Philips SAA7186 Datasheet

INTEGRATED CIRCUITS
DATA SH EET
SAA7186
Digital video scaler
Preliminary specification File under Integrated Circuits, IC22
May 1993
Digital video scaler SAA7186
CONTENTS
1 FEATURES 2 GENERAL DESCRIPTION 3 QUICK REFERENCE DATA 4 ORDERING INFORMATION 5 BLOCK DIAGRAM 6 PINNING 7 FUNCTIONAL DESCRIPTION 8 OPERATION CYCLE 9I 10 LIMITING VALUES 11 DC CHARACTERISTICS 12 AC CHARACTERISTICS 13 PROCESSING DELAYS 14 PROGRAMMING EXAMPLE 15 PACKAGE OUTLINE 16 SOLDERING 17 DEFINITIONS 18 LIFE SUPPORT APPLICATIONS 19 PURCHASE OF PHILIPS I2C COMPONENTS
2
C-BUS FORMAT
May 1993 2
Digital video scaler SAA7186
1 FEATURES
Scaling of video picture windows down to randomly sized windows
Processes maximum 1023 pixels per line and 1023 lines per field
Two-dimensional data processing for improved signal quality of scaled video data and for compression of video data
16-bit YUV input data buffer
Interlace/non-interlace video data processing and field
control
Line memories in Y path and UV path to store two lines, each with 2 × 768 × 8 bit capacity
Vertical sync processing by scale control
Non-scaled mode to get full picture or to gate videotext
lines
UV input and output data binary/two’s complement
Switchable RGB matrix and anti-gamma ROMs
16-word FIFO register for 32-bit output data
Output formats: 5-bit and 8-bit RGB, 8-bit YUV or 8-bit
monochrome
2 GENERAL DESCRIPTION
The CMOS circuit SAA7186 scales and filters digital video data to randomly sized picture windows. YUV input data in 4:2:2 format are required (SAA7191B source).
3 QUICK REFERENCE DATA
SYMBOL PARAMETER MIN. TYP. MAX. UNIT
V
DD
I
DD tot
V
I
V
O
supply voltage 4.5 5 5.5 V total supply current (inputs LOW, without output load) - - 180 mA data input level TTL-compatible
data output level TTL-compatible LLC input clock frequency - - 32 MHz T
amb
operating ambient temperature range 0 - 70 °C
4 ORDERING INFORMATION
EXTENDED TYPE
NUMBER
PINS PIN POSITION MATERIAL CODE
PACKAGE
SAA7186 100 QFP plastic SOT317-2
May 1993 3
Philips Semiconductors Preliminary specification
Digital video scaler SAA7186
5 BLOCK DIAGRAM
HFL
port output
RGB or YUV
48
REGISTER
15
CHROMA
U
INCADR
49
56 to 64
68 to 75, 77
output pins (1):
KEYER
V
INTERPOLATOR
1
80 to 88
92 to 100
LNQ
HREFD
2
n.c.
4, 6,
i.c.
54, 60, 66, 72, 79, 84, 90, 96
9, 15, 21, 27, 29, 39, 34, 41, 52,
3, 16, 28, 42,
SS8
to V
SS1
V
53, 65, 78, 89
SAA7186
8
AP
MEH422-1
DD8
V to
DD1
5, 14, 26,40,
V
handbook, full pagewidth
+5 V
BTST
VOEN
VLCK
50
47
51
8
RGB
MATRIX
Y
55, 67, 76, 91
VRO (31 to 0);
OUTPUT
OUTPUT
FORMATTER
8
8
BY
FOLLOWED
ANTI-GAMMA
V
U
32-bit VRAM
FIFO
ROMs
ARITHMETIC
LINE
VERTICAL FILTER
(2x8x768)
MEMORY
FILTER
LUMINANCE
DECIMATION
Y
33
25
to 22
to 30
YIN
(7-0)
VERTICAL FILTER
DATA
INPUT
BUFFER
20
LINE
MEMORY
CHROMA
DECIMATION
UV
13
to 10
to 17
UVIN
(7-0)
ARITHMETIC
(2x8x768)
FILTER
SCALE CONTROL
37
38
HREF
VS
43
RESN
controls
2
I C
45
SCL
CLOCK
7
363546
GENERATION
status
CONTROL
44
SDA
SP
IICSA
CREF
LLC
(1) without pins 60, 72, 84 and 96,
these pins are not connected
Fig.1 Block diagram.
Fig.1 Block diagram.
May 1993 4
Philips Semiconductors Preliminary specification
Digital video scaler SAA7186
6 PINNING
SYMBOL PIN STATUS DESCRIPTION
LNQ 1 O line qualifier signal; active polarity defined by QPL-bit in “10” (VCLK strobed) HREFD 2 O delay-compensated HREF output signal (VCLK strobed) V
SS1
i.c. 4 internally connected V
DD1
i.c. 6 internally connected SP 7 I connected to ground (shift pin for testing) AP 8 I connected to ground (action pin for testing) n.c. 9 not connected UVIN0 10 I UVIN1 11 I UVIN2 12 I UVIN3 13 I V
DD2
n.c. 15 not connected V
SS2
UVIN4 17 I UVIN5 18 I UVIN6 19 I UVIN7 20 I n.c. 21 not connected YIN0 22 I YIN1 23 I YIN2 24 I YIN3 25 I V
DD3
n.c. 27 not connected V
SS3
n.c. 29 not connected YIN4 30 I YIN5 31 I YIN6 32 I YIN7 33 I n.c. 34 not connected CREF 35 I clock reference, external sync signal LLC 36 I line-locked system clock input signal (twice of pixel rate) HREF 37 I horizontal reference, pixel data clock signal (also present during vertical blanking) VS 38 I vertical sync input signal (approximately 6 lines long) n.c. 39 not connected V
DD4
3 GND1 (0 V)
5 +5 V supply voltage 1
time-multiplexed colour-difference input data (bits 0 to 3)
14 +5 V supply voltage 2
16 GND2 (0 V)
time-multiplexed colour-difference input data (bits 4 to 7)
luminance input data (bits 0 to 3)
26 +5 V supply voltage 3
28 GND3 (0 V)
luminance input data (bits 4 to 7)
40 +5 V supply voltage 4
May 1993 5
Philips Semiconductors Preliminary specification
Digital video scaler SAA7186
SYMBOL PIN STATUS DESCRIPTION
n.c. 41 not connected V
SS4
RESN 43 I reset input (active-LOW for at least 30LLC periods) SDA 44 I/O IIC-bus data line SCL 45 I IIC-bus clock line IICSA 46 I set module address input of IIC-bus (LOW = B8, HIGH = BC) BTST 47 I output disable input; HIGH sets all data outputs to high-impedance state INCADR 48 O line increment / vertical reset control output line HFL 49 O FIFO register half-full flag output VOEN 50 I VRAM port output enable input (active-LOW) VCLK 51 I FIFO register clock input signal n.c. 52 not connected V
SS5
n.c. 54 not connected V
DD5
VRO31 56 O VRO30 57 O VRO29 58 O VRO28 59 O n.c. 60 not connected VRO27 61 O VRO26 62 O VRO25 63 O VRO24 64 O V
SS6
n.c. 66 not connected V
DD6
VRO23 68 O VRO22 69 O VRO21 70 O VRO20 71 O n.c. 72 not connected VRO19 73 O
VRO17 75 O V
DD7
VRO16 77 O video output; 32-bit VRAM output port (bit16) V
SS7
n.c. 79 not connected
42 GND4 (0 V)
53 GND5 (0 V)
55 +5 V supply voltage 5
video output; 32-bit VRAM output port (bits 31 to 28)
video output; 32-bit VRAM output port (bits 27 to 24)
65 GND6 (0 V)
67 +5 V supply voltage 6
video output; 32-bit VRAM output port (bits 23 to 22)
video output; 32-bit VRAM output port (bits 21 to 20)
video output; 32-bit VRAM output port (bits 19 to 17)VRO18 74 O
76 +5 V supply voltage 7
78 GND7 (0 V)
May 1993 6
Philips Semiconductors Preliminary specification
Digital video scaler SAA7186
SYMBOL PIN STATUS DESCRIPTION
VRO15 80 O VRO14 81 O VRO13 82 O VRO12 83 O n.c. 84 not connected VRO11 85 O VRO10 86 O VRO9 87 O VRO8 88 O V
SS8
n.c. 90 not connected V
DD8
VRO7 92 O VRO6 93 O VRO5 94 O VRO4 95 O n.c. 96 not connected VRO3 97 O VRO2 98 O VRO1 99 O VRO0 100 O
89 O GND8 (0 V)
91 +5 V supply voltage 8
video output; 32-bit VRAM output port (bits 15 to 12)
video output; 32-bit VRAM output port (bits 11 to 8)
video output; 32-bit VRAM output port (bits 7 to 4)
video output; 32-bit VRAM output port (bits 3 to 0)
May 1993 7
Philips Semiconductors Preliminary specification
Digital video scaler SAA7186
6.1 Pin configuration
handbook, full pagewidth
SS8
DD8
VRO7
92
n.c.
V
VRO9
V
91
VRO8
88
90
87
89
VRO10
VRO11
85
86
n.c.
84
VRO12
83
VRO13
VRO14
81
82
80 79 78 77 76 75 74 73 72 71 70 69 68
67 66 65 64
63 62 61 60 59 58 57 56 55 54 53 52
51
VRO15 n.c. V
SS7
VRO16 V
DD7
VRO17 VRO18 VRO19
n.c. VRO20 VRO21 VRO22 VRO23
V
DD6
n.c.
V
SS6
VRO24 VRO25
VRO26 VRO27
n.c. VRO28 VRO29 VRO30 VRO31 V
DD5
n.c.
V
SS5
n.c. VCLK
LNQ HREFD.
V
SS1
i.c. V
DD1
i.c. SP. AP n.c. UVIN0 UVIN1
UVIN2
UVIN3 V
DD2
n.c.
V
SS2
UVIN4 UVIN5 UVIN6 UVIN7
n.c. YIN0 YIN1
YIN2 YIN3 V
DD3
n.c. V
SS3
n.c. YIN4
VRO0
99
100
VRO1
VRO2
98
VRO3
97
n.c.
96
VRO4
95
VRO5
94
VRO6
93
1 2 3 4 5 6 7 8
9 10 11 12
13
14 15
SAA7186
16 17
18 19
20 21
22
23
24 25
26 27
28
29 30
31
YIN5
32
YIN6
33
YIN7
34
n.c.
35
CREF
36
LLC
37
HREF
40
39
38
DD4VSS4
n.c.
V
VS
Fig.2 Pin configuration.
May 1993 8
41
n.c.
47
BTST
49
48
HFL
INCADR
VOEN
MEH421
45
46
44
43
42
RESN
SDA
SCL
IICSA
50
Philips Semiconductors Preliminary specification
Digital video scaler SAA7186
7 FUNCTIONAL DESCRIPTION
The input port is output of Philips digital video multistandard decoders (SAA7151B, SAA7191B) or other similar sources. The SAA7186 input supports the 16-bit YUV 4:2:2 format. The video data from the input port are converted into a unique internal two’s complement data stream and are processed in horizontal direction in two separate decimation filters. Then they are processed in vertical direction by the vertical processing unit (VPU). Chrominance data are interpolated to a 4:4:4 format; a chroma keying bit is generated. The 4:4:4 YUV data are then converted from the YUV to the RGB domain in a digital matrix. ROM tables in the RGB data path can be used for anti-gamma correction of gamma-corrected input signals. Uncorrected RGB and YUV signals can be bypassed. A scale control unit generates reference and gate signals for scaling of the processed video data. After data formatting to the various VRAM port formats, the scaled video data are buffered in the 16 word× 32-bit output FIFO register. The FIFO output is directly connected to the VRAM output bus VRO(31-0). Specific reference signals support an easy memory interfacing. All functions of the SAA7186 are controlled via I2C-bus using 17 subaddresses. The external microcontroller can get information by reading the status register.
7.1 Video input port
The 16-bit YUV input data in 4:2:2 format (Table 1) consist of 8-bit luminance data Y (pins YIN(7-0)) and 8-bit time-multiplexed colour-difference data UV (pins UVIN(7-0)). The input data are clocked in by the signals LLC and CREF (Fig.3). HREF and VS inputs define the video scan pattern (window).
Sequential input data
are limited to maximum 768 active pixels per line if the vertical filter is active
UV can be processed in straight binary and two’s complement representation (controlled by TCC)
7.2 Decimation filters
The decimation filters perform accurate horizontal filtering of the input data stream. Signal characteristics are matched in front of the pixel decimation stage, thus disturbing artifacts, caused by the pixel dropping, are reduced. The signal bandwidth can be reduced in steps of:
2-tap filter = 6 dB at 0.325 pixel rate 3-tap filter = 6 dB at 0.25 pixel rate 4-tap filter = 6 dB at 0.21 pixel rate 5-tap filter = 6 dB at 0.125 pixel rate 9-tap filter = 6 dB at 0.075 pixel rate
The different characteristics are chosen dependent on the defined scaling parameters in an adaptive filter mode (AFS-bit = 1). The filter characteristics can also be selected independently by control bits HF2 to HF0 at AFS-bit = 0.
7.3 Vertical filters
Y and UV data are handled in separate filters (Fig.1). Each of the two line memories has a capacity of 2 × 768 × 8-bit. Thus two complete video lines of 4:2:2 YUV data can be stored. The VPU is split into two memory banks and one arithmetic unit. The available processing modes, respectively transfer functions, are selectable by the bits VP1 and VP0 if AFS = 0. An adaptive mode is selected by AFS = 1. Disturbing artifacts, generated by line dropping, are reduced.
Adaptive filter selection (AFS = 1):
SCALING RATIO
XD/XS horizontal
114/1511/157/153/15
YD/YS vertical
113/154/15
bypassed filter 1 filter 6 filter 3 filter 4
bypassed filter 1 filter 2
FILTER FUNCTION
(REFER TO I
2
C SECTION)
May 1993 9
Philips Semiconductors Preliminary specification
Digital video scaler SAA7186
7.4 RGB matrix
Y data and UV data are converted after interpolation into RGB data according to CCIR601 recommendation. Data are bypassed in YUV or monochrome modes.
Table 1 4 : 2 : 2 format (pixels per line). The time frames
are controlled by the HREF signal.
INPUT PIXEL BYTE SEQUENCE
YIN7 YIN6 YIN5 YIN4 YIN3 YIN2 YIN1 YIN0
UVIN7 UVIN6 UVIN5 UVIN4 UVIN3 UVIN2 UVIN1 UVIN0
Y frame 0 1 2 3 4 UV frame 0 2 4
Note
1. e = even pixel; o = odd pixel
The matrix equations are these considering the digital quantization:
R=Y+1.375 V G=Y0.703125 V 0.34375 U B=Y+1.734375 U.
Anti-gamma ROM tables: ROM tables are implemented at the matrix output to provide anti-gamma correction of the RGB data. A curve for a gamma of 1.4 is implemented
The tables can be used (RTB-bit = 0) to compensate gamma correction for linear data representation of RGB output data.
Ye7 Ye6 Ye5 Ye4 Ye3 Ye2 Ye1 Ye0
Ue7 Ue6 Ue5 Ue4 Ue3 Ue2 Ue1 Ue0
Yo7 Yo6 Yo5 Yo4 Yo3 Yo2 Yo1 Yo0
Ve7 Ve6 Ve5 Ve4 Ve3 Ve2 Ve1 Ve0
Ye7 Ye6 Ye5 Ye4 Ye3 Ye2 Ye1 Ye0
Ue7 Ue6 Ue5 Ue4 Ue3 Ue2 Ue1 Ue0
Yo7 Yo6 Yo5 Yo4 Yo3 Yo2 Yo1 Yo0
Ve7 Ve6 Ve5 Ve4 Ve3 Ve2 Ve1 Ve0
Ye7 Ye6 Ye5 Ye4 Ye3 Ye2 Ye1 Ye0
Ue7 Ue6 Ue5 Ue4 Ue3 Ue2 Ue1 Ue0
7.5 Chrominance signal keyer
The keyer generates an alpha signal to achieve a 5-5-5 RGB alpha output signal. Therefore, the processed UV data amplitudes are compared with thresholds set via I2C-bus (subaddresses ”0C to 0F”). A logical “1” signal is generated if the amplitude is inside the specified amplitude range, otherwise a logical “0” is generated. Keying can be switched off by setting the lower limit higher than the upper limit (“0C or 0E” and “0D or 0F”).
7.6 Scale control and vertical regions
The scale control block SC includes vertical address/sequence counters to define the current position in the input field and to address the internal VPU memories. To perform scaling, XD of XS pixel selection in horizontal direction and YD of YS line selection in vertical direction are applied. The pixel and line dropping are controlled at the input of the FIFO register. To control the decimation filter function and the vertical data processing in the adaptive mode (AFS = 1), the scaling ratio in horizontal and vertical direction is estimated in the SC block.
The input field can be divided into two vertical regions
the bypass region and the scaling region, which are defined via I YS.
Vertical bypass region: Data are not scaled and independent of I2C-bits FS1, FS0
the output format is always 8-bit greyscale (monochrome). The SAA7186 outputs all active pixels of a line, defined by the HREF input signal if the vertical bypass region is active. This can be used, for example, to store videotext information in the field memory.
The start line of the bypass region is defined by VS; the number of lines to be bypassed is defined by VC.
Vertical scaling region: Data is scaled with start at line YO and the output format
is selected when FS1, FS0 are valid. This is the “normal operation” area.
The input/output screen dimensions in horizontal and vertical direction are defined by the parameters
XO, XS and XD for horizontal
2
C-bus by the parameters VS, VC, YO and
May 1993 10
YO, YS and YD for vertical.
The circuit processes XS samples of a line. Remaining pixels are ignored if a line is longer than XS. If a line is
Philips Semiconductors Preliminary specification
Digital video scaler SAA7186
shorter than XS, processing is aborted when the falling edge of HREF is detected.
Vertical regions in Fig.4:
the two regions can be programmed via I2C-bus, whereby regions should not overlap (active region overrides the bypass region).
the start of a normal active picture depends on video standard and has to be programmed to the correct value.
handbook, full pagewidth
Byte numbers for pixles:
Y signal
LLC
CREF
HREF
0
start of active line
1
the offsets XO and YO have to be set according to the internal processing delays to ensure the complete number of destination pixels and lines (Table 6).
the scaling parameters can be used to perform a panning function over the video frame/field.
2
3
4
5
6
7
U and V signal
handbook, full pagewidth
Byte number for pixels:
LLC
CREF
HREF
Y signal
U and V signal
n – 5
Un-5
U0
n – 4
Vn-5
V0
n – 3
Un-3
U2
n – 2
Vn-3
V2
n – 1
Un-1
end of active line
Fig.3 Horizontal and data multiplex timing.
U4
n
Vn-1
V4
U6
V6
MEH411
MEH410
May 1993 11
Philips Semiconductors Preliminary specification
Digital video scaler SAA7186
7.7 Output data representation and levels
Output data representation of the YUV data can be modified by bit MCT (subaddress 10). The DC gain is 1 for YUV input data. The corresponding RGB levels are defined by the matrix equations. The luminance levels are limited according to CCIR 601
16 (239) = black
235 (20) = white
(..) = greyscale luminance levels if the YUV or monochrome luminance output formats are selected.
handbook, full pagewidth
vertical sync
vertical bypass start
VS
bypass region
The signal levels of the RGB formats are limited in 8-bit to “0” or “255”. For the 5-bit RGB formats a truncation from 8-bit to 5-bit is implemented.
Fill values are inserted dependent on longword position and destination size:
“0” in RGB formats and for Y two’s complement U, V
“128” for U, V (straight binary)
“255” in 8-bit greyscale format
The unused output values of the YUV and greyscale formats can be used for other purposes.
vertical
blanking
YO
first valid line
vertical bypass count equals VS
scaling region start
scaling region
Fig.4 Vertical regions.
scaling region count equals YS Y-size source
MEH357-1
May 1993 12
Philips Semiconductors Preliminary specification
Digital video scaler SAA7186
Table 2 VRAM port output data formats at EFE-bit = 0 dependent on FS1 and FS0 bits (set via I2C-bus)
PIXEL
OUTPUT
BITS
PIXEL ORDER n n+2n+4n n+2n+4n n+1n+2
VRO31 VRO30 VRO29 VRO28
VRO27 VRO26 VRO25 VRO24
VRO23 VRO22 VRO21 VRO20
VRO19 VRO18 VRO17 VRO16
PIXEL ORDER n+1n+3n+5n+1n+3n+5 OUTPUTS NOT USED
VRO15 VRO14 VRO13 VRO12
VRO11 VRO10 VRO9 VRO8
VRO7 VRO6 VRO5 VRO4
VRO3 VRO2 VRO1 VRO0
FS1 = 0; FS0 = 0
RGB 5-5-5 + 1
32-BIT WORDS
α
R4 R3 R2
R1 R0 G4 G3
G2 G1 G0 B4
B3 B2 B1 B0
α
R4 R3 R2
R1 R0 G4 G3
G2 G1 G0 B4
B3 B2 B1 B0
α
R4 R3 R2
R1 R0 G4 G3
G2 G1 G0 B4
B3 B2 B1 B0
α
R4 R3 R2
R1 R0 G4 G3
G2 G1 G0 B4
B3 B2 B1 B0
α
R4 R3 R2
R1 R0 G4 G3
G2 G1 G0 B4
B3 B2 B1 B0
α
R4 R3 R2
R1 R0 G4 G3
G2 G1 G0 B4
B3 B2 B1 B0
FS1 = 0; FS0 = 1
YUV 4:2:2
32-BIT WORDS
Ye7 Ye6 Ye5 Ye4
Ye3 Ye2 Ye1 Ye0
Ue7 Ue6 Ue5 Ue4
Ue3 Ue2 Ue1 Ue0
Yo7 Yo6 Yo5 Yo4
Yo3 Yo2 Yo1 Yo0
Ve7 Ve6 Ve5 Ve4
Ve3 Ve2 Ve1 Ve0
Ye7 Ye6 Ye5 Ye4
Ye3 Ye2 Ye1 Ye0
Ue7 Ue6 Ue5 Ue4
Ue3 Ue2 Ue1 Ue0
Yo7 Yo6 Yo5 Yo4
Yo3 Yo2 Yo1 Yo0
Ve7 Ve6 Ve5 Ve4
Ve3 Ve2 Ve1 Ve0
Ye7 Ye6 Ye5 Ye4
Ye3 Ye2 Ye1 Ye0
Ue7 Ue6 Ue5 Ue4
Ue3 Ue2 Ue1 Ue0
Yo7 Yo6 Yo5 Yo4
Yo3 Yo2 Yo1 Yo0
Ve7 Ve6 Ve5 Ve4
Ve3 Ve2 Ve1 Ve0
FS1 = 1; FS0 = 0 YUV 4:2:2 TEST
16-BIT WORDS
Ye7 Ye6 Ye5 Ye4
Ye3 Ye2 Ye1 Ye0
Ue7 Ue6 Ue5 Ue4
Ue3 Ue2 Ue1 Ue0
X X X X
X X X X
X X X X
X X X X
Yo7 Yo6 Yo5 Yo4
Yo3 Yo2 Yo1 Yo0
Ve7 Ve6 Ve5 Ve4
Ve3 Ve2 Ve1 Ve0
X X X X
X X X X
X X X X
X X X X
Ye7 Ye6 Ye5 Ye4
Ye3 Ye2 Ye1 Ye0
Ue7 Ue6 Ue5 Ue4
Ue3 Ue2 Ue1 Ue0
X X X X
X X X X
X X X X
X X X X
FS1 = 1; FS0 = 1
8-BIT MONOCHROME
32-BIT WORDS
n n+1
Ya7 Ya6 Ya5 Ya4
Ya3 Ya2 Ya1 Ya0
Yb7 Yb6 Yb5 Yb4
Yb3 Yb2 Yb1 Yb0
n+2 n+3
Yc7 Yc6 Yc5 Yc4
Yc3 Yc2 Yc1 Yc0
Yd7 Yd6 Yd5 Yd4
Yd3 Yd2 Yd1 Yd0
n+4 n+5
Ya7 Ya6 Ya5 Ya4
Ya3 Ya2 Ya1 Ya0
Yb7 Yb6 Yb5 Yb4
Yb3 Yb2 Yb1 Yb0
n+6 n+7
Yc7 Yc6 Yc5 Yc4
Yc3 Yc2 Yc1 Yc0
Yd7 Yd6 Yd5 Yd4
Yd3 Yd2 Yd1 Yd0
n+8 n+9
Ya7 Ya6 Ya5 Ya4
Ya3 Ya2 Ya1 Ya0
Yb7 Yb6 Yb5 Yb4
Yb3 Yb2 Yb1 Yb0
n+10 n+11
Yc7 Yc6 Yc5 Yc4
Yc3 Yc2 Yc1 Yc0
Yd7 Yd6 Yd5 Yd4
Yd3 Yd2 Yd1 Yd0
Note
1. α = keying bit; R, G, B, Y, U and V = digital signals; e = even pixel number; o = odd pixel number;
a b c d = consecutive pixels
May 1993 13
Philips Semiconductors Preliminary specification
Digital video scaler SAA7186
Table 3 VRAM port output data formats at EFE-bit = 1 dependent on FS1 and FS0 bits (set via I2C-bus)
PIXEL
OUTPUT
BITS
PIXEL ORDER n n+1n+2n n+1n+2n n+1n+2
VRO31 VRO30 VRO29 VRO28
VRO27 VRO26 VRO25 VRO24
VRO23 VRO22 VRO21 VRO20
VRO19 VRO18 VRO17 VRO16
PIXEL ORDER n n+1n+2n n+1n+2n n+1n+2
VRO15 VRO14 VRO13 VRO12
VRO11 VRO10 VRO9 VRO8
VRO7 (2, 3) VRO6 (3) VRO5 (3) VRO4 (3)
VRO3 VRO2 (3) VRO1 (3) VRO0 (3)
FS1 = 0; FS0 = 0
RGB 5-5-5 + 1
16-BIT WORDS
α
R4 R3 R2
R1 R0 G4 G3
G2 G1 G0 B4
B3 B2 B1 B0
X X X X
X X X X
α
O/E VGT HGT
X HRF LNQ PXQ
α
R4 R3 R2
R1 R0 G4 G3
G2 G1 G0 B4
B3 B2 B1 B0
X X X X
X X X X
α
O/E VGT HGT
X HRF LNQ PXQ
α
R4 R3 R2
R1 R0 G4 G3
G2 G1 G0 B4
B3 B2 B1 B0
X X X X
X X X X
α
O/E VGT HGT
X HRF LNQ PXQ
FS1 = 0; FS0 = 1
YUV 4:2:2
16-BIT WORDS
Ye7 Ye6 Ye5 Ye4
Ye3 Ye2 Ye1 Ye0
Ue7 Ue6 Ue5 Ue4
Ue3 Ue2 Ue1 Ue0
X X X X
X X X X
α
O/E VGT HGT
X HRF LNQ PXQ
Yo7 Yo6 Yo5 Yo4
Yo3 Yo2 Yo1 Yo0
Ve7 Ve6 Ve5 Ve4
Ve3 Ve2 Ve1 Ve0
X X X X
X X X X
X O/E VGT HGT
X HRF LNQ PXQ
Ye7 Ye6 Ye5 Ye4
Ye3 Ye2 Ye1 Ye0
Ue7 Ue6 Ue5 Ue4
Ue3 Ue2 Ue1 Ue0
X X X X
X X X X
α
O/E VGT HGT
X HRF LNQ PXQ
FS1 = 1; FS0 = 0
RGB 8-8-8
24-BIT WORDS
R7 R6 R5 R4
R3 R2 R1 R0
G7 G6 G5 G4
G3 G2 G1 G0
B7 B6 B5 B4
B3 B2 B1 B0
α
O/E VGT HGT
X HRF LNQ PXQ
R7 R6 R5 R4
R3 R2 R1 R0
G7 G6 G5 G4
G3 G2 G1 G0
B7 B6 B5 B4
B3 B2 B1 B0
α
O/E VGT HGT
X HRF LNQ PXQ
R7 R6 R5 R4
R3 R2 R1 R0
G7 G6 G5 G4
G3 G2 G1 G0
B7 B6 B5 B4
B3 B2 B1 B0
α
O/E VGT HGT
X HRF LNQ PXQ
FS1 = 1; FS0 = 1
8-BIT MONOCHROME
16-BIT WORDS
n n+1
Ya7 Ya6 Ya5 Ya4
Ya3 Ya2 Ya1 Ya0
Yb7 Yb6 Yb5 Yb4
Yb3 Yb2 Yb1 Yb0
n n+1
X X X X
X X X X
α
O/E VGT HGT
X HRF LNQ PXQ
n+2 n+3
Ya7 Ya6 Ya5 Ya4
Ya3 Ya2 Ya1 Ya0
Yb7 Yb6 Yb5 Yb4
Yb3 Yb2 Yb1 Yb0
n+2 n+3
X X X X
X X X X
α
O/E VGT HGT
X HRF LNQ PXQ
n+4 n+5
Ya7 Ya6 Ya5 Ya4
Ya3 Ya2 Ya1 Ya0
Yb7 Yb6 Yb5 Yb4
Yb3 Yb2 Yb1 Yb0
n+4 n+5
X X X X
X X X X
α
O/E VGT HGT
X HRF LNQ PXQ
Notes
1. α = keying bit; R, G, B, Y, U and V = digital signals; e = even pixel number; o = odd pixel number;
a b c d = consecutive pixels; O/E = odd/even flag
2. YUV 16-bit format: the keying signal α is defined only for YU time steps. The corresponding YV sample has also to
be keyed. The α signal in monochrome mode can be used only in the transparent mode (TTR = 1), in this case Ya = Yb.
3. Data valid only when transparent mode active (TTR-bit = 1) and VCLK pin connected to LLC/2 clock rate.
May 1993 14
Loading...
+ 30 hidden pages