Philips PCKV857DGG Datasheet

PCKV857
70–190 MHz differential 1:10 clock driver
Product data Supersedes data of 2001 Mar 16 File under Intergrated Circuits ICL03
 
2001 Jun 12
Philips Semiconductors Product data
70–190 MHz differential 1:10 clock driver

FEA TURES

ESD classification testing is done to JEDEC Standard JESD22.
Protection exceeds 2000 V to HBM per method A114.
Latch-up testing is done to JEDEC Standard JESD78 which
exceeds 100 mA
Optimized for clock distribution in DDR (Double Data Rate)
SDRAM applications as per JEDEC specifications
1-to-10 differential clock distribution
Very low skew (< 100 ps) and jitter (< 100 ps)
Operation from 2.2 V to 2.7 V AV
SSTL_2 interface clock inputs and outputs
CMOS control signal input
Test mode enables buffers while disabling PLL
Low current power-down mode
Tolerant of Spread Spectrum input clock
Full DDR solution provided when used with SSTL16877 or
SSTV16857
See PCKV856 for I

DESCRIPTION

The PCKV857 is a high-performance, low-skew, low-jitter zero delay buffer designed for 2.5 V V differential data input and output levels.
The PCKV857 is a zero delay buffer that distributes a differential clock input pair (CLK, CLK (Y[0:9], Y[0:9]
, FB
(FB
OUT
inputs (CLK, CLK power input (AV phase and frequency with CLK. When PWRDWN are disabled to high impedance state (3-State), and the PLL is shut down (low power mode). The device also enters the low power mode when the input frequency falls below 20 MHz. An input frequency detection circuit will detect the low frequency condition and after applying a > 20 MHz input signal, the detection circuit turns on the PLL again and enables the outputs.
When AV purposes. The PCKV857 is also able to track spread spectrum clocking for reduced EMI.
The PCKV857 is characterized for operation from 0 to +70 °C.
OUT
is grounded, the PLL is turned off and bypassed for test
DD
2
C capable clock driver
DD
) to ten differential pairs of clock outputs
) and one differential pair feedback clock outputs
) . The clock outputs are controlled by the clock
), the feedback clocks (FBIN, FBIN), and the analog
). When PWRDWN is high, the outputs switch in
DD
and 2.3 V to 2.7 V V
DD
and 2.5 V AVDD operation and
is low, all outputs
DD

PIN CONFIGURATION

1
GND
Y
2
0
Y
3
0
4
V
DDQ
Y
5
1
Y
6
1
GND
7
8
GND
9
Y
2
Y
10
2
V
11
DDQ
V
12
DDQ
13
CLK
14
CLK
V
DDQ
15
AV
16
DD
17
AGND
GND
18
Y
19
3
Y
20
3
21
V
DDQ
Y
22
4
Y
4
23 24
GND
48 47 46
45 44
43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
PCKV857
GND Y
5
Y
5
V
DDQ
Y
6
Y
6
GND GND
Y
7
Y
7
V
DDQ
PWRDWN FB
IN
FB
IN
V
DDQ
FB
OUT
FB
OUT
GND Y
8
Y
8
V
DDQ
Y
9
Y
9
GND
SW00691
ORDERING INFORMA TION
PACKAGES TEMPERATURE RANGE ORDER CODE DRAWING NUMBER
48-Pin Plastic TSSOP 0 to +70 °C PCKV857DGG SOT362-1
2001 Jun 12 853–2242 26485
2
Philips Semiconductors Product data
PLL ON/OFF
70–190 MHz differential 1:10 clock driver
PIN DESCRIPTION
PINS SYMBOL DESCRIPTION
1, 7, 8, 18, 24, 25, 31, 41, 42, 48 GND SSTL_2 ground pins
2, 3, 5, 6, 9, 10, 19, 20, 22, 23, 26, 27, 29,
30, 32, 33, 39, 40, 43, 44, 46, 47
4, 11, 12, 15, 21, 28, 34, 38, 46 V
13, 14, 35, 36 CLKIN, CLKIN, FBIN, FB
16 AV 17 AGND Analog ground 37 PWRDWN Power-down control input

FUNCTION TABLE

INPUTS OUTPUTS
PWRDWN CLK CLK Y
L L H Z Z Z L H L Z Z Z H L H L H L H ON H H L H L H L ON
2
X
NOTES:
H = HIGH voltage level L = LOW voltage level Z = high impedance OFF-state X = don’t care
1. Subject to change. May cause conflict with FB
2. Additional feature that senses when the clock input is less than 20 MHz and places the part in sleep mode.
< 20 MHz < 20 MHz Z Z Z
pins.
IN
Yn, Yn, FB
n
OUT
DDQ
DD
, FB
OUT
Y
SSTL_2 differential outputs
SSTL_2 power pins
IN
SSTL_2 differential inputs
Analog power
n
FB
OUT
1 1
1
FB
OUT
Z Z
Z
1 1
1
PCKV857
OFF OFF
OFF

BLOCK DIAGRAM

37 – PWRDWN
13 – CLK 14 – CLK
36 – FB
IN
35 – FB
IN
16 – AV
DD
PLL
3 – Y 2 – Y
5 – Y 6 – Y
10 – Y 9 – Y
20 – Y 19 – Y
22 – Y 23 – Y
46 – Y 47 – Y
44 – Y 43 – Y
39 – Y 40 – Y
29 – Y 30 – Y
27 – Y 28 – Y
32 – FB 33 – FB
SW00692
0 0
1 1
2
2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
OUT OUT
2001 Jun 12
3
Philips Semiconductors Product data
SYMBOL
PARAMETER
CONDITION
UNIT
SYMBOL
PARAMETER
CONDITION
UNIT
IL
g
IH
gg
V
70–190 MHz differential 1:10 clock driver
ABSOLUTE MAXIMUM RATINGS
1
PCKV857
LIMITS
MIN MAX
V AV
DDQ
V
V
I
IK
I
OK
I
O
T
stg
DD
O
Supply voltage range 0.5 3.6 V Supply voltage range 0.5 3.6 V Input voltage range see Notes 2 and 3 –0.5 V
I
Output voltage range see Notes 2 and 3 –0.5 V Input clamp current VI < 0 or VI >V Output clamp current VO < 0 or VO >V Continuous output current VO = 0 to V Continuous current to GND or V
DDQ
DDQ
DDQ
DDQ
±50 mA — ±50 mA — ±50 mA — ±100 mA
Storage temperature range –65 +150 °C
+ 0.5 V
DDQ
+ 0.5 V
DDQ
NOTES:
1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability .
2. The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
3. This value is limited to 3.6 V maximum.
RECOMMENDED OPERATING CONDITIONS
1
LIMITS
MIN TYP MAX
V AV
DDQ
V
Supply voltage range 2.3 2.7 V Supply voltage range 2.2 2.7 V
DD
Low level input voltage
IL
CLK, CLK,
FBIN, FB
IN
V
DDQ
/2 0.18
V
PWRDWN 0.3 0.7
CLK, CLK,
V
High level input voltage
IH
FBIN, FB
IN
PWRDWN 1.7 V DC input signal voltage Note 2 −0.3 V DC differential input signal voltage CLK, FB
ID
AC differential input signal voltage CLK, FB
V
V I
OH
I
OL
Output differential cross-voltage Note 4 V
OX
Input differential cross-voltage Note 4 V
IX
High-level output current 12 mA Low-level output current 12 mA
IN IN
Note 3 0.36 V Note 3 0.7 V
V
/2 + 0.18
DDQ
/2 0.2 V
DDQ
/2 0.2 V
DDQ
DDQ
/2 V
+ 0.3
DDQ
DDQ
+ 0.6 V
DDQ
+ 0.6 V
DDQ
/2 + 0.2 V
DDQ
/2 + 0.2 V
DDQ
V
V
SR Input slew rate 1 4 V/ns
T
amb
Operating free-air temperature 0 70 °C
NOTES:
1. Unused inputs must be held high or low to prevent them from floating.
2. DC input signal voltage specifies the allowable DC execution of differential input.
3. Differential input signal voltage specifies the differential voltage |VTR – VCP| required for switching, where VTR is the true input level and VCP is the complementary input level.
4. Differential cross-point voltage is expected to track variations of V
and is the voltage at which the differential signals must be crossing.
CC
2001 Jun 12
4
Loading...
+ 8 hidden pages