Philips P87C554SFBD, P87C554SBBD, P83C554SFBD, P83C554SBBD, P80C554SBBD Datasheet

0 (0)

INTEGRATED CIRCUITS

80C554/83C554/87C554

80C51 8-bit microcontroller ± 6 clock operation

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C,

PWM, capture/compare, high I/O, 64L LQFP

Preliminary specification

2000 Nov 10

Replaces data of 1999 Apr 07

IC20 Data Handbook

P s

on o s

Philips Semiconductors

Preliminary specification

 

 

 

 

 

 

80C51 8-bit microcontroller ± 6 clock operation

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

DESCRIPTION

This data sheet describes the 6 clock version of the 8xC554. This device is only available in 64L LQFP. The 8xC554 Single-Chip 8-Bit

Microcontroller is manufactured in an advanced CMOS process and is a derivative of the 80C51 microcontroller family. The 87C554 has the same instruction set as the 80C51. Three versions of the derivative exist:

83C554Ð16k bytes ROM

80C554ÐROMless version

87C554Ð16k bytes EPROM

The 87C554 contains a 16k × 8 non-volatile EPROM, a 512 × 8 read/write data memory, five 8-bit I/O ports, one 8-bit input port, two 16-bit timer/event counters (identical to the timers of the 80C51), an additional 16-bit timer coupled to capture and compare latches, a

15-source, four-priority-level, nested interrupt structure, an 7-input

ADC, a dual DAC pulse width modulated interface, two serial interfaces (UART and I2C-bus), a ªwatchdogº timer and on-chip oscillator and timing circuits. For systems that require extra capability, the 8xC554 can be expanded using standard TTL compatible memories and logic.

In addition, the 8xC554 has two software selectable modes of power reductionÐidle mode and power-down mode. The idle mode freezes the CPU while allowing the RAM, timers, serial ports, and interrupt system to continue functioning. Optionally, the ADC can be operated in Idle mode. The power-down mode saves the RAM contents but freezes the oscillator, causing all other chip functions to be inoperative.

The device also functions as an arithmetic processor having facilities for both binary and BCD arithmetic plus bit-handling capabilities. The instruction set consists of over 100 instructions: 49 one-byte, 45 two-byte, and 17 three-byte. With an 8 MHz crystal,

58% of the instructions are executed in 0.75 ms and 40% in 1.5 ms.

Multiply and divide instructions require 3 ms.

FEATURES

80C51 central processing unit

16k × 8 EPROM expandable externally to 64k bytes

An additional 16-bit timer/counter coupled to four capture registers and three compare registers

Two standard 16-bit timer/counters

512 × 8 RAM, expandable externally to 64k bytes

Capable of producing eight synchronized, timed outputs

A 10-bit ADC with seven multiplexed analog inputs

Fast 8-bit ADC option ± 9 mS at 16 MHz

Two 8-bit resolution, pulse width modulation outputs

Five 8-bit I/O ports plus one 8-bit input port shared with analog inputs

I2C-bus serial I/O port with byte oriented master and slave functions

On-chip watchdog timer

Extended temperature ranges

Full static operation ± 0 to 16 MHz

Operating voltage range: 2.7 V to 5.5 V (0 to 8 MHz) and

4.5 V to 5.5 V (8 to 16 MHz) commercial temperature

Security bits:

±ROM ± 2 bits

±OTP/EPROM ± 3 bits

4 level priority interrupt

15 interrupt sources

Full-duplex enhanced UART

±Framing error detection

±Automatic address recognition

Power control modes

±Clock can be stopped and resumed

±Idle mode

±Power down mode

Second DPTR register

EMI reduction ± 6 clock operation and ALE inhibit

Programmable I/O pins

Wake-up from power-down by external interrupts

Software reset

Power-on detect reset

ADC charge pump disable

ONCE mode

ADC active in Idle mode

2000 Nov 10

2

Philips P87C554SFBD, P87C554SBBD, P83C554SFBD, P83C554SBBD, P80C554SBBD Datasheet

Philips Semiconductors Preliminary specification

80C51 8-bit microcontroller ± 6 clock operation

 

 

 

 

 

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ORDERING INFORMATION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OTP/EPROM

 

ROM

ROMless

 

TEMPERATURE °C AND PACKAGE

FREQ.

DRAWING

 

 

(MHz)

NUMBER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P87C554SBBD

 

P83C554SBBD

P80C554SBBD

0 to +70, Low Profile Quad Flat Package

16

SOT314±2

 

 

 

 

 

 

 

 

 

 

 

P87C554SFBD

 

P83C554SFBD

P80C554SFBD

 

±40 to +85, Low Profile Quad Flat

16

SOT314±2

 

 

 

Package

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PART NUMBER DERIVATION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DEVICE NUMBER

 

OPERATING FREQUENCY MAX

 

TEMPERATURE RANGE

 

 

PACKAGE

 

 

 

 

 

 

 

 

 

 

 

P87C554 OTP

 

 

 

 

 

B= 0_C to 70_C

 

 

 

 

P83C554 ROM

 

 

S = 16 MHz

 

 

 

 

BD=64L LQFP

 

 

 

 

F = ±40_C to +85_C

 

 

P80C554 ROMless

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BLOCK DIAGRAM

 

T0

 

T1

 

INT0

INT1

 

 

 

 

 

 

PWM0

PWM1

AVSS

AVREF

ADC0-7

SDA

SCL

 

 

 

 

 

 

 

 

VDD

 

VSS

 

 

 

 

±

+

 

5

1

1

 

 

3

3

 

3

3

 

 

 

 

 

AVDD

STADC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XTAL1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T0, T1

 

 

 

 

 

PROGRAM

 

 

DATA

 

DUAL

 

 

 

 

 

SERIAL

XTAL2

TWO 16-BIT

 

 

 

 

 

 

 

 

ADC

 

 

TIMER/EVENT

 

CPU

 

MEMORY

 

 

MEMORY

 

PWM

 

 

 

I2C PORT

 

 

 

 

 

 

 

 

 

 

COUNTERS

 

 

 

 

16k x 8

 

 

512 x 8 RAM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OTP/ROM

 

 

 

 

 

 

 

 

 

 

 

 

 

EA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALE

 

 

80C51 CORE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXCLUDING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSEN

 

 

ROM/RAM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WR

 

 

 

 

 

 

 

8-BIT INTERNAL BUS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD0-7

 

 

 

 

 

 

 

 

 

 

T2

 

 

T2

 

 

 

 

 

 

 

 

PARALLEL I/O

 

SERIAL

 

 

FOUR

 

 

16

16-BIT

COMPARA-

 

T3

 

 

 

8-BIT

 

16-BIT

 

 

2

 

PORTS AND

 

UART

16-BIT

 

TIMER/

COMPARA-

 

TOR

 

WATCHDOG

 

 

 

PORT

 

 

 

 

 

EXTERNAL BUS

 

PORT

CAPTURE

 

EVENT

 

TORS

 

OUTPUT

 

TIMER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LATCHES

 

 

WITH

SELECTION

 

 

 

 

A8-15

 

 

 

 

 

 

 

 

 

COUNTERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REGISTERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

3

 

 

 

1

1

 

1

 

 

 

 

4

 

 

 

 

P0

P1

P2

P3

TxD

RxD

P5

P4

CT0I-CT3I

 

T2

RT2

 

 

CMSR0-CMSR5 RST EW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CMT0, CMT1

 

 

 

0 ALTERNATE FUNCTION OF PORT 0

3 ALTERNATE FUNCTION OF PORT 3

 

 

 

 

 

 

 

 

 

 

 

 

1 ALTERNATE FUNCTION OF PORT 1

4 ALTERNATE FUNCTION OF PORT 4

 

 

 

 

 

 

 

 

 

 

 

 

2 ALTERNATE FUNCTION OF PORT 2

5 ALTERNATE FUNCTION OF PORT 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SU00951

2000 Nov 10

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

Philips Semiconductors

Preliminary specification

 

 

 

80C51 8-bit microcontroller ± 6 clock operation

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

PIN CONFIGURATIONS

Plastic Quad Flat Pack pin functions

 

 

 

 

 

 

 

 

 

 

 

Pin

Function

Pin

Function

Pin

Function

Pin

Function

 

 

 

 

 

 

 

 

 

 

 

1.

AVDD

17.

P4.3/CMSR3

33.

 

 

 

49.

P2.6/A14

 

 

 

 

 

 

 

 

 

 

 

P3.2/INT0

 

 

 

 

 

 

 

 

 

 

 

2.

P5.6/ADC6

18.

P4.4/CMSR4

34.

 

 

 

50.

P2.7/A15

 

 

 

 

 

 

 

 

 

 

 

P3.3/INT1

 

 

 

 

 

 

 

 

 

 

 

3.

P5.5/ADC5

19.

P4.5/CMSR5

35.

P3.4/T0

51.

 

 

 

 

 

48

33

 

 

 

PSEN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

P5.4/ADC4

20.

P4.6/CMT0

36.

P3.5/T1

52.

ALE/PROG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.

P5.3/ADC3

21.

P4.7/CMT1

37.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.6/WR

 

53.

EA/VPP

 

 

 

 

 

 

 

 

 

 

 

6.

P5.2/ADC2

22.

RST

38.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.7/RD

 

54.

P0.7/AD7

49

 

 

 

 

 

 

 

 

 

32

7.

P5.1/ADC1

23.

P1.0/CT0I

39.

XTAL2

55.

P0.6/AD6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.

P5.0/ADC0

24.

P1.1/CT1I

40.

XTAL1

56.

P0.5/AD5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.

VDD

25.

P1.2/CT2I

41.

VSS

57.

P0.4/AD4

 

 

 

 

LQFP64

 

 

 

 

 

 

10.

STADC

26.

P1.3/CT3I

42.

VSS

58.

P0.3/AD3

 

 

 

 

 

 

 

 

 

 

 

11.

PWM0

 

27.

P1.4/T2

43.

P2.0/A08

59.

P0.2/AD2

 

 

 

 

 

 

 

 

 

 

 

12.

 

 

 

28.

P1.5/RT2

44.

P2.1/A09

60.

P0.1/AD1

64

 

 

 

 

 

 

 

 

 

17

PWM1

 

 

 

 

 

 

 

 

 

13.

EW

 

29.

P1.6/SCL

45.

P2.2/A10

61.

P0.0/AD0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14.

P4.0/CMSR0

30.

P1.7/SDA

46.

P2.3/A11

62.

AVref±

 

 

 

 

 

 

 

 

 

 

 

15.

P4.1/CMSR1

31.

P3.0/RxD

47.

P2.4/A12

63.

AVref+

 

 

 

 

 

 

 

 

 

 

 

16.

P4.2/CMSR2

32.

P3.1/TxD

48.

P2.5/A13

64.

AVSS

1

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SU01444

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LOGIC SYMBOL

VSS

VDD

XTAL1

XTAL2

EA/VPP

ALE/PROG

PSEN

AVSS

AVDD

AVref+

AVref±

STADC

PWM0

PWM1

ADC0-7

5PORT

CMSR0-5

4PORT

CMT0

CMT1

RST

EW

0

LOW ORDER

PORT

ADDRESS AND

 

DATA BUS

 

CT0I

 

CT1I

1

CT2I

CT3I

PORT

RT2

 

T2

 

SCL

 

SDA

2

HIGH ORDER

PORT

ADDRESS AND

 

DATA BUS

 

RxD/DATA

 

TxD/CLOCK

3

INT0

PORT

INT1

 

 

T0

 

T1

 

WR

 

RD

 

SU00210

2000 Nov 10

4

Philips Semiconductors Preliminary specification

 

80C51 8-bit microcontroller ± 6 clock operation

 

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

80C554/83C554/87C554

 

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PIN DESCRIPTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PIN NO.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MNEMONIC

LQFP

TYPE

 

 

 

 

 

 

NAME AND FUNCTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD

9

I

 

Digital Power Supply: Positive voltage power supply pin during normal operation, idle and

 

 

 

 

 

 

 

 

power-down mode.

 

 

 

STADC

10

I

 

Start ADC Operation: Input starting analog to digital conversion (ADC operation can also be

 

 

 

 

 

 

 

 

started by software).

 

 

 

 

 

 

 

11

O

 

Pulse Width Modulation: Output 0.

 

 

PWM0

 

 

 

 

 

12

O

 

Pulse Width Modulation: Output 1.

 

 

PWM1

 

 

 

 

13

I

 

Enable Watchdog Timer: Enable for T3 watchdog timer and disable power-down mode.

 

EW

 

P0.0-P0.7

54±61

I/O

 

Port 0: Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them

 

 

 

 

 

 

 

 

float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address

 

 

 

 

 

 

 

 

and data bus during accesses to external program and data memory. In this application it uses

 

 

 

 

 

 

 

 

strong internal pull-ups when emitting 1s. Port 0 is also used to input the code byte during

 

 

 

 

 

 

 

 

programming and to output the code byte during verification.

 

 

P1.0-P1.7

23±30

I/O

 

Port 1: 8-bit I/O port. Alternate functions include:

 

 

 

 

 

 

23±28

I/O

 

(P1.0-P1.5): Programmable I/O port pins.

 

 

 

 

 

 

29±30

I/O

 

(P1.6, P1.7): Open drain port pins.

 

 

 

 

 

 

23±26

I

 

CT0I-CT3I (P1.0-P1.3): Capture timer input signals for timer T2.

 

 

 

 

 

 

27

I

 

T2 (P1.4): T2 event input.

 

 

 

 

 

 

 

28

I

 

RT2 (P1.5): T2 timer reset signal. Rising edge triggered.

 

 

 

 

 

 

29

I/O

 

SCL (P1.6): Serial port clock line I2C-bus.

 

 

 

 

 

 

30

I/O

 

SDA (P1.7): Serial port data line I2C-bus.

 

 

 

 

 

 

 

 

 

Port 1 has four modes selected on a per bit basis by writing to the P1M1 and P1M2 registers as

 

 

 

 

 

 

 

 

follows:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1M1.x

P1M2.x

Mode Description

 

 

 

 

 

 

 

 

0

0

Pseudo±bidirectional (standard c51 configuration; default)

 

 

 

 

 

 

 

0

1

Push-Pull

 

 

 

 

 

 

 

 

1

0

High impedance

 

 

 

 

 

 

 

 

1

1

Open drain

 

 

 

 

 

 

 

 

 

Port 1 is also used to input the lower order address byte during EPROM programming and

 

 

 

 

 

 

 

 

verification. A0 is on P1.0, etc.

 

 

 

P2.0-P2.7

43±50

I/O

 

Port 2: 8-bit programmable I/O port.

 

 

 

 

 

 

 

 

 

Alternate function: High-order address byte for external memory (A08-A15). Port 2 is also used to

 

 

 

 

 

 

 

 

input the upper order address during EPROM programming and verification. A8 is on P2.0, A9 on

 

 

 

 

 

 

 

 

P2.1, through A13 on P2.5.

 

 

 

 

 

 

 

 

 

 

Port 2 has four output modes selected on a per bit basis by writing to the P2M1 and P2M2 registers

 

 

 

 

 

 

 

 

as follows:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2M1.x

P2M2.x

Mode Description

 

 

 

 

 

 

 

 

0

0

Pseudo±bidirectional (standard c51 configuration; default)

 

 

 

 

 

 

 

0

1

Push-Pull

 

 

 

 

 

 

 

 

1

0

High impedance

 

 

 

 

 

 

 

 

1

1

Open drain

 

 

P3.0-P3.7

31±38

I/O

 

Port 3: 8-bit programmable I/O port. Alternate functions include:

 

 

 

 

 

 

31

 

 

RxD(P3.0): Serial input port.

 

 

 

 

 

 

 

32

 

 

TxD (P3.1): Serial output port.

 

 

 

 

 

 

 

33

 

 

 

 

 

(P3.2): External interrupt.

 

 

 

 

 

 

 

 

INT0

 

 

 

 

 

 

34

 

 

 

 

 

(P3.3): External interrupt.

 

 

 

 

 

 

 

 

INT1

 

 

 

 

 

 

35

 

 

T0 (P3.4): Timer 0 external input.

 

 

 

 

 

 

36

 

 

T1 (P3.5): Timer 1 external input.

 

 

 

 

 

 

37

 

 

 

 

(P3.6): External data memory write strobe.

 

 

 

 

 

 

 

 

WR

 

 

 

 

 

 

38

 

 

 

(P3.7): External data memory read strobe.

 

 

 

 

 

 

 

 

RD

 

 

 

 

 

 

 

 

 

Port 3 has four modes selected on a per bit basis by writing to the P3M1 and P3M2 registers as

 

 

 

 

 

 

 

 

follows:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3M1.x

P3M2.x

Mode Description

 

 

 

 

 

 

 

 

0

0

Pseudo±bidirectional (standard c51 configuration; default)

 

 

 

 

 

 

 

0

1

Push±Pull

 

 

 

 

 

 

 

 

1

0

High impedance

 

 

 

 

 

 

 

 

1

1

Open drain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2000 Nov 10

5

Philips Semiconductors Preliminary specification

 

80C51 8-bit microcontroller ± 6 clock operation

 

 

 

 

 

 

 

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

80C554/83C554/87C554

 

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PIN DESCRIPTION (Continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PIN NO.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MNEMONIC

LQFP

TYPE

 

 

 

NAME AND FUNCTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P4.0-P4.7

14±21

I/O

Port 4: 8-bit programmable I/O port. Alternate functions include:

 

 

 

 

 

 

 

14±19

O

CMSR0-CMSR5 (P4.0-P4.5): Timer T2 compare and set/reset outputs on a match with timer T2.

 

 

 

 

 

 

20, 21

O

CMT0, CMT1 (P4.6, P4.7): Timer T2 compare and toggle outputs on a match with timer T2.

 

 

 

 

 

 

 

 

Port 4 has four modes selected on a per bit basis by writing to the P4M1 and P4M2 registers as

 

 

 

 

 

 

 

 

follows:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P4M1.x

P4M2.x

 

Mode Description

 

 

 

 

 

 

 

 

 

0

0

 

Pseudo-bidirectional (standard c51 configuration; default)

 

 

 

 

 

 

 

 

0

1

 

Push-Pull

 

 

 

 

 

 

 

 

 

1

0

 

High impedance

 

 

 

 

 

 

 

 

 

1

1

 

Open drain

 

 

P5.0-P5.6

2±8

I

Port 5: 8-bit input port.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADC0-ADC7 (P5.0-P5.7): Alternate function: Seven input channels to the ADC.

 

RST

22

I/O

Reset: Input to reset the 87C554. It also provides a reset pulse as output when timer T3 overflows.

 

XTAL1

40

I

Crystal Input 1: Input to the inverting amplifier that forms the oscillator, and input to the internal

 

 

 

 

 

 

 

 

clock generator. Receives the external clock signal when an external oscillator is used.

 

XTAL2

39

O

Crystal Input 2: Output of the inverting amplifier that forms the oscillator. Left open-circuit when an

 

 

 

 

 

 

 

 

external clock is used.

 

 

 

 

 

 

 

 

 

VSS

41±42

I

Digital ground.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

51

O

Program Store Enable: Active-low read strobe to external program memory.

 

PSEN

 

 

 

 

 

52

O

Address Latch Enable: Latches the low byte of the address during accesses to external memory.

 

ALE/PROG

 

 

 

 

 

 

 

 

It is activated every six oscillator periods. During an external data memory access, one ALE pulse

 

 

 

 

 

 

 

 

is skipped. ALE can drive up to eight LS TTL inputs and handles CMOS inputs without an external

 

 

 

 

 

 

 

 

pull-up. This pin is also the program pulse input

(PROG)

during EPROM programming.

 

 

 

53

I

External Access: When

 

is held at TTL level high, the CPU executes out of the internal program

 

EA/VPP

EA

 

 

 

 

 

 

 

 

ROM provided the program counter is less than 16,384. When

EA

is held at TTL low level, the CPU

 

 

 

 

 

 

 

 

executes out of external program memory.

EA

is not allowed to float. This pin also receives the

 

 

 

 

 

 

 

 

12.75 V programming supply voltage (VPP) during EPROM programming.

 

AVREF±

62

I

Analog to Digital Conversion Reference Resistor: Low-end.

 

 

AVREF+

63

I

Analog to Digital Conversion Reference Resistor: High-end.

 

 

AVSS

64

I

Analog Ground

 

 

 

 

 

 

 

 

 

 

AVDD

1

I

Analog Power Supply

 

 

 

 

 

 

 

 

NOTE:

+ 0.5 V or V

 

± 0.5 V,

1. To avoid ªlatch-upº effect at power-on, the voltage on any pin at any time must not be higher or lower than V

SS

DD

 

respectively.

2000 Nov 10

6

Philips Semiconductors Preliminary specification

80C51 8-bit microcontroller ± 6 clock operation

 

 

 

 

 

 

 

 

 

 

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

 

 

 

 

 

 

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.

87C554 Special Function Registers

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SYMBOL

DESCRIPTION

DIRECT

 

 

 

 

 

BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION

 

RESET

ADDRESS

MSB

 

 

 

 

 

 

 

 

 

 

 

 

 

LSB

VALUE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACC*

Accumulator

E0H

 

E7

 

E6

E5

E4

 

E3

 

E2

E1

E0

00H

ADCH#

A/D converter high

C6H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADCON#

A/D control

C5H

ADC.1

ADC.0

ADEX

ADCI

 

ADCS

AADR2

AADR1

AADR0

xx000000B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AUXR

Auxiliary

8EH

±

 

±

 

±

±

 

±

 

LVADC

EXTRAM

A0

xxxxx110B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AUXR1

Auxiliary

A2H

ADC8

AIDL

SRST

GF2

 

WUPD

 

O

±

DPS

000000x0B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B*

B register

F0H

 

F7

 

F6

F5

F4

 

F3

 

F2

F1

F0

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CTCON#

Capture control

EBH

CTN3

CTP3

CTN2

CTP2

 

CTN1

CTP1

CTN0

CTP0

00H

CTH3#

Capture high 3

CFH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CTH2#

Capture high 2

CEH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

CTH1#

Capture high 1

CDH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

CTH0#

Capture high 0

CCH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

CMH2#

Compare high 2

CBH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

CMH1#

Compare high 1

CAH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

CMH0#

Compare high 0

C9H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

CTL3#

Capture low 3

AFH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

CTL2#

Capture low 2

AEH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

CTL1#

Capture low 1

ADH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

CTL0#

Capture low 0

ACH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

CML2#

Compare low 2

ABH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

CML1#

Compare low 1

AAH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

CML0#

Compare low 0

A9H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

DPTR:

Data pointer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DPH

(2 bytes):

83H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

Data pointer high

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DPL

Data pointer low

82H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00H

 

 

 

 

AF

 

AE

AD

AC

 

AB

 

AA

A9

A8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IEN0*#

Interrupt enable 0

A8H

 

EA

EAD

ES1

ES0

 

 

ET1

 

EX1

ET0

EX0

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EF

 

EE

ED

EC

 

EB

 

EA

E9

E8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IEN1*#

Interrupt enable 1

E8H

ET2

ECM2

ECM1

ECM0

 

ECT3

ECT2

ECT1

ECT0

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BF

 

BE

BD

BC

 

BB

 

BA

B9

B8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IP0*#

Interrupt priority 0

B8H

±

 

PAD

PS1

PS0

 

 

PT1

 

PX1

PT0

PX0

x0000000B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FF

 

FE

FD

FC

 

FB

 

FA

F9

F8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IP0H

Interrupt priority 0 high

B7H

±

 

PADH

PS1H

PS0H

 

PT1H

PX1H

PT0H

PX0H

x0000000B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IP1*#

Interrupt priority1

F8H

PT2

PCM2

PCM1

PCM0

 

PCT3

PCT2

PCT1

PCT0

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IP1H

Interrupt priority 1 high

F7H

PT2H

PCM2H

PCM1H

PCM0H

 

PCT3H

PCT2H

PCT1H

PCT0H

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P5#

Port 5

C4H

ADC7

ADC6

ADC5

ADC4

 

ADC3

ADC2

ADC1

ADC0

xxxxxxxxB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C7

 

C6

C5

C4

 

C3

 

C2

C1

C0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P4#*

Port 4

C0H

CMT1

CMT0

CMSR5

CMSR4

 

CMSR3

CMSR2

CMSR1

CMSR0

FFH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B7

 

B6

B5

B4

 

B3

 

B2

B1

B0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3*

Port 3

B0H

 

 

 

 

 

 

T1

T0

 

 

 

 

 

 

 

TXD

RXD

FFH

RD

WR

INT1

INT0

 

 

 

 

A7

 

A6

A5

A4

 

A3

 

A2

A1

A0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2*

Port 2

A0H

A15

A14

A13

A12

 

 

A11

 

A10

A9

A8

FFH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

97

 

96

 

95

94

 

93

 

92

 

91

90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1*

Port 1

90H

SDA

SCL

RT2

T2

 

 

CT3I

CT2I

CT1I

CT0I

FFH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

87

 

86

 

85

84

 

83

 

82

 

81

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P0*

Port 0

80H

AD7

AD6

AD5

AD4

 

 

AD3

 

AD2

AD1

AD0

FFH

2000 Nov 10

7

Philips Semiconductors

Preliminary specification

 

 

 

80C51 8-bit microcontroller ± 6 clock operation

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

SYMBOL

DESCRIPTION

DIRECT

 

 

 

BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION

 

RESET

ADDRESS

MSB

 

 

 

 

 

 

 

 

 

 

LSB

VALUE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1M1

Port 1 output mode 1

92H

 

 

 

 

 

 

 

 

 

 

 

 

xx000000B

P1M2

Port 1 output mode 2

93H

 

 

 

 

 

 

 

 

 

 

 

 

xx000000B

P2M1

Port 2 output mode 1

94H

 

 

 

 

 

 

 

 

 

 

 

 

00H

P2M2

Port 2 output mode 2

95H

 

 

 

 

 

 

 

 

 

 

 

 

00H

P3M1

Port 3 output mode 1

9AH

 

 

 

 

 

 

 

 

 

 

 

 

00H

P3M2

Port 3 output mode 2

9BH

 

 

 

 

 

 

 

 

 

 

 

 

00H

P4M1

Port 4 output mode 1

9CH

 

 

 

 

 

 

 

 

 

 

 

 

00H

P4M2

Port 4 output mode 2

9DH

 

 

 

 

 

 

 

 

 

 

 

 

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCON

Power control

87H

SMOD1

SMOD0

POF

WLE

GF1

GFO

PD

IDL

00x00000B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSW

Program status word

D0H

CY

AC

FO

RS1

RS0

OV

F1

P

00H

PWMP#

PWM prescaler

FEH

 

 

 

 

 

 

 

 

 

 

 

 

00H

 

 

 

 

 

 

 

 

 

 

 

 

PWM1#

PWM register 1

FDH

 

 

 

 

 

 

 

 

 

 

 

 

00H

PWM0#

PWM register 0

FCH

 

 

 

 

 

 

 

 

 

 

 

 

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RTE#

Reset/toggle enable

EFH

TP47

TP46

RP45

RP44

RP43

RP42

RP41

RP40

00H

S0ADDR

Serial 0 slave address

F9H

 

 

 

 

 

 

 

 

 

 

 

 

00H

 

 

 

 

 

 

 

 

 

 

 

 

S0ADEN

Slave address mask

B9H

 

 

 

 

 

 

 

 

 

 

 

 

00H

S0BUF

Serial 0 data buffer

99H

 

 

 

 

 

 

 

 

 

 

 

 

xxxxxxxxB

 

 

 

9F

9E

9D

9C

9B

9A

99

98

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S0CON*

Serial 0 control

98H

SM0/FE

SM1

SM2

REN

TB8

RB8

TI

RI

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S1ADR#

Serial 1 address

DBH

 

 

 

 

SLAVE ADDRESS

 

 

 

 

GC

00H

SIDAT#

Serial 1 data

DAH

 

 

 

 

 

 

 

 

 

 

 

 

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S1STA#

Serial 1 status

D9H

SC4

SC3

SC2

SC1

SC0

0

 

0

0

F8H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DF

DE

DD

DC

DB

DA

D9

D8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SICON#*

Serial 1 control

D8H

CR2

ENS1

STA

ST0

SI

AA

CR1

CR0

00H

SP

Stack pointer

81H

 

 

 

 

 

 

 

 

 

 

 

 

07H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STE#

Set enable

EEH

TG47

TG46

SP45

SP44

SP43

SP42

SP41

SP40

C0H

TH1

Timer high 1

8DH

 

 

 

 

 

 

 

 

 

 

 

 

00H

 

 

 

 

 

 

 

 

 

 

 

 

TH0

Timer high 0

8CH

 

 

 

 

 

 

 

 

 

 

 

 

00H

TL1

Timer low 1

8BH

 

 

 

 

 

 

 

 

 

 

 

 

00H

TL0

Timer low 0

8AH

 

 

 

 

 

 

 

 

 

 

 

 

00H

TMH2#

Timer high 2

EDH

 

 

 

 

 

 

 

 

 

 

 

 

00H

TML2#

Timer low 2

ECH

 

 

 

 

 

 

 

 

 

 

 

 

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMOD

Timer mode

89H

GATE

 

 

 

M1

M0

GATE

 

 

 

M1

M0

00H

C/T

 

C/T

 

 

 

8F

8E

8D

8C

8B

8A

89

88

 

 

 

 

 

 

 

 

 

 

 

 

 

TCON*

Timer control

88H

TF1

TR1

TF0

TR0

IE1

IT1

IE0

IT0

00H

 

 

 

 

 

 

 

 

 

 

 

 

TM2CON#

Timer 2 control

EAH

T2IS1

T2IS0

T2ER

T2B0

T2P1

T2P0

T2MS1

T2MS0

00H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CF

CE

CD

CC

CB

CA

C9

C8

 

 

 

 

 

 

 

 

 

 

 

 

 

TM2IR#*

Timer 2 int flag reg

C8H

T20V

CMI2

CMI1

CMI0

CTI3

CTI2

CTI1

CTI0

00H

T3#

Timer 3

FFH

 

 

 

 

 

 

 

 

 

 

 

 

00H

 

 

 

 

 

 

 

 

 

 

 

 

*SFRs are bit addressable.

# SFRs are modified from or added to the 80C51 SFRs.

2000 Nov 10

8

Philips Semiconductors

Preliminary specification

 

 

 

80C51 8-bit microcontroller ± 6 clock operation

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier. The pins can be configured for use as an on-chip oscillator, as shown in the logic symbol.

To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected. The minimum and maximum high and low times specified in the data sheet must be observed.

RESET

A reset is accomplished by either (1) externally holding the RST pin high for at least two machine cycles (12 oscillator periods) or (2) internally by an on-chip power-on detect (POD) circuit which detects

VCC ramping up from 0 V.

To insure a good external power-on reset, the RST pin must be high long enough for the oscillator to start up (normally a few milliseconds) plus two machine cycles. The voltage on VDD and the RST pin must come up at the same time for a proper startup.

For a successful internal power-on reset, the VCC voltage must ramp up from 0 V smoothly at a ramp rate greater than 5 V/100 ms.

The RST line can also be pulled HIGH internally by a pull-up transistor activated by the watchdog timer T3. The length of the output pulse from T3 is 3 machine cycles. A pulse of such short duration is necessary in order to recover from a processor or system fault as fast as possible.

Note that the short reset pulse from Timer T3 cannot discharge the power-on reset capacitor (see Figure 2). Consequently, when the watchdog timer is also used to set external devices, this capacitor arrangement should not be connected to the RST pin, and a different circuit should be used to perform the power-on reset operation. A timer T3 overflow, if enabled, will force a reset condition to the 8xC554 by an internal connection, independent of the level of the RST pin.

A reset may be performed in software by setting the software reset bit, SRST (AUXR1.5).

VDD

OVERFLOW

TIMER T3

SCHMITT

TRIGGER

RST

RESET

CIRCUITRY

 

ON-CHIP

RESISTOR RRST

SU00952

Figure 1. On-Chip Reset Configuration

VDD

VDD

+

2.2 μF

8XC554

RST

RRST

SU00953

Figure 2. Power-On Reset

LOW POWER MODES

Stop Clock Mode

The static design enables the clock speed to be reduced down to 0 MHz (stopped). When the oscillator is stopped, the RAM and Special Function Registers retain their values. This mode allows step-by-step utilization and permits reduced system power

consumption by lowering the clock frequency down to any value. For lowest power consumption the Power Down mode is suggested.

Idle Mode

In the idle mode (see Table 2), the CPU puts itself to sleep while some of the on-chip peripherals stay active. The instruction to invoke the idle mode is the last instruction executed in the normal operating mode before the idle mode is activated. The CPU contents, the on-chip RAM, and all of the special function registers remain intact during this mode. The idle mode can be terminated either by any enabled interrupt (at which time the process is picked up at the interrupt service routine and continued), or by a hardware reset which starts the processor in the same manner as a power-on reset.

Power-Down Mode

To save even more power, a Power Down mode (see Table 2) can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values down to 2.0 V and care must be taken to return VCC to the minimum specified operating voltages before the Power Down

Mode is terminated.

Either a hardware reset or external interrupt can be used to exit from Power Down. The Wake-up from Power-down bit, WUPD (AUXR1.3) must be set in order for an external interrupt to cause a wake-up from power-down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and the on-chip RAM to retain their values.

To properly terminate Power Down the reset or external interrupt should not be executed before VCC is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

2000 Nov 10

9

Philips Semiconductors Preliminary specification

80C51 8-bit microcontroller ± 6 clock operation

 

 

 

 

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

 

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. External Pin Status During Idle and Power-Down Modes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MODE

PROGRAM

ALE

 

 

 

PORT 0

PORT 1

PORT 2

PORT 3

PORT 4

PWM0/

MEMORY

 

PSEN

 

PWM1

Idle

Internal

1

 

1

 

Data

Data

Data

Data

Data

High

 

 

 

 

 

 

 

 

 

 

 

 

Idle

External

1

 

1

 

Float

Data

Address

Data

Data

High

 

 

 

 

 

 

 

 

 

 

 

 

Power-down

Internal

0

 

0

 

Data

Data

Data

Data

Data

High

 

 

 

 

 

 

 

 

 

 

 

 

Power-down

External

0

 

0

 

Float

Data

Data

Data

Data

High

 

 

 

 

 

 

 

 

 

 

 

 

With an external interrupt, INT0 and INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

POWER OFF FLAG

The Power Off Flag (POF) is set by on-chip circuitry when the VCC level on the 8xC554 rises from 0 to 5 V. The POF bit can be set or cleared by software allowing a user to determine if the reset is the result of a power-on or a warm start after powerdown. The VCC level must remain above 3 V for the POF to remain unaffected by the VCC level.

Design Consideration

When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate

the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCE Mode

The ONCE (ªOn-Circuit Emulationº) Mode facilitates testing and debugging of systems without the device having to be removed from the circuit. The ONCE Mode is invoked by:

1.Pull ALE low while the device is in reset and PSEN is high;

2.Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins go into a float

state, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the device is in this mode, an emulator or test CPU can be used to drive the circuit.

Normal operation is restored when a normal reset is applied.

Reduced EMI Mode

The ALE-Off bit, AO (AUXR.0) can be set to disable the ALE output.

It will automatically become active when required for external memory accesses and resume to the OFF state after completing the external memory access.

 

 

7

6

5

 

4

3

 

2

1

0

 

 

 

 

PCON

SMOD1

SMOD0

POF

 

WLE

GF1

 

GF0

PD

IDL

 

 

 

 

(87H)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(MSB)

 

 

 

 

 

 

 

 

(LSB)

BIT

SYMBOL

FUNCTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCON.7

SMOD1

Double Baud rate bit. When set to logic 1, the baud rate is doubled when the serial port SIO0 is being

 

 

used in modes 1, 2, or 3.

 

 

 

 

 

 

 

 

 

PCON.6

SMOD0

Selects SM0/FE for SCON.7 bit.

 

 

 

 

 

 

 

 

 

PCON.5

POF

Power Off Flag

 

 

 

 

 

 

 

 

 

 

 

PCON.4

WLE

Watchdog Load Enable. This flag must be set by software prior to loading timer T3 (watchdog timer). It is

 

 

cleared when timer T3 is loaded.

 

 

 

 

 

 

 

 

 

PCON.3

GF1

General-purpose flag bit.

 

 

 

 

 

 

 

 

 

PCON.2

GF0

General-purpose flag bit.

 

 

 

 

 

 

 

 

 

PCON.1

PD

Power-down bit. Setting this bit activates the power-down mode. It can only be set if input

 

is high.

EW

PCON.0

IDL

Idle mode bit. Setting this bit activates the Idle mode.

 

 

 

 

 

 

If logic 1s are written to PD and IDL at the same time, PD takes precedence. The reset value of PCON is (00X00000).

SU00954

Figure 3. Power Control Register (PCON)

2000 Nov 10

10

Philips Semiconductors

Preliminary specification

 

 

 

80C51 8-bit microcontroller ± 6 clock operation

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

Expanded Data RAM Addressing

The 8xC554 has internal data memory that is mapped into four separate segments: the lower 128 bytes of RAM, upper 128 bytes of

RAM, 128 bytes Special Function Register (SFR), and 256 bytes expanded RAM (EXTRAM).

The four segments are:

1.The Lower 128 bytes of RAM (addresses 00H to 7FH) are directly and indirectly addressable.

2.The Upper 128 bytes of RAM (addresses 80H to FFH) are indirectly addressable only.

3.The Special Function Registers, SFRs, (addresses 80H to FFH) are directly addressable only.

4.The 256-bytes expanded RAM (ERAM, 00H ± FFH) are indirectly accessed by move external instruction, MOVX, and with the EXTRAM bit cleared, see Figure 4.

The Lower 128 bytes can be accessed by either direct or indirect addressing. The Upper 128 bytes can be accessed by indirect addressing only. The Upper 128 bytes occupy the same address space as the SFR. That means they have the same address, but are physically separate from SFR space.

When an instruction accesses an internal location above address

7FH, the CPU knows whether the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used in the instruction. Instructions that use direct addressing access SFR space. For example:

MOV 0A0H,#data

accesses the SFR at location 0A0H (which is P2). Instructions that use indirect addressing access the Upper 128 bytes of data RAM.

For example:

MOV @R0,#data

where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H).

The ERAM can be accessed by indirect addressing, with EXTRAM bit cleared and MOVX instructions. This part of memory is physically located on-chip, logically occupies the first 256-bytes of external data memory.

With EXTRAM = 0, the EXTRAM is indirectly addressed, using the MOVX instruction in combination with any of the registers R0, R1 of the selected bank or DPTR. An access to ERAM will not affect ports P0, P3.6 (WR#) and P3.7 (RD#). P2 SFR is output during expanded RAM addressing. For example, with EXTRAM = 0,

MOVX @R0,#data

where R0 contains 0A0H, accesses the ERAM at address 0A0H rather than external memory. An access to external data memory locations higher than FFH (i.e., 0100H to FFFFH) will be performed with the MOVX DPTR instructions in the same way as in the standard 80C51, so with P0 and P2 as data/address bus, and P3.6 and P3.7 as write and read timing signals. Refer to Figure 5.

With EXTRAM = 1, MOVX @Ri and MOVX @DPTR will be similar to the standard 80C51. MOVX @ Ri will provide an 8-bit address multiplexed with data on Port 0 and any output port pins can be used to output higher order address bits. This is to provide the external paging capability. MOVX @DPTR will generate a 16-bit address. Port 2 outputs the high-order eight address bits (the contents of DPH) while Port 0 multiplexes the low-order eight address bits (DPL) with data. MOVX @Ri and MOVX @DPTR will generate either read or write signals on P3.6 (#WR) and P3.7 (#RD).

The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and upper RAM) internal data memory. The stack may not be located in the ERAM address space.

AUXR

Address = 8EH

 

 

 

 

 

 

Reset Value = xxxx x110B

 

Not Bit Addressable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ð

Ð

Ð

Ð

Ð

LVADC

EXTRAM

AO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit:

7

6

5

4

3

2

1

0

 

Symbol

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AO

Disable/Enable ALE

 

 

 

 

 

 

 

 

AO

 

Operating Mode

 

 

 

 

 

 

 

0

 

 

ALE is emitted at a constant rate of 1/6 the oscillator frequency.

 

 

 

1

 

 

ALE is active only during a MOVX or MOVC instruction.

 

 

 

EXTRAM

Internal/External RAM (00H ± FFH) access using MOVX @Ri/@DPTR

 

 

 

 

EXTRAM

 

Operating Mode

 

 

 

 

 

 

 

0

 

 

Internal ERAM (00H±FFH) access using MOVX @Ri/@DPTR

 

 

 

1

 

 

External data memory access.

 

 

 

 

 

LVADC

Enable A/D low voltage operation

 

 

 

 

 

 

 

LVADC

 

Operating Mode

 

 

 

 

 

 

 

0

 

 

Turns off A/D charge pump.

 

 

 

 

 

 

1

 

 

Turns on A/D charge pump. Required for operation below 4V.

 

 

Ð

Not implemented, reserved for future use*.

 

 

 

 

 

NOTE:

*User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

SU00979A

Figure 4. AUXR: Auxiliary Register

2000 Nov 10

11

Philips Semiconductors

Preliminary specification

 

 

 

80C51 8-bit microcontroller ± 6 clock operation

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

FF

 

FF

 

FF

 

FFFF

 

 

 

UPPER

 

SPECIAL

 

EXTERNAL

 

 

 

128 BYTES

 

FUNCTION

 

DATA

 

 

 

INTERNAL RAM

 

REGISTER

 

MEMORY

 

ERAM

80

 

80

 

 

 

 

 

 

 

 

 

 

 

256 BYTES

 

 

 

 

 

 

 

 

 

 

LOWER

 

 

 

 

 

 

 

 

128 BYTES

 

 

 

 

 

 

 

 

INTERNAL RAM

 

 

 

 

 

 

 

 

 

 

 

0100

 

 

 

 

 

 

 

 

 

 

00

 

00

 

00

 

0000

 

 

 

 

 

SU00980

 

 

 

 

 

 

 

Figure 5. Internal and External Data Memory Address Space with EXTRAM = 0

Dual DPTR

The dual DPTR structure (see Figure 6) is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 that allows the program code to switch between them.

The DPS bit status should be saved by software when switching between DPTR0 and DPTR1.

Note that bit 2 is not writable and is always read as a zero. This allows the DPS bit to be quickly toggled simply by executing an INC AUXR1 instruction without affecting the other bits.

DPTR Instructions

The instructions that refer to DPTR refer to the data pointer that is currently selected using the AUXR1/bit 0 register. The six instructions that use the DPTR are as follows:

INC DPTR

Increments the data pointer by 1

DPS

 

 

BIT0

 

 

AUXR1

 

DPTR1

 

 

DPTR0

DPH

DPL

 

(83H)

(82H)

EXTERNAL

 

 

DATA

 

 

MEMORY

 

 

SU00745A

Figure 6.

MOV DPTR, #data16

Loads the DPTR with a 16-bit constant

MOV A, @ A+DPTR

Move code byte relative to DPTR to ACC

MOVX A, @ DPTR

Move external RAM (16-bit address) to

 

ACC

MOVX @ DPTR , A

Move ACC to external RAM (16-bit

 

address)

JMP @ A + DPTR

Jump indirect relative to DPTR

The data pointer can be accessed on a byte-by-byte basis by specifying the low or high byte in an instruction which accesses the SFRs. See application note AN458 for more details.

2000 Nov 10

12

Philips Semiconductors Preliminary specification

80C51 8-bit microcontroller ± 6 clock operation

 

 

 

 

 

 

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

 

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AUXR1

Address = A2H

 

 

 

 

 

 

 

 

Reset Value = 0000 00x0B

 

 

Not Bit Addressable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADC8

AIDL

SRST

GF2

 

WUPD

0

 

Ð

DSP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit:

7

6

5

4

 

3

2

 

1

0

 

 

 

 

Symbol

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DPS

Data Pointer SwitchÐswitches between DPRT0 and DPTR1.

 

 

 

 

 

 

 

 

 

DPS

 

Operating Mode

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

DPTR0

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

DPTR1

 

 

 

 

 

 

 

 

 

 

 

 

WUPD

Enable wakeup from powerdown.

 

 

 

 

 

 

 

 

 

 

 

GF2

General Purpose FlagÐset and cleared by the user.

 

 

 

 

 

 

 

 

 

SRST

Software Reset

 

 

 

 

 

 

 

 

 

 

 

 

 

AIDL

Enables the ADC during idle mode.

 

 

 

 

 

 

 

 

 

 

 

ADC8

ADC Mode SwitchÐswitches between 10-bit conversion and 8-bit conversion.

 

 

 

 

 

 

 

ADC8

 

Operating Mode

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

10-bit conversion (50 machine cycles)

 

 

 

 

 

 

 

 

 

1

 

 

8-bit conversion (24 machine cycles)

 

 

 

 

 

 

 

NOTE:

*User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

SU01081

Figure 7. AUXR1: DPTR Control Register

2000 Nov 10

13

Philips Semiconductors

Preliminary specification

 

 

 

80C51 8-bit microcontroller ± 6 clock operation

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

Enhanced UART

The UART operates in all of the usual modes that are described in the first section of Data Handbook IC20, 80C51-Based 8-Bit Microcontrollers. In addition the UART can perform framing error detect by looking for missing stop bits, and automatic address recognition. The UART also fully supports multiprocessor communication as does the standard 80C51 UART.

When used for framing error detect the UART looks for missing stop bits in the communication. A missing bit will set the FE bit in the S0CON register. The FE bit shares the S0CON.7 bit with SM0 and the function of S0CON.7 is determined by PCON.6 (SMOD0) (see Figure 8). If SMOD0 is set then S0CON.7 functions as FE. S0CON.7 functions as SM0 when SMOD0 is cleared. When used as FE S0CON.7 can only be cleared by software. Refer to Figure 9.

Automatic Address Recognition

Automatic Address Recognition is a feature which allows the UART to recognize certain addresses in the serial bit stream by using

hardware to make the comparisons. This feature saves a great deal of software overhead by eliminating the need for the software to examine every serial address which passes by the serial port. This feature is enabled by setting the SM2 bit in S0CON. In the 9 bit UART modes, mode 2 and mode 3, the Receive Interrupt flag (RI) will be automatically set when the received byte contains either the ªGivenº address or the ªBroadcastº address. The 9 bit mode requires that the 9th information bit is a 1 to indicate that the received information is an address and not data. Automatic address recognition is shown in Figure 10.

The 8 bit mode is called Mode 1. In this mode the RI flag will be set if SM2 is enabled and the information received has a valid stop bit following the 8 address bits and the information is either a Given or

Broadcast address.

 

 

S0CON Address = 98H

 

 

 

 

 

 

 

Reset Value = 0000 0000B

 

 

Bit Addressable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SM0/FE

SM1

 

SM2

REN

TB8

 

RB8

Tl

 

Rl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit:

7

6

 

5

4

3

 

2

1

 

0

 

 

 

 

 

(SMOD0 = 0/1)*

 

 

 

 

 

 

 

 

 

 

 

Symbol

Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FE

Framing Error bit. This bit is set by the receiver when an invalid stop bit is detected. The FE bit is not cleared by valid

 

 

frames but should be cleared by software. The SMOD0 bit must be set to enable access to the FE bit.

 

SM0

Serial Port Mode Bit 0, (SMOD0 must = 0 to access bit SM0)

 

 

 

 

 

 

 

SM1

Serial Port Mode Bit 1

 

 

 

 

 

 

 

 

 

 

 

 

SM0

SM1

Mode

Description

Baud Rate**

 

 

 

 

 

 

 

 

0

 

0

0

 

shift register

fOSC/6

 

 

 

 

 

 

 

 

0

 

1

1

 

8-bit UART

variable

 

 

 

 

 

 

 

 

1

 

0

2

 

9-bit UART

fOSC/32 or fOSC/16

 

 

 

 

 

 

 

1

 

1

3

 

9-bit UART

variable

 

 

 

 

 

 

 

SM2

Enables the Automatic Address Recognition feature in Modes 2 or 3. If SM2 = 1 then Rl will not be set unless the

 

 

received 9th data bit (RB8) is 1, indicating an address, and the received byte is a Given or Broadcast Address.

 

 

In Mode 1, if SM2 = 1 then Rl will not be activated unless a valid stop bit was received, and the received byte is a

 

 

Given or Broadcast Address. In Mode 0, SM2 should be 0.

 

 

 

 

 

 

 

REN

Enables serial reception. Set by software to enable reception. Clear by software to disable reception.

 

TB8

The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as desired.

 

RB8

In modes 2 and 3, the 9th data bit that was received. In Mode 1, if SM2 = 0, RB8 is the stop bit that was received.

 

 

In Mode 0, RB8 is not used.

 

 

 

 

 

 

 

 

 

 

 

Tl

Transmit interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the beginning of the stop bit in the

 

 

other modes, in any serial transmission. Must be cleared by software.

 

 

 

 

 

 

Rl

Receive interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or halfway through the stop bit time in

 

 

the other modes, in any serial reception (except see SM2). Must be cleared by software.

 

 

 

NOTE:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*SMOD0 is located at PCON6.

 

 

 

 

 

 

 

 

 

 

 

 

 

**fOSC = oscillator frequency

 

 

 

 

 

 

 

 

 

 

 

SU01445

Figure 8. S0CON: Serial Port Control Register

2000 Nov 10

14

Philips Semiconductors

Preliminary specification

 

 

 

80C51 8-bit microcontroller ± 6 clock operation

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

 

 

 

 

D0

D1

D2

D3

D4

D5

D6

D7

 

 

D8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DATA BYTE

 

 

 

 

 

 

 

 

 

 

 

START

 

 

 

 

 

 

 

 

 

 

ONLY IN

STOP

BIT

 

 

 

 

 

 

 

 

 

 

 

 

MODE 2, 3

BIT

 

 

 

 

 

 

 

 

 

 

SET FE BIT IF STOP BIT IS 0 (FRAMING ERROR)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SM0 TO UART MODE CONTROL

 

 

 

 

 

SCON

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SM0 / FE

SM1

 

SM2

REN

TB8

RB8

TI

 

 

RI

 

 

 

 

 

 

 

 

 

 

 

(98H)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCON

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMOD1

SMOD0

 

POF

WLE

GF1

GF0

PD

 

 

IDL

 

 

 

 

 

 

 

 

 

 

 

(87H)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 : S0CON.7 = SM0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 : S0CON.7 = FE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SU00982

Figure 9. UART Framing Error Detection

D0

D1

D2

D3

D4

 

D5

D6

D7

D8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCON

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SM0

SM1

SM2

REN

TB8

RB8

 

TI

RI

 

 

 

 

 

(98H)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

1

1

X

 

 

 

 

 

 

 

 

 

 

 

 

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RECEIVED ADDRESS D0 TO D7

COMPARATOR

PROGRAMMED ADDRESS

IN UART MODE 2 OR MODE 3 AND SM2 = 1:

INTERRUPT IF REN=1, RB8=1 AND ªRECEIVED ADDRESSº = ªPROGRAMMED ADDRESSº

±WHEN OWN ADDRESS RECEIVED, CLEAR SM2 TO RECEIVE DATA BYTES

±WHEN ALL DATA BYTES HAVE BEEN RECEIVED: SET SM2 TO WAIT FOR NEXT ADDRESS.

SU00045

Figure 10. UART Multiprocessor Communication, Automatic Address Recognition

Mode 0 is the Shift Register mode and SM2 is ignored.

Using the Automatic Address Recognition feature allows a master to selectively communicate with one or more slaves by invoking the Given slave address or addresses. All of the slaves may be contacted by using the Broadcast address. Two special Function

Registers are used to define the slave's address, SADDR, and the address mask, SADEN. SADEN is used to define which bits in the SADDR are to b used and which bits are ªdon't careº. The SADEN mask can be logically ANDed with the SADDR to create the ªGivenº address which the master will use for addressing each of the slaves.

Use of the Given address allows multiple slaves to be recognized while excluding others. The following examples will help to show the versatility of this scheme:

Slave 0

SADDR

=

1100

0000

 

SADEN

=

1111

1101

 

Given

=

1100

00X0

Slave 1

SADDR

=

1100

0000

 

SADEN

=

1111

1110

 

Given

=

1100

000X

In the above example SADDR is the same and the SADEN data is used to differentiate between the two slaves. Slave 0 requires a 0 in bit 0 and it ignores bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is ignored. A unique address for Slave 0 would be 1100 0010 since slave 1 requires a 0 in bit 1. A unique address for slave 1 would be

1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be selected at the same time by an address which has bit 0 = 0 (for slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed with 1100 0000.

2000 Nov 10

15

Philips Semiconductors

Preliminary specification

 

 

 

80C51 8-bit microcontroller ± 6 clock operation

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

In a more complex system the following could be used to select slaves 1 and 2 while excluding slave 0:

Slave 0

SADDR

=

1100

0000

 

SADEN

=

1111

1001

 

Given

=

1100

0XX0

Slave 1

SADDR

=

1110

0000

 

SADEN

=

1111

1010

 

Given

=

1110

0X0X

Slave 2

SADDR

=

1110

0000

 

SADEN

=

1111

1100

 

Given

=

1110

00XX

In the above example the differentiation among the 3 slaves is in the lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and it can be uniquely addressed by 1110 and 0101. Slave 2 requires that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0 and 1 and exclude Slave 2 use address 1110 0100, since it is necessary to make bit 2 = 1 to exclude slave 2.

The Broadcast Address for each slave is created by taking the logical OR of SADDR and SADEN. Zeros in this result are trended as don't-cares. In most cases, interpreting the don't-cares as ones, the broadcast address will be FF hexadecimal.

Upon reset SADDR (SFR address 0A9H) and SADEN (SFR address 0B9H) are leaded with 0s. This produces a given address of all ªdon't caresº as well as a Broadcast address of all ªdon't caresº. This effectively disables the Automatic Addressing mode and allows the microcontroller to use standard 80C51 type UART drivers which do not make use of this feature.

Timer T2

Timer T2 is a 16-bit timer consisting of two registers TMH2 (HIGH byte) and TML2 (LOW byte). The 16-bit timer/counter can be switched off or clocked via a prescaler from one of two sources: fOSC/6 or an external signal. When Timer T2 is configured as a counter, the prescaler is clocked by an external signal on T2 (P1.4). A rising edge on T2 increments the prescaler, and the maximum repetition rate is one count per machine cycle (0.5 MHz with a

12 MHz oscillator).

The maximum repetition rate for Timer T2 is twice the maximum repetition rate for Timer 0 and Timer 1. T2 (P1.4) is sampled at S2P1 and again at S5P1 (i.e., twice per machine cycle). A rising edge is detected when T2 is LOW during one sample and HIGH during the next sample. To ensure that a rising edge is detected, the input signal must be LOW for at least 1/2 cycle and then HIGH for at least 1/2 cycle. If a rising edge is detected before the end of S2P1, the timer will be incremented during the following cycle; otherwise it will be incremented one cycle later. The prescaler has a programmable division factor of 1, 2, 4, or 8 and is cleared if its division factor or input source is changed, or if the timer/counter is reset.

Timer T2 may be read ªon the flyº but possesses no extra read latches, and software precautions may have to be taken to avoid misinterpretation in the event of an overflow from least to most significant byte while Timer T2 is being read. Timer T2 is not loadable and is reset by the RST signal or by a rising edge on the input signal RT2, if enabled. RT2 is enabled by setting bit T2ER (TM2CON.5).

When the least significant byte of the timer overflows or when a 16-bit overflow occurs, an interrupt request may be generated.

Either or both of these overflows can be programmed to request an interrupt. In both cases, the interrupt vector will be the same. When the lower byte (TML2) overflows, flag T2B0 (TM2CON) is set and flag T20V (TM2IR) is set when TMH2 overflows. These flags are set one cycle after an overflow occurs. Note that when T20V is set, T2B0 will also be set. To enable the byte overflow interrupt, bits ET2

(IEN1.7, enable overflow interrupt, see Figure 11) and T2IS0

(TM2CON.6, byte overflow interrupt select) must be set. Bit TWB0 (TM2CON.4) is the Timer T2 byte overflow flag.

To enable the 16-bit overflow interrupt, bits ET2 (IE1.7, enable overflow interrupt) and T2IS1 (TM2CON.7, 16-bit overflow interrupt select) must be set. Bit T2OV (TM2IR.7) is the Timer T2 16-bit overflow flag. All interrupt flags must be reset by software. To enable both byte and 16-bit overflow, T2IS0 and T2IS1 must be set and two interrupt service routines are required. A test on the overflow flags indicates which routine must be executed. For each routine, only the corresponding overflow flag must be cleared.

Timer T2 may be reset by a rising edge on RT2 (P1.5) if the Timer

T2 external reset enable bit (T2ER) in T2CON is set. This reset also clears the prescaler. In the idle mode, the timer/counter and prescaler are reset and halted. Timer T2 is controlled by the

TM2CON special function register (see Figure 12).

Timer T2 Extension: When a 6 MHz oscillator is used, a 16-bit overflow on Timer T2 occurs every 65.5, 131, 262, or 524 ms, depending on the prescaler division ratio; i.e., the maximum cycle time is approximately 0.5 seconds. In applications where cycle times are greater than 0.5 seconds, it is necessary to extend Timer T2. This is achieved by selecting fosc/12 as the clock source (set T2MS0, reset T2MS1), setting the prescaler division ration to 1/8 (set T2P0, set T2P1), disabling the byte overflow interrupt (reset T2IS0) and enabling the 16-bit overflow interrupt (set T2IS1). The following software routine is written for a three-byte extension which gives a maximum cycle time of approximately 2400 hours.

OVINT: PUSH

ACC

;save accumulator

PUSH

PSW

;save status

INC

TIMEX1

;increment first byte (low order)

 

 

;of extended timer

MOV

A,TIMEX1

 

JNZ

INTEX

;jump to INTEX if ;there is no overflow

INC

TIMEX2

;increment second byte

MOV

A,TIMEX2

 

JNZ

INTEX

;jump to INTEX if there is no overflow

INC

TIMEX3

;increment third byte (high order)

INTEX: CLR

T2OV

;reset interrupt flag

POP

PSW

;restore status

POP

ACC

;restore accumulator

RETI

 

;return from interrupt

Timer T2, Capture and Compare Logic: Timer T2 is connected to four 16-bit capture registers and three 16-bit compare registers. A capture register may be used to capture the contents of Timer T2 when a transition occurs on its corresponding input pin. A compare register may be used to set, reset, or toggle port 4 output pins at certain pre-programmable time intervals.

The combination of Timer T2 and the capture and compare logic is very powerful in applications involving rotating machinery, automotive injection systems, etc. Timer T2 and the capture and compare logic are shown in Figure 13.

2000 Nov 10

16

Philips Semiconductors Preliminary specification

80C51 8-bit microcontroller ± 6 clock operation

 

 

 

 

 

 

 

 

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

 

 

 

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

6

 

5

 

 

4

 

3

2

 

1

 

 

0

 

Reset Value = 00H

 

 

 

 

 

 

 

 

 

 

 

 

 

IEN1 (E8H)

ET2

ECM2

ECM1

 

ECM0

ECT3

ECT2

 

ECT1

 

ECT0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(MSB)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(LSB)

 

 

 

BIT

 

SYMBOL

FUNCTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IEN1.7

 

ET2

 

Enable Timer T2 overflow interrupt(s)

 

 

 

 

 

IEN1.6

 

ECM2

 

Enable T2 Comparator 2 interrupt

 

 

 

 

 

 

 

 

IEN1.5

 

ECM1

 

Enable T2 Comparator 1 interrupt

 

 

 

 

 

 

 

 

IEN1.4

 

ECM0

 

Enable T2 Comparator 0 interrupt

 

 

 

 

 

 

 

 

IEN1.3

 

ECT3

 

Enable T2 Capture register 3 interrupt

 

 

 

 

 

IEN1.2

 

ECT2

 

Enable T2 Capture register 2 interrupt

 

 

 

 

 

IEN1.1

 

ECT1

 

Enable T2 Capture register 1 interrupt

 

 

 

 

 

IEN1.0

 

ECT0

 

Enable T2 Capture register 0 interrupt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SU01083

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Timer T2 Interrupt Enable Register (IEN1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

6

 

5

 

 

4

 

3

2

 

1

 

 

0

 

Reset Value = 00H

 

TM2CON (EAH)

T2IS1

T2IS0

T2ER

 

T2BO

T2P1

T2P0

 

T2MS1

 

T2MS0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(MSB)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(LSB)

 

 

 

BIT

 

SYMBOL

 

 

 

FUNCTION

 

 

 

 

 

 

 

 

 

 

TM2CON.7

 

TSIS1

 

 

 

Timer T2 16-bit overflow interrupt select

 

 

 

TM2CON.6

 

T2IS0

 

 

 

Timer T2 byte overflow interrupt select

 

 

 

 

 

TM2CON.5

 

T2ER

 

 

 

Timer T2 external reset enable. When this bit is set,

 

 

 

 

 

 

 

 

 

 

 

Timer T2 may be reset by a rising edge on RT2 (P1.5).

 

 

 

TM2CON.4

 

T2BO

 

 

 

Timer T2 byte overflow interrupt flag

 

 

 

 

 

TM2CON.3

 

T2P1

 

 

 

Timer T2 prescaler select

 

 

 

 

 

 

 

 

TM2CON.2

 

T2P0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T2P1

 

 

 

T2P0

 

Timer T2 Clock

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

0

 

Clock source

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

1

 

Clock source/2

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

0

 

Clock source/4

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

1

 

Clock source/8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TM2CON.1

 

T2MS1

 

 

 

Timer T2 mode select

 

 

 

 

 

 

 

 

TM2CON.0

 

T2MS0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T2MS1

 

 

T2MS0

 

Mode Selected

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

0

 

Timer T2 halted (off)

 

 

 

 

 

 

 

 

 

 

 

0

 

 

1

 

T2 clock source = fOSC/6

 

 

 

 

 

 

 

 

 

 

1

 

 

0

 

Test mode; do not use

 

 

 

 

 

 

 

 

 

 

1

 

 

1

 

T2 clock source = pin T2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SU01446

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. T2 Control Register (TM2CON)

 

 

 

 

2000 Nov 10

17

Philips Semiconductors

 

 

 

 

 

 

 

 

 

Preliminary specification

80C51 8-bit microcontroller ± 6 clock operation

 

 

 

 

 

 

 

 

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

 

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

 

 

 

 

 

 

CT0I

INT

CT1I

INT

 

CT2I

 

INT

 

CT3I

INT

 

 

 

CTI0

 

CTI1

 

 

 

CTI2

 

 

 

CTI3

 

 

 

CT0

 

CT1

 

 

CT2

 

 

 

 

CT3

 

off

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8-bit overflow interrupt

 

 

 

 

 

fosc

1/6

 

Prescaler

T2 Counter

 

 

 

 

 

 

 

 

 

 

 

 

 

16-bit overflow interrupt

 

 

 

 

 

T2

 

 

 

 

 

 

 

 

 

 

 

 

 

RT2

 

 

 

 

 

 

 

 

 

 

 

 

 

T2ER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

External reset

 

 

 

 

 

 

 

 

 

 

 

 

 

enable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMP

INT

COMP

INT

 

COMP

INT

S

R

 

P4.0

 

 

 

 

 

 

 

 

 

 

S

R

 

P4.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CMO (S)

 

CM1 (R)

 

 

 

CM2 (T)

 

S

R

 

P4.2

 

 

 

 

 

 

 

 

 

 

 

 

 

I/O port 4

 

 

 

 

 

 

 

 

 

 

S

R

 

P4.3

 

 

 

 

 

 

 

 

 

 

S

R

 

P4.4

 

 

 

 

 

 

 

 

 

 

S

R

 

P4.5

S

=

set

T2 SFR address:

TML2

=

lower 8 bits

 

TG

T

 

P4.6

R

=

reset

 

 

TMH2

=

higher 8 bits

 

 

T

=

toggle

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TG

T

 

P4.7

TG =

toggle status

 

 

 

 

 

 

 

STE

RTE

 

 

 

 

 

 

 

 

 

 

 

SU01447

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Block Diagram of Timer 2

Capture Logic: The four 16-bit capture registers that Timer T2 is connected to are: CT0, CT1, CT2, and CT3. These registers are loaded with the contents of Timer T2, and an interrupt is requested upon receipt of the input signals CT0I, CT1I, CT2I, or CT3I. These input signals are shared with port 1. The four interrupt flags are in the Timer T2 interrupt register (TM2IR special function register). If the capture facility is not required, these inputs can be regarded as additional external interrupt inputs.

Using the capture control register CTCON (see Figure 14), these inputs may capture on a rising edge, a falling edge, or on either a rising or falling edge. The inputs are sampled during S1P1 of each cycle. When a selected edge is detected, the contents of Timer T2 are captured at the end of the cycle.

Measuring Time Intervals Using Capture Registers: When a recurring external event is represented in the form of rising or falling edges on one of the four capture pins, the time between two events

can be measured using Timer T2 and a capture register. When an event occurs, the contents of Timer T2 are copied into the relevant capture register and an interrupt request is generated. The interrupt service routine may then compute the interval time if it knows the previous contents of Timer T2 when the last event occurred. With a 12 MHz oscillator, Timer T2 can be programmed to overflow every 524 ms. When event interval times are shorter than this, computing the interval time is simple, and the interrupt service routine is short. For longer interval times, the Timer T2 extension routine may be used.

Compare Logic: Each time Timer T2 is incremented, the contents of the three 16-bit compare registers CM0, CM1, and CM2 are compared with the new counter value of Timer T2. When a match is found, the corresponding interrupt flag in TM2IR is set at the end of the following cycle. When a match with CM0 occurs, the controller sets bits 0-5 of port 4 if the corresponding bits of the set enable register STE are at logic 1.

2000 Nov 10

18

Philips Semiconductors Preliminary specification

80C51 8-bit microcontroller ± 6 clock operation

 

 

 

 

 

 

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

 

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

6

 

5

 

4

3

2

1

0

 

Reset Value = 00H

 

CTCON (EBH)

CTN3

 

CTP3

CTN2

 

CTP2

CTN1

CTP1

CTN1

CTP0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(MSB)

 

 

 

 

 

 

 

 

(LSB)

 

 

 

BIT

SYMBOL

CAPTURE/INTERRUPT ON:

 

 

 

 

 

 

 

 

 

 

 

 

CTCON.7

CTN3

Capture Register 3 triggered by a falling edge on CT3I

 

 

 

CTCON.6

CTP3

Capture Register 3 triggered by a rising edge on CT3I

 

 

 

CTCON.5

CTN2

Capture Register 2 triggered by a falling edge on CT2I

 

 

 

CTCON.4

CTP2

Capture Register 2 triggered by a rising edge on CT2I

 

 

 

CTCON.3

CTN1

Capture Register 1 triggered by a falling edge on CT1I

 

 

 

CTCON.2

CTP1

Capture Register 1 triggered by a rising edge on CT1I

 

 

 

CTCON.1

CTN0

Capture Register 0 triggered by a falling edge on CT0I

 

 

 

CTCON.0

CTP0

Capture Register 0 triggered by a rising edge on CT0I

SU01085

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Capture Control Register (CTCON)

When a match with CM1 occurs, the controller resets bits 0-5 of port 4 if the corresponding bits of the reset/toggle enable register RTE are at logic 1 (see Figure 15 for RTE register function). If RTE is ª0º, then P4.n is not affected by a match between CM1 or CM2 and

Timer 2. When a match with CM2 occurs, the controller ªtogglesº bits 6 and 7 of port 4 if the corresponding bits of the RTE are at logic 1. The port latches of bits 6 and 7 are not toggled.

Two additional flip-flops store the last operation, and it is these flip-flops that are toggled.

Thus, if the current operation is ªset,º the next operation will be

ªresetº even if the port latch is reset by software before the ªresetº operation occurs. The first ªtoggleº after a chip RESET will set the port latch. The contents of these two flip-flops can be read at STE.6 and STE.7 (corresponding to P4.6 and P4.7, respectively). Bits

STE.6 and STE.7 are read only (see Figure 16 for STE register function). A logic 1 indicates that the next toggle will set the port latch; a logic 0 indicates that the next toggle will reset the port latch.

CM0, CM1, and CM2 are reset by the RST signal.

The modified port latch information appears at the port pin during S5P1 of the cycle following the cycle in which a match occurred. If the port is modified by software, the outputs change during S1P1 of the following cycle. Each port 4 bit can be set or reset by software at any time. A hardware modification resulting from a comparator match takes precedence over a software modification in the same cycle. When the comparator results require a ªsetº and a ªresetº at the same time, the port latch will be reset.

Timer T2 Interrupt Flag Register TM2IR: Eight of the nine Timer T2 interrupt flags are located in special function register TM2IR (see Figure 17). The ninth flag is TM2CON.4.

The CT0I and CT1I flags are set during S4 of the cycle in which the contents of Timer T2 are captured. CT0I is scanned by the interrupt logic during S2, and CT1I is scanned during S3. CT2I and CT3I are set during S6 and are scanned during S4 and S5. The associated interrupt requests are recognized during the following cycle. If these flags are polled, a transition at CT0I or CT1I will be recognized one cycle before a transition on CT2I or CT3I since registers are read during S5. The CMI0, CMI1, and CMI2 flags are set during S6 of the cycle following a match. CMI0 is scanned by the interrupt logic during S2; CMI1 and CMI2 are scanned during S3 and S4. A match will be recognized by the interrupt logic (or by polling the flags) two cycles after the match takes place.

The 16-bit overflow flag (T2OV) and the byte overflow flag (T2BO) are set during S6 of the cycle in which the overflow occurs. These flags are recognized by the interrupt logic during the next cycle.

Special function register IP1 (Figure 17) is used to determine the

Timer T2 interrupt priority. Setting a bit high gives that function a high priority, and setting a bit low gives the function a low priority. The functions controlled by the various bits of the IP1 register are shown in Figure 17.

 

7

6

5

4

3

2

1

0

 

Reset Value = 00H

RTE (EFH)

TP47

TP46

RP45

RP44

RP43

RP42

RO41

RP40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(MSB)

 

 

 

 

 

 

 

(LSB)

 

 

 

BIT

SYMBOL

FUNCTION

 

 

 

 

 

 

 

 

 

 

 

 

 

RTE.7

TP47

 

If ª1º then P4.7 toggles on a match between CM1 and Timer T2

 

RTE.6

TP46

 

If ª1º then P4.6 toggles on a match between CM1 and Timer T2

 

RTE.5

RP45

 

If ª1º then P4.5 is reset on a match between CM1 and Timer T2

 

RTE.4

RP44

 

If ª1º then P4.4 is reset on a match between CM1 and Timer T2

 

RTE.3

RP43

 

If ª1º then P4.3 is reset on a match between CM1 and Timer T2

 

RTE.2

RP42

 

If ª1º then P4.2 is reset on a match between CM1 and Timer T2

 

RTE.1

RP41

 

If ª1º then P4.1 is reset on a match between CM1 and Timer T2

 

RTE.0

RP40

 

If ª1º then P4.0 is reset on a match between CM1 and Timer T2

SU01086

Figure 15. Reset/Toggle Enable Register (RTE)

2000 Nov 10

19

Philips Semiconductors

Preliminary specification

 

 

 

80C51 8-bit microcontroller ± 6 clock operation

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

 

7

6

5

 

4

3

2

 

1

0

 

 

Reset Value = C0H

STE (EEH)

TG47

TG46

SP45

SP44

SP43

SP42

 

SP41

SP40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(MSB)

 

 

 

 

 

 

 

 

(LSB)

 

 

 

BIT

SYMBOL

FUNCTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STE.7

TG47

 

Toggle flip-flops

 

 

 

 

 

 

 

 

STE.6

TG46

 

Toggle flip-flops

 

 

 

 

 

 

 

 

STE.5

SP45

 

If ª1º then P4.5 is set on a match between CM0 and Timer T2

 

 

 

STE.4

SP44

 

If ª1º then P4.4 is set on a match between CM0 and Timer T2

 

 

 

STE.3

SP43

 

If ª1º then P4.3 is set on a match between CM0 and Timer T2

 

 

 

STE.2

SP42

 

If ª1º then P4.2 is set on a match between CM0 and Timer T2

 

 

 

STE.1

SP41

 

If ª1º then P4.1 is set on a match between CM0 and Timer T2

 

 

 

STE.0

SP40

 

If ª1º then P4.0 is set on a match between CM0 and Timer T2

 

SU01087

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Set Enable Register (STE)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

6

5

 

4

3

2

 

1

0

 

Reset Value = 00H

TM2IR (C8H)

T2OV

CMI2

CMI1

CMI0

CTI3

CTI2

 

CTI1

CTI0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(MSB)

 

 

 

 

 

 

 

 

(LSB)

 

 

 

BIT

SYMBOL

FUNCTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TM2IR.7

T2OV

 

Timer T2 16-bit overflow interrupt flag

 

 

 

 

 

TM2IR.6

CMI2

 

CM2 interrupt flag

 

 

 

 

 

 

 

 

TM2IR.5

CMI1

 

CM1 interrupt flag

 

 

 

 

 

 

 

 

TM2IR.4

CMI0

 

CM0 interrupt flag

 

 

 

 

 

 

 

 

TM2IR.3

CTI3

 

CT3 interrupt flag

 

 

 

 

 

 

 

 

TM2IR.2

CTI2

 

CT2 interrupt flag

 

 

 

 

 

 

 

 

TM2IR.1

CTI1

 

CT1 interrupt flag

 

 

 

 

 

 

 

 

TM2IR.0

CTI0

 

CT0 interrupt flag

 

 

 

 

 

 

 

 

 

 

Interrupt Flag Register (TM2IR)

 

 

 

 

 

 

7

6

5

 

4

3

2

 

1

0

 

Reset Value = 00H

IP1 (F8H)

PT2

PCM2

PCM1

PCM0

PCT3

PCT2

 

PCT1

PCT0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(MSB)

 

 

 

 

 

 

 

 

(LSB)

 

 

 

BIT

SYMBOL

FUNCTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IP1.7

PT2

 

Timer T2 overflow interrupt(s) priority level

 

 

 

 

 

IP1.6

PCM2

 

Timer T2 comparator 2 interrupt priority level

 

 

 

IP1.5

PCM1

 

Timer T2 comparator 1 interrupt priority level

 

 

 

IP1.4

PCM0

 

Timer T2 comparator 0 interrupt priority level

 

 

 

IP1.3

PCT3

 

Timer T2 capture register 3 interrupt priority level

 

 

 

IP1.2

PCT2

 

Timer T2 capture register 2 interrupt priority level

 

 

 

IP1.1

PCT1

 

Timer T2 capture register 1 interrupt priority level

 

 

 

IP1.0

PCT0

 

Timer T2 capture register 0 interrupt priority level

 

 

Timer 2 Interrupt Priority Register (IP1)

SU01088

Figure 17. Interrupt Flag Register (TM2IR) and Timer T2 Interrupt Priority Register (IP1)

2000 Nov 10

20

Philips Semiconductors

Preliminary specification

 

 

 

80C51 8-bit microcontroller ± 6 clock operation

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

Timer T3, The Watchdog Timer

In addition to Timer T2 and the standard timers, a watchdog timer is also incorporated on the 8xC554. The purpose of a watchdog timer is to reset the microcontroller if it enters erroneous processor states (possibly caused by electrical noise or RFI) within a reasonable period of time. An analogy is the ªdead man's handleº in railway locomotives. When enabled, the watchdog circuitry will generate a system reset if the user program fails to reload the watchdog timer within a specified length of time known as the ªwatchdog interval.º

Watchdog Circuit Description: The watchdog timer (Timer T3) consists of an 8-bit timer with an 11-bit prescaler as shown in Figure 18. The prescaler is fed with a signal whose frequency is 1/6 the oscillator frequency (0.5 MHz with a 12 MHz oscillator). The 8-bit timer is incremented every ªtº seconds, where:

t = 6 × 2048 × 1/fOSC

(= 0.75 ms at fOSC = 16 MHz; = 0.5 ms at fOSC = 24 MHz)

If the 8-bit timer overflows, a short internal reset pulse is generated which will reset the 8xC554. A short output reset pulse is also generated at the RST pin. This short output pulse (3 machine cycles) may be destroyed if the RST pin is connected to a capacitor. This would not, however, affect the internal reset operation.

Watchdog operation is activated when external pin EW is tied low. When EW is tied low, it is impossible to disable the watchdog operation by software.

How to Operate the Watchdog Timer: The watchdog timer has to be reloaded within periods that are shorter than the programmed watchdog interval; otherwise the watchdog timer will overflow and a system reset will be generated. The user program must therefore continually execute sections of code which reload the watchdog timer. The period of time elapsed between execution of these sections of code must never exceed the watchdog interval. When using a 16 MHz oscillator, the watchdog interval is programmable

between 0.75 ms and 196 ms. When using a 24 MHz oscillator, the watchdog interval is programmable between 0.5 ms and 127.5 ms.

In order to prepare software for watchdog operation, a programmer should first determine how long his system can sustain an erroneous processor state. The result will be the maximum watchdog interval. As the maximum watchdog interval becomes shorter, it becomes more difficult for the programmer to ensure that the user program always reloads the watchdog timer within the watchdog interval, and thus it becomes more difficult to implement watchdog operation.

The programmer must now partition the software in such a way that reloading of the watchdog is carried out in accordance with the above requirements. The programmer must determine the execution times of all software modules. The effect of possible conditional branches, subroutines, external and internal interrupts must all be taken into account. Since it may be very difficult to evaluate the execution times of some sections of code, the programmer should use worst case estimations. In any event, the programmer must make sure that the watchdog is not activated during normal operation.

The watchdog timer is reloaded in two stages in order to prevent erroneous software from reloading the watchdog. First PCON.4

(WLE) must be set. The T3 may be loaded. When T3 is loaded, PCON.4 (WLE) is automatically reset. T3 cannot be loaded if

PCON.4 (WLE) is reset. Reload code may be put in a subroutine as it is called frequently. Since Timer T3 is an up-counter, a reload value of 00H gives the maximum watchdog interval (255 ms with a 12 MHz oscillator), and a reload value of 0FFH gives the minimum watchdog interval (1 ms with a 12 MHz oscillator).

In the idle mode, the watchdog circuitry remains active. When watchdog operation is implemented, the power-down mode cannot be used since both states are contradictory. Thus, when watchdog operation is enabled by tying external pin EW low, it is impossible to enter the power-down mode, and an attempt to set the power-down bit (PCON.1) will have no effect. PCON.1 will remain at logic 0.

 

INTERNAL BUS

 

 

 

VDD

fOSC/6

 

OVERFLOW

TIMER T3 (8-BIT)

P

PRESCALER (11-BIT)

 

CLEAR

LOAD LOADEN

 

 

RST

 

 

INTERNAL

 

 

RESET

WRITE T3

 

 

 

CLEAR

RRST

 

 

 

WLE

PD

 

 

LOADEN

 

PCON.4

PCON.1

EW

 

 

 

INTERNAL BUS

 

 

 

SU00955

Figure 18. Watchdog Timer

2000 Nov 10

21

Philips Semiconductors

Preliminary specification

 

 

 

80C51 8-bit microcontroller ± 6 clock operation

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

During the early stages of software development/debugging, the

watchdog may be disabled by tying the EW pin high. At a later

stage, EW may be tied low to complete the debugging process.

Watchdog Software Example: The following example shows how watchdog operation might be handled in a user program.

;at the program start:

T3

EQU

0FFH

;address of watchdog timer T3

PCON

EQU

087H

;address of PCON SFR

WATCH-INTV

EQU

156

;watchdog interval (e.g., 100 ms)

;to be inserted at each watchdog reload location within ;the user program:

LCALL WATCHDOG

;watchdog service routine:

WATCHDOG: ORL PCON,#10H ;set condition flag (PCON.4) MOV T3,WATCH-INV ;load T3 with watchdog interval RET

If it is possible for this subroutine to be called in an erroneous state, then the condition flag WLE should be set at different parts of the main program.

Serial I/O

The 8xC554 is equipped with two independent serial ports: SIO0 and SIO1. SIO0 is a full duplex UART port and is similar to the

Enhanced UART serial port. SIO1 accommodates the I2C bus.

SIO0: SIO0 is a full duplex serial I/O port identical to that of the Enhanced UART except Time 2 cannot be used as a baud rate generator. Its operation is the same, including the use of timer 1 as a baud rate generator.

Port 5 Operation

Port 5 may be used to input up to 8 analog signals to the ADC. Unused ADC inputs may be used to input digital inputs. These inputs have an inherent hysteresis to prevent the input logic from drawing excessive current from the power lines when driven by analog signals. Channel to channel crosstalk (Ct) should be taken into consideration when both analog and digital signals are simultaneously input to Port 5 (see, D.C. characteristics in data sheet).

Port 5 is not bidirectional and may not be configured as an output port. All six ports are multifunctional, and their alternate functions are listed in the Pin Descriptions section of this datasheet.

Pulse Width Modulated Outputs

The 8xC554 contains two pulse width modulated output channels

(see Figure 19). These channels generate pulses of programmable length and interval. The repetition frequency is defined by an 8-bit prescaler PWMP, which supplies the clock for the counter. The prescaler and counter are common to both PWM channels. The 8-bit counter counts modulo 255, i.e., from 0 to 254 inclusive. The value of the 8-bit counter is compared to the contents of two registers:

PWM0 and PWM1. Provided the contents of either of these registers is greater than the counter value, the corresponding PWM0 or PWM1 output is set LOW. If the contents of these registers are equal to, or less than the counter value, the output will be HIGH. The pulse-width-ratio is therefore defined by the contents of the registers

PWM0 and PWM1. The pulse-width-ratio is in the range of 0 to 1 and may be programmed in increments of 1/255.

Buffered PWM outputs may be used to drive DC motors. The rotation speed of the motor would be proportional to the contents of

PWMn. The PWM outputs may also be configured as a dual DAC. In this application, the PWM outputs must be integrated using conventional operational amplifier circuitry. If the resulting output voltages have to be accurate, external buffers with their own analog supply should be used to buffer the PWM outputs before they are integrated. The repetition frequency fPWM, at the PWMn outputs is give by:

fOSC

fPWM (1 PWMP) 255

This gives a repetition frequency range of 246 Hz to 62.8 kHz

(fOSC = 16 MHz). At fOSC = 24 MHz, the frequency range is 368 Hz to 83.4 Hz. By loading the PWM registers with either 00H or FFH,

the PWM channels will output a constant HIGH or LOW level, respectively. Since the 8-bit counter counts modulo 255, it can never actually reach the value of the PWM registers when they are loaded with FFH.

When a compare register (PWM0 or PWM1) is loaded with a new value, the associated output is updated immediately. It does not have to wait until the end of the current counter period. Both PWMn output pins are driven by push-pull drivers. These pins are not used for any other purpose.

Prescaler frequency control register PWMP

Reset Value = 00H

 

 

 

 

 

 

 

 

 

PWMP (FEH)

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

MSB

 

 

 

 

 

 

LSB

PWMP.0-7 Prescaler division factor = PWMP + 1.

Reading PWMP gives the current reload value. The actual count of the prescaler cannot be read.

Reset Value = 00H

PWM0 (FCH)

7

6

5

4

3

2

1

0

PWM1 (FDH)

 

 

 

 

 

 

 

 

 

MSB

 

 

 

 

 

 

LSB

(PWMn) PWM0/1.0-7} Low/high ratio of PWMn 255 (PWMn)

Analog-to-Digital Converter

The analog input circuitry consists of an 8-input analog multiplexer and a 10-bit, straight binary, successive approximation ADC. The A/D can also be operated in 8-bit mode with faster conversion times by setting bit ADC8 (AUXR1.7). The 8-bit results will be contained in the ADCH register. The analog reference voltage and analog power supplies are connected via separate input pins. For 10-bit accuracy, the conversion takes 50 machine cycles, i.e., 18.75 μs at an oscillator frequency of 16 MHz, 12.5 μs at an oscillator frequency of 24 MHz. For the 8-bit mode, the conversion takes 24 machine cycles. Input voltage swing is from 0 V to +5 V. Because the internal

DAC employs a ratiometric potentiometer, there are no discontinuities in the converter characteristic. Figure 20 shows a functional diagram of the analog input circuitry.

The ADC has the option of either being powered off in idle mode for reduced power consumption or being active in idle mode for reducing internal noise during the conversion. This option is selected by the AIDL bit of AUXR1 register (AUXR1.6). With the AIDL bit set, the ADC is active in the idle mode, and with the AIDL bit cleared, the ADC is powered off in idle mode.

2000 Nov 10

22

Philips Semiconductors

 

 

 

Preliminary specification

80C51 8-bit microcontroller ± 6 clock operation

 

 

 

16K/512 OTP/ROM/ROMless, 7 channel 10 bit A/D, I2C, PWM,

80C554/83C554/87C554

capture/compare, high I/O, 64L LQFP

 

 

 

 

 

PWM0

 

 

 

 

8-BIT COMPARATOR

OUTPUT

PWM0

 

 

BUFFER

 

 

 

 

BUS

fOSC

 

 

 

INTERNAL

PRESCALER

8-BIT COUNTER

 

 

PWMP

 

 

 

 

 

 

 

 

 

8-BIT COMPARATOR

OUTPUT

PWM1

 

 

BUFFER

 

 

 

 

 

 

PWM1

 

 

 

 

 

 

SU01448

Figure 19. Functional Diagram of Pulse Width Modulated Outputs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STADC

ADC0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADC1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

ADC2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANALOG REF.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

±

ADC3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANALOG INPUT

 

 

 

 

 

10-BIT A/D CONVERTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADC4

 

MULTIPLEXER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADC5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANALOG SUPPLY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADC6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANALOG GROUND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADCON

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

ADCH

 

 

 

 

 

 

 

 

 

INTERNAL BUS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SU01467

Figure 20. Functional Diagram of Analog Input Circuitry

10-Bit Analog-to-Digital Conversion: Figure 21 shows the elements of a successive approximation (SA) ADC. The ADC contains a DAC which converts the contents of a successive approximation register to a voltage (VDAC) which is compared to the analog input voltage (Vin). The output of the comparator is fed to the successive approximation control logic which controls the successive approximation register. A conversion is initiated by setting ADCS in the ADCON register. ADCS can be set by software only or by either hardware or software.

The software only start mode is selected when control bit ADCON.5

(ADEX) = 0. A conversion is then started by setting control bit

ADCON.3 (ADCS). The hardware or software start mode is selected when ADCON.5 = 1, and a conversion may be started by setting ADCON.3 as above or by applying a rising edge to external pin STADC. When a conversion is started by applying a rising edge, a low level must be applied to STADC for at least one machine cycle followed by a high level for at least one machine cycle.

2000 Nov 10

23

Loading...
+ 53 hidden pages