5V, internal RTC is not supplied.
VBACKUP input of the module has to be connected to a 10µF capacitor (between VBACKUP and GND).
SAGEMCOM does not recommend to connecting VBACKUP signal to VBAT as for former SAGEMCOM
MOXX modules.
4.13.2 Current consumption on the backup battery
When the power supply is removed, the internal RTC will be supplied by backup battery.
To calculate the backup battery capacity, consider that current consumption for RTC on the backup
battery is up to 1000µA depending on the temperature.
Pad Name VBACKUP
Min Max
1000µA
4.13.3 Charge by internal HiLoNC V2 charging function
The charging function is available on the HiLoNC V2 without any additional external power supply (the charging power supply is provided by the HiLoNC V2).
Charge of the back-up battery occurs only when main power supply VBAT is provided.
The recommended schematic is given hereafter:
VBACKUP
HiLoNC V2
The resistor R depends on the charging current value provided by the battery manufacturer. The charging curve which is done by the HiLoNC V2 is given hereafter:
R
Backup battery
Figure 29: Backup battery or 10µF Capacitor internally charged
VBACKUP
HiLoNC V2
10µF capacitor
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 29/66
Figure 30: Charging curve of backup battery
4.13.4 Backup Battery technology
4.13.4.1 Manganese Silicon Lithium-Ion rechargeable Battery
SAGEMCOM does not recommend using this kind of technology because of the following drawbacks:
The maximum discharge current is limited (Shall be compliant with the module characteristics).
The over-discharge problem: most of the Lithium Ion rechargeable batteries are not able to recover their
charge when their voltage reaches a low-level voltage. To avoid this, it is necessary to add a safety component to disconnect the backup .battery in case of over–discharge condition. In such a case, this implementation is too complicated (too much components for that function).
The charging current has to be regulated.
SAGEMCOM does not recommend using this kind of backup battery technology.
4.13.4.2 Capacitor battery
These kinds of backup battery have not the drawbacks of the Lithium Ion rechargeable battery. As there are only capacitors:
The maximum discharge current is generally bigger,
There is no problem of over-discharge: the capacitor is able to recover its full charge even if its voltage
has previously fallen to 0V.
There is no need to regulate the charging current.
Moreover, this kind of battery is available in the same kind of package than the Lithium Ion cell and fully compatible on a mechanical point of view. The only disadvantage is that the capacity of this kind of battery is significantly smaller than Manganese Silicon Lithium Ion battery. But for this kind of use (supply internal RTC when the main battery is removed), the capacity is generally enough.
SAGEMCOM strongly recommends using this kind of backup battery technology.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 30/66
4.14 START THE MODULE PROPERLY AND AVOID POWER UP ISSUES.
This chapter gives advices on how to make a proper start of the HiLoNC V2 module and sums up the side effects of a non compliant power up sequence or a non compliant hardware connection between the HiLoNC V2 and the host CPU.
4.14.1 Power domains
Each HiLoNC V2 pad is linked to a specific internal power domain as the following:
VANA is typically 2.85V and is a general purpose analogue dedicated voltage.
VBAT is typically 3.2V to 4.5V and is the main system voltage.
VRTC is typically 3.0V and is the real time clock dedicated voltage.
VGPIO is typically 2.8V and is a general purpose digital dedicated voltage.
VSIM is typically 1.8V or 2.9V and is the digital SIM card function dedicated voltage.
VPERM is typically 3.0V and is the permanent voltage dedicated to launch the power up sequence.
The next table gives the 51 HiLoNC V2 pads with all their relative power domains.
HiLoNC
Pads
Signal Name Function Power domain
E1 /INTMIC_P AUDIO 2.85V E2 /AUX_ADC0 ADC 2.85V
E3 GND POWER 0V E4 VGPIO EXT_VDD 2.8V E5 VBACKUP EXT_VDD 3.0V E6 /PWM0 PWM 2.85V E7 /RESET_IN RESET 2.8V E8 SAGEMCOM FACTORY USE 2.8V
E9 SAGEMCOM FACTORY USE 2.8V E10 SAGEMCOM FACTORY USE 2.8V E11 NTRST
JTAG/FACTORY
2.8V
E12 SAGEMCOM FACTORY USE 2.8V E13 SAGEMCOM FACTORY USE 2.8V E14 /GPIO2 GPIO 2.8V E15 /GPIO1 GPIO 2.8V E16 /RF_TX RF 2.8V E17 /PCM_CLK PCM 2.85V E18 /PCM_SYNC PCM 2.85V E19 /PCM_OUT PCM 2.85V E20 /PCM_IN PCM 2.85V E21 GND POWER 0V E22 SAGEMCOM FACTORY USE 2.8V E23 SAGEMCOM FACTORY USE 2.8V E24 SAGEMCOM FACTORY USE 2.8V E25 /UART0_RXD UART 0 2.85V
Figure 31 : HiLoNC V2 51 pads with their power domains
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 31/66
HiLoNC
Pads
Signal Name Function Power domain
E26 /GPIO3 GPIO 2.8V E27 GND RF 0V E28 /ANTENNA RF 3.7V E29 GND RF 0V E30 VBATT POWER 3.7V E31 VBATT POWER 3.7V E32 /UART0_TXD UART 0 2.85V E33 /UART1_DSR UART 1 2.8V E34 /UART1_DCD UART 1 2.8V E35 /UART1_RI UART 1 2.8V E36 /UART1_DTR UART 1 2.8V E37 /UART1_RTS UART 1 2.85V E38 /UART1_RX UART 1 2.85V E39 /UART1_TX UART 1 2.85V E40 /UART1_CTS UART 1 2.85V E41 /POK_IN POWER ON 3.0V E42 /PWM2 PWM 2.85V E43 /PWM1 PWM 2.85V E44 /SIM_CLK SIM 1.8V or 2.9V E45 /SIM_RST SIM 1.8V or 2.9V E46 /SIM_DATA SIM 1.8V or 2.9V E47 VSIM SIM 1.8V or 2.9V E48 VBATT POWER 3.7V E49 GND POWER 0V E50 /HSET_OUT_P AUDIO 3.7V E51 /HSET_OUT_N AUDIO 3.7V
Figure 32 : HiLoNC V2 51 pads with their power domains…continued
4.14.2 IO DC PRESENCE BEFORE POWER ON.
When the VBAT is available but the module not yet started, the following I/O's raised their output.
VBACKUP raise to 3V
POK_IN raise to 3V
HSET_N raise to 1.4V
HSET_P raise to 1.4V
4.14.3 SIDE EFFECTS OF A RETRO SUPPLY (CURRENT RE-INJECTION)
Interactions or connections between the HiLoNC V2 module and the external systems can lead to retro power supply side effects, or current re-injection through pads while the module is not yet fully powered up (means VBAT lower than its minimum 3.2V). If some precaution and simple rules are not followed, those effects can in worst case result in a deadlock module, not able to start up or to communicate.
Deadlock could happen if the retro supply occurs before the module start. The flow back current could in the worst case prevent the module to start.
The very same behaviour can happen in a normal use conditions when the lines connecting to the module to the external system uses a non compliant voltage higher than the module IO power domain (2.85V). This results in a current flow back inside the module and can lead to a deadlock system on the next start if this retro supply has continued while the system was powered off or under powered (under 3.2V). An over voltage on any line can also damage the HiLoNC V2 module.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 32/66
Those consequences are very rare but exist. Therefore, the rules and advises given on every chapter of this application note must be followed.
To avoid any power up issue, here are the rules:
Avoid any over voltage on the buses lines connected to the module.
When the module is off, do not apply any voltage on lines connected to the module.
The over voltage can be avoided by using the same power domain voltage.
Avoid 5V or 3.3V systems straight connection to 2.8V HiLoNC V2 lines. Use level adaptors when the power domain requires it.
When the module is off: Powers off the buses lines of the main system that are connected to the module, this avoid any flow back current (re-injection) and of course help a lot to improve and control the power consumption. This last issue is important as in off mode there is not control of the current inside the module and can results in a loss of current by leakage through the I/Os of the module.
4.14.4 EXAMPLE OF A CURRENT RE-INJECTION ON U.A.R.T.
Current re-injection appears when the module is off or not powered and I/Os connected to the module still powered. Example: UART bus powered from the DTE side before the module is powered. This can result in a bad starting behaviour.
To avoid current re-injection, simply do not supply the lines connected to the module before the module
switches on. Power up the module first using the POK_IN Line then open the UART lines for the DTE side and all necessary I/O, this will avoid leakage of current improving the power consumption and avoid any possible deadlock issue during the power up process.
Power supply domain
I max = 15mA
Clamp
Diode
IN Buffer
Clamp
Diode
OUT Buffer
Figure 33: Digital Pad-out clamp diode
All the digital pads have this structure a current re-injection by supplying the lines with a non compliant
voltage range must be avoided. (From -0.4V up to 2.8V+0.4V)
Vd = 0.4V
Pad_X
Vd = 0.4V
I max = 15mA
Reverse currents over 15mA will damage the chip. Avoid this issue. Keep the connected line voltage
between 0 and 2.8V.
For an interface with a CMOS 3.3V system or TTL 5V system, use level adapters powered by 2 supplies:
a 2.8V from a LDO IC which is enabled by VGPIO signal and the other external required voltage 3.3V or 5V.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 33/66
If a Level shifter is used or a RS232 adapter, use the VGPIO signal as the enable signal to avoid any
current re-injection before the module start.
If a straight connection is used between the HiLoNC V2 and the DTE UART it is necessary to isolate host
and HiLoNC V2 module in order to avoid generating current re-injection through when HiLoNC V2 is switched­off.
Example of schematic (only useful signals are represented):
VGPIO
DTR, RTS, RXD
HiLoNC V2
DCD, DSR, CTS, TXD, RI
Host
Figure 34: Hardware interface diodes solution between HiLoNC V2 and host
HiLoNC V2
DTR, RTS, RXD
DCD, DSR, CTS, TXD, RI
Figure 35: Hardware interface buffers solution between HiLoNC V2 and host
Buffer
Tri state command
Host
4.14.5 ADVICES FOR EVERY POWER DOMAIN
To avoid any current re-injection on VANA (2.85V)
If an external bias voltage over VANA is used for the microphone, use a 10µF serial capacitor to block the DC voltage.
If a voltage higher than VANA has to be measured by the ADC, use external resistor divider to limit it. if PWM bus is output only, the external system is supposed to be in input on the same voltage domain, if it is
not the case or if its inputs are pulled up and able to source current while the module is off, then simply use open drain or open collector transistors to avoid any flow back current to the module. The external system connected to the module by the UART has to switch its UART lines off while the module is off. If the external system cannot commands its UART lines off, then it is necessary to add a buffer between the module and the external system to prevent any issue. In this last case, the buffer would have to be enabled by the VGPIO voltage that is only available when the module starts. This applies to TXD, RXD, RTS, CTS which are on this power domain and also to the lines on the VGPIO power domain (see here after).
To avoid any current re-injection on VGPIO (2.80V)
Do not connect a power supply to the VGPIO pad. This pad is an LDO output only. The reset signal is internally pulled up and can be connected to an open drain transistor. The GPIOs have to be used in compliance of the power domain and when the module is off, the external
system has to shut off its GPIOs.
The SPI bus has to be not connected to the external system. The JTAG bus has to be not connected to the external system.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 34/66
The UART lines on this power domain (DCD, DTR, DSR, RI) have to follow the same rules as those on VANA domain (TXD, RXD, RTS, CTS). See have above. A resistor of 10K has to be connected to the E11 (NTRST) pad and GND to pull down this I/0, preventing any deadlock due to VGPIO current re-injection.
To avoid any current re-injection on VPERM (3.0V)
The POK_IN signal is internally pulled up and can be connected to an open drain transistor.
To avoid any current re-injection on VRTC (3.0V)
The VBACKUP signal has to be only connected to a DC coin 3V battery or a capacitor of 10µF.
To avoid any current re-injection on VSIM (1.8V or 2.9V)
Use only VSIM pads to supply the sim card or sim chip.
To avoid any current re-injection on VBAT (3.2V to 4.5V)
Use a VBAT signal with a fast rise time to have a VBAT final value as fast as possible. (see hereafter) In case of needs, use 2 serial capacitors of 10µF to connect the audio speaker lines to the external system
inputs.
4.14.6 CASE OF VBAT RISE TIME
The VBAT rise time from 0V to its final value has to be lower than 1ms possible failure during the power up. If this value cannot be guaranteed, then some MOS transistors could be used to create a fast rise time switch able to quickly commute from the VBAT final value to the modules power pads.
(1)
This value will be updated to a higher final value including the worst case.
(1)
. This is necessary in order to avoid any
4.14.7 START- UP
To start the module, first power up VBAT, which must be in the range 3.2V ~ 4.5V, and able to provide 2.2A during the TX bursts (Refer to the module specification for more details).
POK_IN is a low level active signal internally pulled up to a dedicated power domain to 3V.
As POK_IN is internally pulled up, a simple open collector or open drain transistor can be used for ignition.
Warning: The POK_IN will become low after module is ready. An open collector or open drain transistor must be used. The POK_IN can not be directly driven by a GPIO signal.
To start the module, a low level pulse must be applied on POK_IN during 2000 ms.
RESET must not be Low during that period of time
After a few seconds, the CTS goes to the active state when the module is ready to receive AT commands.
VGPIO is a supply output from the module that can be used to check if the module is alive.
When VGPIO = 0V the module is OFF
When VGPIO = 2.8V the module is ON (It can be in Idle, communication or sleep modes)
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 35/66
commands
Max 7 seconds
Module is
OFF
2000ms
POK_IN
Software Loading
spike
CTS
Typ 5 seconds
Figure 36: Power ON sequence
4.15 UART SIGNALS AT POWER ON
Module is
ON
VGPIO
Module is ready
to receive AT
The UART signals are low level active therefore these signals rise up when the module starts. During around 70ms (see figure below), those signals present a transient spike. Those spikes behaviour at start up are normal, however pay attention to them when a CTS low level detection is used do send AT commands. Only DSR and CTS signals get low after the end of the start up procedure.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 36/66
TXD
RXD
DTR
RI
DCD
DSR
RTS
Max 7 seconds
70ms
30ms
150ms
OFF
POK_IN
CTS
Module is
2000ms
Module is ON
Module UART interface is ON
Module is ready to
receive AT commands
Typ 5 seconds
Transients spikes during power on sequence
Figure 37: Full UART signals during the power on sequence.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 37/66
send AT
4.16 POWER ON AND SLEEP DIAGRAMS
Those 2 diagrams show the behaviours of the module and the DTE during the power on and then in the sleep modes.
DTE is in idle mode
U.A.R.T.
closed ?
VBAT≥3.2
Volts min
POK_IN
LOW for 2s
AND Reset
High?
KSUP notified if KSREP
VGPIO rise to 2.8V
CTS is Low and /or
activated
Figure 38: Diagram for the power on
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
Module is ready
to receive and
HiLoNC V2 Application Note
11 March 2011 - page 38/66
or the
OS
mode
Module is ready to receive and send AT
Sleep mode request
Ksleep = 1 OR
( Ksleep = 0
AND
DTR = High)
Delay to enter the sleep
mode
DTE could also
be in sleep
VGPIO remains at 2.8V
Module is in
sleep mode
Wake up incoming event such as:
RI signal
connected
and
programmed?
CTS is High
The wakes up periods are set by the network DRX
Network event.
Alarm interruption.
DTR interruption.
RTS interruption.
Figure 39: Diagram for the sleep mode
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
RI wakes the DTE
DTE is in idle mode
HiLoNC V2 Application Note
11 March 2011 - page 39/66
GPIO
4.17 MODULE RESET
To reset the module, a low level pulse must be sent on RESET pad during 10 ms. This action will immediately restart the HiLoNC V2 module. It is therefore useless to perform a new ignition sequence (POK_IN) after.
SAGEMCOM recommends using this feature in case of emergency, freeze of module or abnormal longer
time to respond to AT Commands, this signal is the only way to get the control back over the HiLoNC V2 module.
RESET is a low level active signal internally pulled up to a dedicated power domain.
As RESET is internally pulled up, a simple open collector or open drain transistor can be used to control it.
2.4V min
2.8V
RESET_IN: 7
SAGEM HiLoNC
V2 Module
DCE
Figure 40: Reset command of the HiLoNC V2 by an external GPIO
The RESET signal will reset the registers of the CPU and reset the RAM memory as well.
As RESET is referenced to VGPIO domain (internally to the module) it is impossible to make a reset
before the module starts or try to use the RESET as a way to start the module.
Another solution more costly would be to use MOS transistor to switch off the power supply and restart the power up procedure using the POK_IN input line.
0.4V max
10ms
HOST DTE
4.18 MODULE SWITCH OFF
An AT command “AT*PSCPOF” allows to switch off "properly" the HiLoNC V2 module. In case of necessary the module can be switched off by controlling the power supply. This can be used for example when the system freezes and no reset line is connected to the HiLoNC V2. In this case the only way to get the control back over the module is to switch off the power line. If the system is on a battery, it is wise to have a control of the power supply by a GPIO with for example the following schematic.
Figure 41: Power supply command by a GPIO
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 40/66
This kind of schematic could also be used to save few micro amperes in case of need. As the module has
a drain current of up to 56µA, this kind of function could lower it to the current through R4.
These, are the behaviours of the VGPIO and the CTS signal during the power off sequence.
AT*PSCPOF
Module is ON
POK_IN is low
Typ 2 seconds
Module is
OFF
POK_IN is high
VGPIO
CTS
Figure 42: Power OFF sequence for POK_IN, VGPIO and CTS
4.19 SLEEP MODE MANAGEMENT AND POWER CONSUMPTION
The AT command “AT+KSLEEP” allows to configure the sleep mode.
When AT+KSLEEP=1 is configured:
The HiLoNC V2 module decides by itself when it enters in sleep mode (no more task running).
“0x00” character on serial link wakes up the HiLoNC V2 module.
When AT+KSLEEP=0 is configured:
The HiLoNC V2 module is active when DTR signal is active (low electrical level).
When DTR is deactivated (high electrical level), the HiLoNC V2 module enters in sleep mode after a
while.
On DTR activation (low electrical level), the HiLoNC V2 module wakes up.
When AT+KSLEEP=2 is configured:
The HiLoNC V2 module never enters in sleep mode.
In sleep mode the module reduces its power consumption and remains waiting for the wake up signals either from the network (i.e. Read paging block depending on the DRX value of the network) or the operating system (i.e. timers wake up timers activated) or the host controller (i.e. character on serial link or DTR signal).The power consumption should look like the following example for DRX9.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 41/66
Figure 43: Power consumption at DRX9 (with RS-NGMO2 power supply)
When the HiLoNC V2 module leaves the sleep mode thanks to the network incoming signal or by action of the user the power consumption will step from the <1.7mA to 15mA and then to 25mA in around 2 seconds.
The behaviour of the system at wake-up:
System resumes from clock 32 MHz, the power consumption rises to around 15mA.
System resumes the hardware blocks, the power consumption rises to around 25mA.
To perform the correct measurement of the power supply of a system using a HiLoNC V2 module, refer to
the specification TW0.9 version 4.7 June 2008 chapter "standby test procedure" from the GSM association. This specification explains how to proceed and what apparatus have to be used to perform the test.
Check also SAGEMCOM document "Getting started with the current consumption measurement"
The main parameters for a compliant measurement are:
Parameter Idle Mode Setting Idle Mode Setting
Measurement Serial Resistance 0.5 ohms Tolerance/Type. 1%, 0.5W, high precision metal film resistor
Sampling frequency 50 k samples/s Resolution 0.1mA over the full dynamic range of module currents Noise floor Less than lowest ADC step
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 42/66
5. RECOMMENDED I/OS AND COMPONENTS ON THE FINAL PRODUCT
The design of the customer’s board (on which the module is soldered) must provide an access to following signals when the final product will be completely integrated.
To upgrade the module software, SAGEMCOM recommends providing a direct access to the module
serial link through an external connector or any mechanism allowing the upgrade of the module without opening the whole product.
Serial link:
TXD Output UART transmit
RXD Input UART receive
To trace the module software, SAGEMCOM recommends providing a direct access to the module trace
port UART0 (2 I/Os) through internal test points (TP) located on the customer's main board.
The board has to feature as minimum those external components.
A capacitor of 47µF on the VBAT near pads 30 and 31.
A capacitor of 10µF on VBACKUP when no backup battery is used.
6. ESD & EMC RECOMMENDATIONS
6.1 HILONC V2 ALONE
The HiLoNC V2 module alone can hold up to 2KV on each of the 51 pads including the RF pad.
6.2 HANDLING THE MODULE
HiLoNC V2 modules are designed and packaged in tape-and-real for factories SMT process. HiLoNC V2 modules contain electronic circuits sensitive to human hand's electrostatic electricity. Handling without ESD protection could result in permanent damages or even destruction of the module.
6.3 Customer’s product with HiLONC V2
If customer’s design must stand more than 2kV on electrostatic discharge, following recommendation must be followed.
6.4 Analysis
ESD current can penetrate inside the device via the typical following components:
SIM connector
Microphone
Speaker
Battery / data connector
All pieces with conductive paint.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 43/66
In order to avoid ESD issues, efforts shall be done to decrease the level of ESD current on electronic
components located inside the device (customer’s board, input of the HiLoNC V2 module, etc…)
6.5 Recommendations to avoid ESD issues
Insure good ground connections of the HiLoNC V2 module to the customer’s board.
Flex (if any) shall be shielded and FPC connectors shall be correctly grounded at each extremity.
Put capacitor 100nF on battery, or better put varistor or ESD diode in parallel on battery and charger wires
(if any) and on all power wires connected to the module.
devices.
Uncouple microphone and speaker by putting capacitor or varistor in parallel of each wire of these
7. RADIO INTEGRATION
Note that radio engineering competences are mandatory to get accurate radio performance on customer’s
product.
7.1 ANTENNA
A 50 line matching between module and customer’s board, and the RF antenna is required.
Figure 44: Antenna connection
Keep matching circuit on customer’s board but with direct connection in the first step – it could be
necessary to make some adjustment later, during RF qualification stage.
The selected antenna must comply with FCC RF exposure limits in GSM850 and PCS1900 band :
GSM850 : MPE < 0.55mW/cm
PCS1900 : ERP < 3W
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
2
(Distance is 20 cm)
HiLoNC V2 Application Note
11 March 2011 - page 44/66
For antenna detection presence circuit refer to the dedicated document:
URD1 OTL 5365.1 065 71466 ed 01 - Hilo-HiLoNC Antenna Detection
Figure 45: Antenna detection circuit
7.2 GROUND LINK AREA
SAGEMCOM emphasizes the fact that a good ground GND contact is needed between the module and the customer’s board to have the best radio performances (spurious, sensitivity…).
All HiLoNC V2 GND pads must be connected to the GND of the customer’s board.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 45/66
Not correct
connection
Correct
connection
7.3 LAYOUT
Isolate RF line and antenna from others bus or signals
No signals on 50 ohms area and if that is not possible, add ground shielding using different layers.
Do not add any ground layer under the antenna contact area.
Varnish must be present on all the grey area of the customer's board (expect solder pads) to isolate
HiLoNC V2 module from the customer’s board
Figure 46: Mandatory area for varnish
This recommendation is due to the presence of signals (below varnish) and fiducials and golden tests
points and UL PCB marking (without varnish area in Yellow on the picture above) on the back side of the module. If customer’s board has layout or via without varnish below the HiLoNC V2 module, short-circuits could occur between them.
Free CAD software can be used to compute the stack-up parameter that leads to a compliant 50 RF
track.
Connection between two RF tracks of different widths or of a FR line with a smaller pad component must be smoothed to keep a correct RF adaptation.
Figure 47: Connection of RF lines with different width
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 46/66
7.4 MECHANICAL SURROUNDING
Do not apply mechanical pressure over the HiLoNC V2 shield, this could damage the mechanical
structure of the shield and lead to internal short-circuits or other undesirable issues.
Avoid any metallic part around the antenna area
Keep FPCs and battery contact (if any) far from antenna area.
FPC's (if any) have to be shielded
7.5 OTHER RECOMMENDATIONS – TESTS FOR PRODUCTION/DESIGN
SAGEMCOM guarantees the RF performances in conductive mode but strongly recommends making RF measurements in an anechoic chamber in radiated mode (tests conditions for FTA): the radiated performances strongly depend on radio integration (layout, antenna, matching circuit, ground area…..)
8. AUDIO INTEGRATION
Audio mandatory tests for FTA are in handset mode only so a particular care must be brought to the design of audio (mechanical integration, gasket, electronic) in this mode. The audio norms which describe the audio tests are 3GPP TS 26.131 & 3GPP TS 26.132.
Note that acoustic competences are mandatory to get accurate audio performance on customer’s product.
8.1 MECHANICAL INTEGRATION AND ACOUSTICS
Particular care to Handset Mode:
To get a better audio output design (speaker part):
The speaker must be completely sealed on front side.
The front aperture must be compliant with speaker supplier’s specifications
The back volume must be completely sealed.
The sealed back volume must be compliant with speaker supplier’s specifications
Take care of the design of the speaker gasket (elastomer).
Foresee a stable and large enough area for the gasket of the artificial ear.
To get a better audio input design (microphone part):
Take care of the design of the microphone (elastomer).
All receivers must be completely sealed on front side.
Microphone sensitivity depends on the shape of the device e.g. about –40 ±3 dBV/Pa.
Promote the use of pre-amplified microphone. If needed, use a pre-amplification stage.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 47/66
As audio input and output are strongly linked:
Place the microphone and the speaker as far as possible from one another.
8.2 ELECTRONICS AND LAYOUT
Avoid Distortion & Burst noise
Audio signals must be symmetric (same components on each path).
Differential signals must be routed parallel.
Audio layer must be surrounded by 2 ground layers.
The link from one component to the ground must be as short as possible.
If possible separate the PCB of the microphone and the one of the speaker.
Reduce as much as possible the number of electronics components (loss of quality, more dispersion).
Audio tracks must be larger than 0.5 mm.
9. RECOMMENDATIONS ON LAYOUT OF CUSTOMER’S BOARD
9.1 GENERAL RECOMMENDATIONS ON LAYOUT
There are many different types of signals in the module which are disturbing each other. Particularly, Audio signals are very sensitive to external signals as VBAT... Therefore it is very important to respect some rules to avoid disruptions or abnormal behaviour.
Magnetic field generated by VBAT tracks may disturb the speaker, causing audio burst noise. In this case,
modify layout of the VBAT tracks to reduce the phenomena.
9.1.1 Ground
A ground plane as complete as possible
 
of the layout of those two layers with a ground plane connected to main ground with as much vias as possible.
9.1.2 Power supplies
Ground of components has to be connected to the ground layer through many vias not regularly
distributed.
Top and bottom layer shall have as much as possible of ground planes. Flood the empty remain surface
Layer for power supply signals (VBAT, VGPIO) is recommended.
Any loop of power signals layout must be avoided on the design.
Suitable power supply (VBAT, VGPIO) track width and thickness.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 48/66
9.1.3 Clocks
Clock signals must be shielded between two grounds layer and bordered with ground vias.
9.1.4 Data bus and other signals
Data bus and commands have to be routed on the same layer; none of the lines of the bus shall be
parallel to other lines
Lines crossing shall be perpendicular
Suitable other signals track width, thickness.
Data bus must be protected by upper and lower ground plans
9.1.5 Radio
Provide a 50 Ohm micro strip line for antenna connection
9.1.6 Audio
Differential signals have to be routed together, parallel (for example HSET_OUT_P/HSET_OUT_N).
Audio signals have to be isolated, by pair, from all the other signals (ground all around each pair).
Cancel any loops between VBAT and GND next to the speaker to avoid the TDMA burst noise in the
speaker during a communication.
The single-end audio signal should be adopted the same rules as differential signals.
GND
HSET_OUT_P
HSET_OUT_N
GND
Figure 48: Layout of audio differential signals on a layer n
GND
Layer n-1
HSET_OUT_P
GND
Figure 49: Adjacent layers of audio differential signals
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
Layer n
Layer n+1
HiLoNC V2 Application Note
11 March 2011 - page 49/66
9.2 EXAMPLE OF LAYOUT FOR CUSTOMER’S BOARD
The following figure shows an example of layer allocation for a 6 layers circuit (for reference only): Depending on the customer’s design the layout could also be done using 4 layers.
Layer 1: Components (HiloNC)
Layer 2: Bus
Layer 3: Power supply
Layer 4: Complete GND layer
Layer 5: Audio, clocks, sensitive signals
Layer 6: GND,test points
Figure 50: layer allocation for a 6 layers circuit
10. RECOMMANDATIONS FOR CUSTOMER PRODUCTION
Note for following chapters that except where standards are indicated, the given characteristics should be considered as validated conditions used on SAGEMCOM product.
Other conditions depending of the customer’s factory process are not validated but can be submitted to
SAGEMCOM for proficiency.
10.1 MOISTURE LEVEL
According to IPC/JEDEC J-STD 20, the HiLoNC V2 has the following MSL level: 3 Customer’s module are shipped under a Dry package with all the MSL information labelled.
Floor Life
Standard Accelerated Equivalent
Time Conditions Time (hours) Conditions Time (hours) Conditions
3 168
hours It means that the customer’s factory must process and solder the HiLoNC V2 on the customer’s board at least 168 hours (7 days) after the HiLoNC V2 sealed package have been opened. This duration is given for factory floor conditions of T°<30°C, HR 60%.
<= 30°C/60% RH 192 +5/-0 30°C / 60% RH 40 +1/-0 60°C / 60%RH
Soak requirements Level
If this maximum 7 days duration can not be fulfilled, the HiLoNC V2 part must be baked again.
Unless the factory floor conditions are perfectly controlled, SAGEMCOM does not recommend to wait
until this maximum 7 days duration before soldering the HiLoNC V2 on customer’s board.
For any module exposed to ambient moisture it is therefore highly recommended to proceed to a baking
according to the JEDEC (125°C during 24H) to dry the module before any soldering process
10.2 PACKAGE
The HiLoNC V2 module is delivered in Tape and Reel package which is hermetically sealed to prevent from moisture and ESD. The characteristics of the T&R are given in the drawing below.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 50/66
Figure 51: Factory Tape dimensions
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 51/66
10.3 STENCIL
Below are given soldering characteristics to report the HiLoNC V2 on the customer’s board. Copper footprint is shown in solid line on the figure below. Stencil footprint is shown in dotted line.
Note that the opening and the pads do not strictly recover themselves.
Figure 52 : Solder mask design
10.4 SOLDER PASTE
SAGEMCOM recommends a stencil thickness of 135 µm.
SAGEMCOM recommends use of a “no clean” solder paste. Flux cleaning after module soldering on the
customer’s board is not recommended as it can lead to short circuit, label degradation.
Solder paste: M705-GRN360-K-V (Senju Metal Industry Co., Ltd.) Alloy composition: Sn96.5-Ag3.0-Cu0.5 Melting temperature: solidus 216°C / Peak 217°C / liquidus 220°C
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 52/66
10.5 PROFILE FOR REFLOW SOLDERING
A convection type soldering oven is recommended. Typical usable profile is shown on the next figure. The final profile has to be tuned depending on other elements like solder paste, customer’s board, other components…
Peak temperature: 245°C Average ramp up rate: 3°C/second max Average ramp dacay rate: 3°C/second max
Figure 53 : Typical thermal profile
The HiLoNC V2 module is a Lead-free product which has been validated integrated in a lead-free product, using a lead-free factory process.
No test has been performed using a leaded process. SAGEMCOM does not recommend using a factory
leaded process and does not guarantee any reliable result on the final product.
10.6 SMT MACHINE
HiLoNC V2 is a compact postage stamp sized module optimized for use with pick-and-place machines.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 53/66
10.6.1 Nozzles
SAGEMCOM recommends using SMT machine with nozzle diameters up to 8 mm in order to always have
best prehension of the HiLoNC V2 module.
SAGEMCOM recommends using the following two references of nozzles:
For the UNIVERSAL GSM FLEXJET the nozzle 340F
For the SIEMENS, the nozzle type 417
Figure 54 : Flexjet nozzle 340F
Figure 55 : Siemens nozzle 417
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 54/66
10.6.2 Fiducials
Optical inspection for placement is possible with SMD fiducials placed on the bottom side of the HiLoNC V2. SMD fiducials are not symmetrical in order to help optical inspection to define the right orientation.
Figure 56 : Fiducials positions
10.7 UNDERFILL
Despite its important reliability, some customer could request for some specific and extreme applications the underfill of onboard components. The HiLoNC V2’s shield has be designed accordingly to allow this process, as shown in the figure below. More details will be given in a specific application note.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 55/66
Holes
Underfill Injection
Figure 57 : Underfill injection holes
10.8 SECOND REFLOW SOLDERING
Even if SAGEMCOM recommends a single reflow soldering, a second reflow soldering can be conceivable (only if underfill has not been already performed). Positive tests have been performed with HiLoNC V2 on the bottom side.
Second reflow soldering is not possible if HiLoNC V2 module has been already under filled.
10.9 HAND SOLDERING
Hand soldering is possible.
An especial care must be considered to properly position the HiLoNC V2 on its copper footprint during
hand soldering. Begin with pads diagonally opposite to help in proper positioning.
10.10 UNSOLDERING
Manual unsoldering is possible, for repair purpose for example.
A special care must be considered in order to avoid overheating the HiLoNC V2.
For repairing: Usage of hot plate like example below can be considered with additional metallic cubic plate whose dimensions are HiLoNC V2's ones (to heat only HiLoNC V2 surface)
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 56/66
HiLoNC
Electronic board
Cube to
concentrate
the heat
Unsoldering hot
plate
Figure 58 : Laboratory hot plate to unsolder the module
Customer must remember to not have components on the HiLoNC V2 opposite side of the customer’s
board.
11. LABEL
The HiLoNC V2 module is labelled with its own FCC ID (VW3HILONCV2) on the shield side. When the module is installed in customer’s product, the FCC ID label on the module will not be visible. To avoid this case, an exterior label must be stuck on the surface of customer’s product signally to indicate the FCC ID of the enclosed module. This label can use wording such as the following: “Contains Transmitter module FCC ID: VW3HILONCV2” or “Contains FCC ID: VW3HILONCV2”.
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 57/66
12. REFERENCE DESIGN: HiLoNC V2 DEVELOPMENT KIT
Note d’étude / Technical document : URD1– OTL 5665.3– 003 / 72238 Edition 02
HiLoNC V2 Application Note
11 March 2011 - page 58/66
sagemcommunications
SC
16/03/10
9
2
Schema electrique
3000348582_R43_000_01
MODULE & SOCKET
CIE HILONC V2 DEMO BOARD
NP in socket version
NPNP
3 6
STEVEN LONG
2 7
2
50V22pF
C112
CERA_COG
5 4
CMAL
P101
2 3
4 5
1
GND
189631613
CMAL
1
VSIM_2V9
COAXFEM_5
189619159
R125
5.6k
#
VGPIO_2V8
TB101
R123
15k
#
5%
0.063W
CERA_COG
22pF
C114
5%
0.063W
R115
15k
#
50V
5%
powvolt47nH
L101
5%
0.063W
100
R119
5% 0.063W
#
VBACKUP_3V
TB103
1
CMAL
2
7 2
CMAL
189631613
8 1
100
#
NC
CH1
1
CH2
3
CH3
4
CH4
5
VN
2
0.063W5%
R121
C119
100nF
CM1218
MX103
100
R120
#
10V CERA_X5R
NC
0.063W5%
R118
15k
5%
0.063W
#
2
8 167
3
#4#
5
4
6 3
3
#
5 4
0
#
12
C110
22pFCERA_COG 50V
#
78
R110
7
#
8
7
#
8
GND
0
R111
0
R108
5
#
6
C113
33pF
CERA_COG
50V
#
34
1
#
2
1 3
2 4
VBAT_3V7
0
R104
100k
R116
#
KSC221J
S101
1
0.063W
5%
GND
CMAL
2
189631613
TB102
CMAL
5
0.063W5%
R122
100
#
4
#
R102
0
#
0
R101
0.063W5%
R124
100
#
MX102
CM1218
1
CH1
3
CH2
4
CH3
5
CH4
2
VN
GND
TDI
E9
TDO
GND
TB104
189631613
CMAL
1
VBAT
E48
E49
GND
E5
VBACKUP
P
E50
HSET_OUT
E51
N
E6
PWM0
E7
RESET
E8
UART1_CTS
E40
E41
POK_IN
PWM2
E42
E43
PWM1
SIM_CLK
E44
E45
SIM_RST
SIM_DATA
E46
E47
VSIM
E33
DCD
E34RIE35
E36
DTR
E37
RTS
RX
E38
UART1
E39
TX
VGPIO
E4
GPIO3
E26
GND_RF
E27
E28
RF
GND_RF
E29
E3
GND
E30
VBAT
E31
E32
UART0_TXD
DSR
PCM_OUT
E19
E2
AUX_ADC0
E20
PCM_IN GND
E21 E22
JTAG1 JTAG2
E23 E24
TEST
E25
UART0_RXD
E11
TRST
E12
TCK
E13
RTCK
GPIO2
E14
GPIO1
E15 E16
RF_TX PCM_CLK
E17
PCM_SYNC
E18
GND
MODULE_HILONC_V2
HILONC_V2_MODULE
MX101
E1
INTMIC_P
E10
TMS
5
#
6
50V
CERA_COG
22pF
C118
#
34
1
#
2
7
#
8
0
R112
8 1
7 2
C103
5 4
CMAL
2
50VCERA_COG 22pF
C107
330uF
ALU_2KH/105
25V
C109
10nF
CERA_X7R
16V
GND
C108
6.8pF CERA_COG
50V
6
GND
16V
CERA_X7R
C144
10nF
3
GND
50V
CERA_COG
22pF
C117
7
#
8
#
56
#
1 2
#
1 2
3
#4#
5 6
#
3 4
5 #
6
R109
0
#
7 8
R106
0
#
2 7
50VCERA_COG 22pF
C111
1 8
3 6
4 5
1 8
R105
0
#
4 5
C106
22pFCERA_COG 50V
3 6
2 7
22pFCERA_COG 50V
1 8
4 5
C104
22pF
CERA_COG
50V
GND
CR103
5.6V
GND
VGPIO_2V8
C115
# 78
VGPIO_2V8
VBACKUP_3V
CR101
5.6V
5.6V
CR102
6 3
3 6
2 7
50VCERA_COG 22pF
C102
1 8
50VCERA_COG 22pF
C105
1 8
2 7
4 5
GND
3 6
2 7
C101
22pFCERA_COG 50V
1 8
E7
RESET
E8
TDI
E9
TDO
GND
GND
GND
GND
VSIM_2V9
SIM_DATA
E46
E47
VSIM
VBAT
E48
E49
GND
E5
VBACKUP
P
E50
HSET_OUT
E51
N
E6
PWM0
E39
TX
VGPIO
E4
UART1_CTS
E40
E41
POK_IN
PWM2
E42
E43
PWM1
SIM_CLK
E44
E45
SIM_RST
E32
UART0_TXD
DSR
E33
DCD
E34RIE35
E36
DTR
E37
RTS
RX
E38
UART1
TEST
E25
UART0_RXD
GPIO3
E26
GND_RF
E27
E28
RF
GND_RF
E29
E3
GND
E30
VBAT
E31
E17
PCM_SYNC
E18
PCM_OUT
E19
E2
AUX_ADC0
E20
PCM_IN GND
E21 E22
JTAG1 JTAG2
E23 E24
E1
INTMIC_P
E10
TMS
E11
TRST
E12
TCK
E13
RTCK
GPIO2
E14
GPIO1
E15 E16
RF_TX PCM_CLK
GND
GND
SUP_HILONC_V2
HILONC_V2_MODULE
MX104
C120
33pF
CERA_COG
50V
#
C116
22pF CERA_COG
50V
#
R114
0
3 #
4
0
R113
#
5 6
1
#
2
GND
VSIM_2V9
4 5
6 3
0.063W5%
R117
100k
#
N/P_PMOSFET
Q101
ON/OFF
5
R1_C1
6
R2
1
VIN_R1
4
VOUT_C1
3
2
VBAT_3V7
R103
0
# 12
NC
FET_PMOS
FDC6331L
189778891
R107
0
#
SIM_CLK
SIM_RSTSIM_DATA
VBACKUP_3V_S
HSET_OUT_P
HSET_OUT_N
PWM0_S
RESET_IN_S
JTAG_TDI_S
JTAG_TDO_S
ANTENNA
JTAG_RTCK_S
GPIO2_S
GPIO1_S
RF_TX_S
PCM_CLK_S
PCM_SYNC_S
PCM_OUT_S
AUX_ADC0
PCM_IN_S
JTAG1_S
JTAG2_S
TEST_S
UART0_RXD_S
GPIO3_S
ANTENNA
VBAT_3V7_S
UART0_TXD_S
UART1_DSR_S
UART1_DCD_S
UART1_RI_S
UART1_DTR_S
UART1_RTS_S
UART1_RXD_S
UART1_TXD_S
VGPIO_2V8_S
UART1_CTS_S
POK_IN
PWM2_S
PWM1_S
ANTENNA
GPIO1
AUX_ADC0
INTMIC_P
JTAG_TMS_S
JTAG_TRST_S
JTAG_TCK_S
PCM_IN
JTAG1
GPIO2
GPIO1
RF_TX
PCM_CLK
JTAG_RTCK
JTAG_TCK
JTAG_TRST
JTAG_TMS
INTMIC_P
HSET_OUT_N
HSET_OUT_P
VBAT_3V7_S
GPIO3
SIM_DATA
SIM_RST
SIM_CLK
PWM1
UART1_RXD
UART1_RTS
UART1_DTR
UART1_RI
GPIO3
UART0_RXD
TEST
JTAG2
JTAG_TDO
JTAG_TDI
RESET_IN
PWM0
UART1_TXD
UART1_CTS
POK_IN
PWM2
UART0_TXD
UART1_DSR
UART1_DCD
PCM_SYNC
PCM_OUT
VBAT_3V7_S
UART1_DTR
UART1_RI
UART1_DCD
UART1_DSR
UART0_TXD_S
UART1_TXD
UART1_RXD
UART1_RTS
UART0_TXD
UART1_CTS
PWM2
PWM1
INTMIC_P
HSET_OUT_N
HSET_OUT_P
SIM_RST
SIM_CLK
VBACKUP_3V_S
JTAG_TMS
JTAG_TRST_S
JTAG_TCK
JTAG_RTCK_S
PWM0
PWM0_S
RESET_IN_S
JTAG_TDI_S
RESET_IN
JTAG_TDO
JTAG_TRST
JTAG_RTCK
JTAG_TDI
GPIO2
GPIO2_S
RF_TX
RF_TX_S
GPIO3
TEST
JTAG1
PCM_OUT
GPIO1
PCM_CLK
JTAG2
PCM_IN
PCM_SYNC
UART0_RXD
JTAG_TMS_S
JTAG_TCK_S
GPIO1_S
PCM_CLK_S PCM_SYNC_S
PCM_OUT_S
AUX_ADC0
PCM_IN_S
JTAG1_S
JTAG2_S
TEST_S
UART0_RXD_S
GPIO3_S
UART1_DSR_S
UART1_DCD_S
UART1_RI_S
UART1_DTR_S
UART1_RTS_S
UART1_RXD_S
UART1_TXD_S
VGPIO_2V8_S
UART1_CTS_S
POK_IN
PWM2_S
PWM1_S
SIM_DATA
JTAG_TDO_S
HiloNC V2 Application Note
sagemcommunications
SC
16/03/10
9
3
Schema electrique
3000348582_R43_000_01
UART1
CIE HILONC V2 DEMO BOARD
253309613
STEVEN LONG
MENTOR
3
8
4
CH4
5
VN
2
GND
GND
NC
NC
4
27
5.5V
CM1218
MX202
CH1
1
CH2
3
CH3
T2IN
6
T2OUT
22
T3IN
7
T3OUT
19
T4IN
10
T4OUT
17
T5IN
12
T5OUT
26
VCC
16
R1OUTB
9
R2IN
20
R2OUT
11
R3IN
18
R3OUT
24
T1IN
5
T1OUT
23
28
3
1
C2
14
FORCEOFF
13
FORCEON
2
GND
15
INVALID
8
R1IN
21
R1OUT
#
MAX3238E
MX205
TRSCV
25
C1
#
R201
180
5% 0.063W
#
200
R220
5% 0.063W
DS206
R221
200
5% 0.063W
11 10
DS205
1
MX204
MC74LCX04DT
9 8
MC74LCX04DT
MX204
1
vcc=vcc_2v9,ground=gnd
1
vcc=vcc_2v9,ground=gnd
#
6
3 4
R232
10k
5% 0.063W
1
MX204
MC74LCX04DT
1 2
MC74LCX04DT
MX204
1
vcc=vcc_2v9,ground=gnd
vcc=vcc_2v9,ground=gnd
1
MX203
MC74LCX04DT
3 4
vcc=vcc_2v9,ground=gnd
R218
180
#
VBAT_3V7
5% 0.063W
#
0.063W5%
5%
0.063W
#
180
R219
100k
R216
5% 0.063W
#
R217
100k
DS202
DS201
330nF
CERA_X5R
6.3V
330nF
C204
CERA_X5R6.3V
C205
vcc=vcc_2v9,ground=gnd
1
MX203
MC74LCX04DT
9 8
MC74LCX04DT
MX203
1
vcc=vcc_2v9,ground=gnd
5 6
6
MC74LCX04DT
MX204
1
vcc=vcc_2v9,ground=gnd
13 12
C209
vcc=vcc_2v9,ground=gnd
1
MX204
MC74LCX04DT
5
#
10V
CERA_X5R
100nF
#
R231
180
5% 0.063W
#
R229
180
5% 0.063W
#
R228
180
5% 0.063W
R226
180
5% 0.063W
DS209
DS210
DS207
DS208
TB201
1
NC
NC
CERA_X5R
10V
GND
188094303
[MX203]
CERA_X5R10V
C203 100nF
CERA_X5R10V
VCC_2V9
GND
C207
100nF
VCC_3V1
100nF
C206 [MX204]
DS204
#
DS203
#
180
R206
5%
0.063W
CERA_X5R10V
R205
180
5%
0.063W
CERA_X5R10V
100nF
C202
5
C201 100nF
P202
2
7
5% 0.063W
#
189734229
5% 0.063W
#
R210
200
5%
0.063W
#
200
R209
5%
0.063W
#
180
R208
5% 0.063W
#
R207
180
10
VCC_2V9
R215
100k
6
8
1
CH1
3
CH2
4
CH3
5
CH4
2
VN
5
MX201
CM1218
#
3
#
R227
180
5%
0.063W
NC
R225
180
5%
0.063W
200
R222
5% 0.063W
#
NC
R223
200
5% 0.063W
#
2
4
11
7
9
5% 0.063W
#
5% 0.063W
#
180
R204
#
GND
R230
180
GND
VCC_3V1
10k
R233
5%
0.063W
R224
180
5% 0.063W
#
12
MC74LCX04DT
MX203
1
vcc=vcc_2v9,ground=gnd
1 2
11 10
vcc=vcc_2v9,ground=gnd
1
MX203
MC74LCX04DT
13
4
MC74LCX04DT
MX203
1
vcc=vcc_2v9,ground=gnd
9
GND
100nF
C208
CERA_X5R 10V
R203
180
5%
0.063W
#
VCC_3V1
VCC_2V9
180
R202
5% 0.063W
#
12
GND
#
#
R214
200
5% 0.063W
#
200
R213
5% 0.063W
#
R212
200
5% 0.063W
UART1_RXD
UART0_TXD
UART0_RXD
200
R211
5% 0.063W
UART1_RTS_TB
UART1_DCD_TB
UART1_CTS_TB
UART1_RI_TB
UART1_DSR_TB
UART1_TXD_TB
UART1_DTR_TB
UART1_RXD_TB
UART1_TXD
UART1_RTS UART1_DTR
UART1_DCD
UART1_CTS
UART1_RI
UART1_DSR
UART1_TXD
UART1_CTS_TB
UART1_DSR_TB
UART1_RTS_TB
UART1_DTR_TB
UART1_RXD_TB UART1_TXD_TB
UART1_DCD_TBUART1_RI_TB
UART1_CTS
UART1_DSR
UART1_DCD
UART1_RTS
UART1_RXD
UART1_RI
UART1_DTR
HiloNC V2 Application Note
sagemcommunications
SC
253309613
NP
NP
Schema electrique
4
9
16/03/10
MENTOR
STEVEN LONG
1
3
2
CIE HILONC V2 DEMO BOARD
MICELLANEOUS
3000348582_R43_000_01
S305
091020102
1
3
2
091020102
S306
0
R305
#
VGPIO_2V8
GND
10nF
VGPIO_2V8
GND
22pF
16VCERA_X7R
C305
2
50VCERA_COG
C304
9
0
R315
#
S302
1
3
2
GND
GND_ANA
GND_ANA
CMAL
4
VBACKUP_3V
CMAL
3
GND_ANA
GND_ANA
1
CMAL
2
GND
C308
VGPIO_2V8
CMAL
TB301
189631296
GND
50VCERA_X7R
1nF
#
VGPIO_2V8
275V
U
RV302
#
0.063W
5%
R318
10k
10
0.063W5%
R319
100k
846
7
NC
NC
3
5
TB305
1
8
10
188078721
6
100
R320
#
KSC221J
1
3
2
4
GND
0.063W5%
5%
330
R317
#
S303
R314
330
#
0.063W
#
0.063W5%
#
0.063W
5%
33
R312
#
0.063W
5%
47k
R306
#
0.063W5%
47k
R304
#
0.063W5%
R303
47k
#
0.063W5%
47k
R302
0.063W5%
47k
R301
NC
NC
C306
10uF
CERA_X5R
6.3V
4
3V
PILE_3V
E301
cms.supsmtu2032.r
R311
#
R310
0
#
0
R309
#
R308
0
#
0
R307
#
091020102
S304
1
3
2
0
GND
GND
NO_PLACE
X301
2
3
VGPIO_2V8
4
16VCERA_X7R
C303
10nF
50VCERA_COG
C302
22pF
189599604
P301
1
GND_ANA
50VCERA_COG
C301
3.9pF
0.063W5%
1k
R316
#
2
4
U
RV301
275V
CH1
3
CH2
4
CH3
5
CH4
2
VN
S301
KSC221J
1
3
NC
GND
MX301
CM1218
1
92735
TB304
188078721
1
10V
CERA_X5R
100nF
C307
GND
R313
0
#
GND
GND
1
CH1
3
CH2
4
CH3
5
CH4
2
VN
MX303
CH1
1
CH2
3
CH3
4
CH4
5
VN
2
MX302
CM1218
TMS_TB TCK_TB
TRST_TB
RESET_IN
JTAG1
JTAG2
RESET_TB
CM1218
JTAG_TDI
TMS_TB
JTAG_TMS
JTAG_TCK
TCK_TB
RTCK_TB
JTAG_RTCK
TDO_TB
JTAG_TDO
TEST
RESET_TB
TDO_TB RTCK_TB
TDI_TB
AUX_ADC0
POK_IN
AUX_ADC0
POK_IN
RESET_IN
TRST_TB
JTAG_TRST
TDI_TB
HiloNC V2 Application Note
sagemcommunications
SC
CIE HILONC V2 DEMO BOARD
NP
NP
Should be 420pF
NP
Should be 420pF
NP
STEVEN LONG
MENTOR
16/03/10
9
5
Schema electrique
3000348582_R43_000_01
UART0 & PCM
GND_ANA
253309613
NC
GND
GND
10V
CERA_X5R
100nF
C409
7
NC
NC
NC
8
189734229
P402
2
3
C404
330nF
6.3V CERA_X5R
NC
330nF
C402
6.3V CERA_X5R
0.063W5%
#
GND
10k
R402
0.063W5%
#
R401
10k
T4IN
10
T4OUT
17
T5IN
12
T5OUT
26
VCC
4
27
5.5V
VCC_3V1
18
R3OUT
24
T1IN
5
T1OUT
23
T2IN
6
T2OUT
22
T3IN
7
T3OUT
19
FORCEON
2
GND
15
INVALID
8
R1IN
21
R1OUT16R1OUTB
9
R2IN
20
R2OUT
11
R3IN
MAX3238E
MX401
TRSCV
25C128
3
1
C2
14
FORCEOFF
13
#
VCC_2V9
GND
1k
#
GND_ANA
200
R405
0.063W5%
#
5%
0.063W
R410
C406
1k
R408
0.063W
5%
2
VN
GND
NC
NC
16V
TANTAL
68uF
#
MX402
CM1218
1
CH1
3
CH2
4
CH3
5
CH4
1%
63mW
R416
75k
#
C411
470pF
CERA_X7R
50V
C408
75k
R411
63mW
1%
DS401
50V
CERA_X7R
470pF
R407
100k
#
0.063W5%
#
5% 0.063W
Q401
100k
R406
CMAL
2
NPN
BC847A
2
TB403
189631613
CMAL
1
CMAL
189631613
TB402
1
CMAL
180
R404
0.063W5%
#
2
5% 0.063W
R403
180
#
189631613
TB401
1
NC
NC
NC
VCC_3V1
0.063W
5%
#
NC
NC
TI
19
VAG
20
VAG_Ref
1
VDD
6
VSS
15
20k
R414
16
MCLK11PDI
10
PI
3 4
PO
5
2
RO
TG
17
18
MC145483EJR2
CODEC
MX403
FILTER
BCLKR9BCLKT
12
DR
8
DT
13
FSR7FST
14
HB
NC
NC
NC
NC
#
5%
0.063W
R427
180
#
180
R424
0.063W
5%
#
5%
0.063W
R420
180
#
10V CERA_X5R
180
R418
0.063W
5%
10V CERA_X5R
C405
100nF
10V
CERA_X5R
100nF
C403
5
C401
100nF
R425
0
#
VCC_2V9
GND
#
4
0
R422
196
5%
0.063W
R426
180
#
R423
0.063W
5%
#
5%
0.063W
R419
180
#
180
180
R417
0.063W
5%
#
R421
0
#
NC
NC
NC
NC
189631613
CMAL
1
TB404
1
CMAL
2
TB405
CERA_X5R
100nF
C412
CMAL
189631613
100nF
CERA_X5R
10V
10V
0.063W
R415
1k
#
C410
0.063W
5%
#
5%
CMAL
2
1k
R412
10V
VCC_2V9
GND_ANA
GND_ANA
VCC_2V9
GND_ANA
GND_ANA
C413
100nF
CERA_X5R
R409
0
#
C407
10nF
CERA_X7R
16V
R413
20k
#
MX405
CM1218
1
CH1
3
CH2
4
CH3
5
CH4
2
VN
5%
0.063W
CH1
1
CH2
3
CH3
4
CH4
5
VN
2
NC
NC
CM1218
MX404
PCM_MIC
PCM_SYNC_TB_2 PCM_SYNC_TB_1
PCM_IN_TB_2PCM_IN_TB_1
PCM_CLK_TB_2 PCM_CLK_TB_1
PCM_OUT_TB_2
PCM_OUT_TB_1
PCM_SYNC
PCM_IN
PCM_CLK
PCM_OUT
PCM_OUT_N
PCM_OUT_P
UART0_TXD
UART0_RXD
RF_TX
PCM_IN_TB_1
PCM_IN_TB_2
PCM_SYNC_TB_2
PCM_SYNC_TB_1
PCM_OUT_TB_1
PCM_OUT_TB_2 PCM_CLK_TB_2
PCM_CLK_TB_1
HiloNC V2 Application Note
sagemcommunications
SC
16/03/10
MENTOR
STEVEN LONG
253309613
22pF
C506
CIE HILONC V2 DEMO BOARD
AUDIO
3000348582_R43_000_01
Schema electrique
6
9
22pF
C504
CERA_COG
50V
2
GND_ANA
NC
CERA_COG
50V
189171980
P502
1
100pF
C510
50VCERA_COG
C509
100pF
50V CERA_COG
CERA_COG50V
100pF
C501
L503
22nH
5%
powvolt
22nH
L504
GND
B2
IN1
A1
IN2
A3
OUT1
C1
OUT2
C3
5% powvolt
2
FILTRE
FL501
IP4048CX5
EMI/ESD
189602480
CMAL
TB501
1
CMAL
1
CMAL
5
CMAL
5
189602480
CMAL
TB504
3
CMAL
4
2
100pF
P501
189171980
1
CMAL
4
CERA_COG 50V
C503
CMAL
3
GND_ANA
CMAL
2
5
CMAL
TB502
189602480
1
GND_ANA
#
GND
CMAL
#
GND
0
R504
#
R502
0
4
R501
0
200mA
25%
GND_ANA
50V CERA_COG
GND
600ohms
L505
100pF
C502
C508
100pF
CMAL
2
CERA_COG50V
CM1218
MX502
1
CH1
3
CH2
4
CH3
5
CH4
2
VN
C514
50V
CERA_COG
22pF
50V
CERA_COG
22pF
4
C511
22pF
50V
CERA_COG
C513
3
R503
#
22pF
GND_ANA
GND_ANA
NC
0
C507
22pF
CERA_COG 50V
C505
CMAL
4
CERA_COG
50V
CMAL
3
powvolt5%
L508
22nH
powvolt
5%
A1
IN1
A3
IN2
C1
OUT1
C3
OUT2
22nH
L506
E2
1
S2
2
EMI/ESD
IP4048CX5
FL502
FILTRE
B2
GND
4
L507
600ohm
tol powvolt
E1
4
S1
3
3
CMAL
2
CMAL
3
CMAL
CMAL
189602480
1
CMAL
CMAL
5
TB503
25%
200mA
L501
600ohms
GND_ANA
GND_ANA
50VCERA_COG
GND
L502
4
E1
3
S1
1
E2
2
S2
22pF
C512
CH1
1
CH2
3
CH3
4
CH4
5
VN
2
powvolttol
600ohm
PCM_MIC
PCM_OUT_N
PCM_OUT_P
MX501
CM1218
INTMIC_P
HSET_OUT_N
HSET_OUT_P
HiloNC V2 Application Note
sagemcommunications
SC
253309613
NP
NP
NP
SIM
3000348582_R43_000_01
Schema electrique
7
9
16/03/10
MENTOR
STEVEN LONG
MX603
CM1218
CH1
1
CH2
3
CH3
4
CH4
5
VN
2
CIE HILONC V2 DEMO BOARD
22pF
C613
VCC_2V9
CMAL
5
GND
CERA_COG 50V
CMAL
4
CERA_COG 50V
C602
33pF
#
CERA_COG 50V
C603
22pF
#
5% 0.063W
R603 10
9
5% 0.063W
R602 56
10
1 5
2
P601
4
3
1
CH1
3
CH2
4
CH3
5
CH4
2
VN
GND
189618305
5
GND
GND
CM1218
MX601
CMAL
4
CMAL
2
CMAL
3
189602480
TB602
CMAL
1
CMAL
D
5
GND
31
IN
S1
4
S2
6
VDD
2
GND
SPDT SWITCH
MX604
ADG719
GND
5% 0.063W
R605
180
#
5% 0.063W
2.2k
R604
#
2
I/O_0
I/O_0
3
GND
FIX1
7
RST
8
VDD1VSS
VCC_2V9
VCC_2V9
GND
SLM76CF
MX602
6
CLK
470nF
C606
C609
470nF
GND
CERA_X5R 6.3V
GND
CERA_X5R 6.3V
CERA_X5R 10V
C605
100nF
CERA_X5R 10V
100nF
C607
0
R613
#
VSIM_2V9
GND
091020102
S601
1
3
2
0
#
#
GND
R612
S3A
3
S3B
VDD16VSS
7
GND
5% 0.063W
R614
47k
15
D2
D3
4
EN
6
GND
8
S1A
12
S1B
13
S2A
2
S2B
1
5
SWITCHES
TRIPLE_SPDT
MX605
ADG733
A0
11
A1
10
A2
9
D1
14
2
CMAL
3
CMAL
TB601
189602480
1
CMAL
C601
10nF
10
R601
#
CERA_X7R 16V
6
5% 0.063W
8
7
NCNC
1 2
0
R611
#
VSIM_2V9
CERA_X5R 10V
100nF
C608
0
R630
#
0
R629
#
0
R628
#
0
R627
#
5% 0.063W
R610
180
#
5%
0.063W
R609
180
#
5% 0.063W
R608
180
#
5% 0.063W
R607
180
#
SIM_CLK
SIM_DATA_IC
5%
0.063W
R606
180
#
SIM_RST_IC_TB
SIM_CLK_IC_TB
SIM_DATA_IC_TBVSIM_IC
SIM_RST_IC_TB
SIM_DATA_CARD_TB
SIM_CLK_CARD_TB
SIM_RST_CARD_TB
VSIM_CARD
SIM_RST_CARD
SIM_RST
SIM_DATA_CARD
SIM_DATA
SIM_CLK_CARD
SIM_CLK_CARD
SIM_CLK_IC
SIM_RST
SIM_DATA
SIM_CLK
SIM_CLK_IC
SIM_RST_IC
VSIM_IC
VSIM_IC
SIM_DATA_IC
SIM_DATA_IC_TB
SIM_CLK_IC
SIM_CLK_IC_TB
SIM_RST_IC
VSIM_CARD
SIM_GPIO
SIM_CLK_CARD
SIM_RST_CARD
SIM_DATA_CARD
VSIM_CARD
SIM_RST_CARD_TB
VSIM_CARD
SIM_CLK_CARD_TB
SIM_DATA_CARD_TB
VSIM_CARD
SIM_DATA_CARD
SIM_CLK_CARD
SIM_RST_CARD
VSIM_CARD
VSIM_IC
SIM_RST_CARD
SIM_RST_IC
SIM_DATA_CARD
SIM_DATA_IC
HiloNC V2 Application Note
sagemcommunications
SC
MENTOR
STEVEN LONG
253309613
NP
NC
NC
CIE HILONC V2 DEMO BOARD
GPIO & PWM
3000348582_R43_000_01
Schema electrique
8
9
16/03/10
200
R711
0.063W5%
#
22k
R702
0.063W
5%
#
2
CMAL
TB704
189631613
1
VCC_2V9
A6S_8104
13 14
CMAL
DS705
5%
#
GND
NC
NC
NC
6.3V CERA_X5R
R714
180
0.063W
CH3
4
CH4
5
VN
2
GND
470nF
C702
#
GND
CM1218
MX704
CH1
1
CH2
3
#
R715
180
0.063W5%
NC
R716
180
0.063W5%
R717
180
0.063W5%
#
GND
CM1218
MX702
1
CH1
3
CH2
4
CH3
5
CH4
2
VN
GND
MC74LCX04DT
MX703
1
vcc=vcc_2v9,ground=gnd
3 4
VCC_2V9
200
R709
0.063W5%
#
3
DS703
CMAL4CMAL
A6S_8104
15 16
11 12
A6S_8104
13 14
0.063W5%
#
A6S_8104
CMAL
189631296
TB702
1
R719
1k
#
CMAL
4
#
R708
200
0.063W5%
1 2
180
R718
0.063W5%
VCC_2V9
GND
vcc=vcc_2v9,ground=gnd
1
MX703
MC74LCX04DT
NC
100nF
C701 [MX703]
10V CERA_X5R
A6S_8104
S701
189836718
1 2
NC
NC
NC
2k
R706
0.063W
5%
#
1
2
NC
NC
NC
NC
Q701
BC847A
NPN
PKM22EPP4001
LS701
R712
100
0.063W5%
#
DS704
DS702
DS701
A6S_8104
9 10
3 4
A6S_8104
15 16
GND
189836718
S702
A6S_8104
1 2
A6S_8104
0.063W5%
#
0.063W5%
#
R710
200
A6S_8104
5 6
R703
22k
NC
A6S_8104
7 8
1
CMAL
2
NC
CMAL
5
CMAL
TB701
189602480
MX701
1
CH1
3
CH2
4
CH3
5
CH4
2
VN
GND
VGPIO_2V8
CERA_X5R
10V
CM1218
MC74LCX04DT
MX703
1
vcc=vcc_2v9,ground=gnd
13 12
VCC_2V9
C703
100nF
vcc=vcc_2v9,ground=gnd
1
MX703
MC74LCX04DT
9 8
5 6
MC74LCX04DT
MX703
1
vcc=vcc_2v9,ground=gnd
11 10
NC
NC
NC
vcc=vcc_2v9,ground=gnd
1
MX703
MC74LCX04DT
2k
R704
0.063W
5%
#
NC
22k
R701
0.063W5%
#
2k
0.063W
5%
#
200
R707
0.063W5%
#
R705
2
GND
CMAL3CMAL
TB703
189631613
CMAL
1
NC
NC
NC
NC
5%
#
CMAL
2
A6S_8104
11 12
1k
R713
0.063W
A6S_8104
9 10
5 6
A6S_8104
7 8
A6S_8104
3 4
A6S_8104
SIM_GPIO
PWM2
PWM0
PWM1
PWM2_TB
PWM2_TB
PWM1
PWM0
GPIO1
GPIO2
GPIO3
GPIO1
GPIO2
GPIO3_TB
GPIO2_TBGPIO1_TB
GPIO3
GPIO1_TB
GPIO2_TB
GPIO3_TB
HiloNC V2 Application Note
sagemcommunications
SC
MENTOR
STEVEN LONG
253309613
4
S1
6
S2
2
VDD
CIE HILONC V2 DEMO BOARD
POWER
3000348582_R43_000_01
Schema electrique
9
9
16/03/10
ADG719
MX805
SPDT SWITCH
5
D
3
GND IN
1
R807
100
#
ALIM_LAB
GND
5%
0.063W
16V
10nF
C807
DS802
1_1
F801
4A
CERA_X7R
1
1_1
CFEM_2
TB802
189602620
1
C806
1uF
CFEM_2
TB801
189602500
100
R804
#
CERA_X5R 16V
#
5%
0.063W
#
5% 0.100W
R806
1.2
ALM_EXT_REG
5% 0.063W
R805
510
ADJ
5
EN
1
GND
3
GND(TAB)
OUT
42
IN
DS801
#
MIC29302WU_TR
MX801
VREG
#
1%
0.063W
R835
49.9k
#
1%
0.063W
R834
150k
1% 0.063W
R831
133k
100nF
C832
CERA_X5R
10V
C836
100nF
100nF
CERA_X5R 10V
C833
CERA_X5R 10V
C834
C837
10uF
TANTAL 16V
10uF
5
ADJ
1
EN
3
GND
GND(TAB)
4
OUT
IN
2
TANTAL 16V
GND(TAB)
OUT
42
IN
GND
VCC_3V1
VREG
MX803
MIC29302WU_TR
MIC29302WU_TR
MX802
VREG
ADJ
5
EN
1
GND
3
VBAT_3V7
VCC_2V9
6.8V
DS805
NTHS2101PT1G
Q802
GND
CR802
FET_PMOS
Q801
NTHS2101PT1G
#
GND
GND
ALIM_LAB
FET_PMOS
#
GND
5% 0.063W
R812
100k
5%0.063W
R813
10k
#
CR801
C821
1% 0.063W
R811
560k
C820
CERA_COG 50V
22pF
C818
22pF
CERA_X5R 10V
47nF
1uF
C819
CERA_COG 50V
CTL
5
GATE
2
GND
SENSE
6
STAT
4
1
VIN
CERA_X5R 16V
TB805
1
GND
LTC4412
MX804
CTRL_PWR
3
TB804
CMAL
1
CMAL
#
NC
CMAL
TB803
1
1% 0.063W
R801
100k
C805
TANTAL 16V
47uF
C810
22pF
CERA_X5R 10V
100nF
10nF
C802
CERA_COG 50V
C803
C804
CERA_X7R 16V
47uF
C801
CERA_X5R 16V
1uF
330uF
C808
TANTAL 16V
R802
49.9k
#
GND
ALU_2KH/105 25V
3_1
3_2
1
2
1%0.063W
#
VGPIO_2V8
VGPIO_2V8
NC
189282163
P802
JACK_4PIN_1
#
5%
0.063W
R851
47k
5% 0.063W
47k
R852
CR803
GND
ALM_EXT_REG
GND
CR804
CERA_X5R 10V
100nF
C838
TANTAL 16V
C831
10uF
TANTAL 16V
10uF
C835
#
5%
0.063W
47k
R833
#
5%
0.063W
R832
47k
1%
0.063W
49.9k
R836
#
HiloNC V2 Application Note
All rights reserved. The information and specifications included are subject to chan
ge without prior notice. Sagemcom tries to ensure that all information in this document is correct, but does not accept liability for error or
omission. Non contractual document.. All trademarks are registered by their respective owners.
Loading...