Philips N74F50729D, N74F50729N Datasheet

0 (0)

INTEGRATED CIRCUITS

74F50729

Synchronizing dual D-type flip-flop with edge-triggered set and reset with metastable immune characteristics

Product specification

1990 Sep 14

IC15 Data Handbook

m n r

Philips Semiconductors

Product specification

 

 

 

 

 

 

Synchronizing dual D-type flip-flop with edge-triggered

74F50729

set and reset and metastable immune characteristics

FEATURES

 

 

PIN CONFIGURATION

 

 

 

 

Metastable immune characteristics

 

 

 

 

 

 

 

 

 

Output skew less than 1.5ns

 

 

 

 

 

 

VCC

 

 

 

 

 

 

High source current (IOH = 15mA) ideal for clock driver

RD0

1

 

14

 

 

 

 

 

 

 

 

 

applications

 

 

 

D0

2

 

13

RD1

 

 

 

 

 

 

 

 

D1

See 74F5074

for synchronizing dual D±type flip±flop

CP0

3

 

12

 

 

 

 

 

 

 

 

 

See 74F50109 for synchronizing dual J±K

positive

SD0

4

 

11

CP1

 

Q0

 

 

 

 

 

 

edge±triggered flip±flop

 

5

 

10

SD1

 

 

 

 

 

 

 

 

 

See 74F50728 for synchronizing cascaded dual D±type flip±flop

 

 

 

 

 

 

 

 

 

 

Q0

6

 

9

Q1

 

 

 

 

 

 

 

 

 

Industrial temperature range available (±40°C to +85°C)

GND

7

 

8

 

Q1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SF00611

 

 

 

 

 

 

 

 

DESCRIPTION

The 74F50729 is a dual positive edge±triggered D±type featuring individual data, clock, set and reset inputs; also true and complementary outputs.

The 74F50729 is designed so that the outputs can never display a metastable state due to setup and hold time violations. If setup time and hold time are violated the propagation delays may be extended beyond the specifications but the outputs will not glitch or display a metastable state. Typical metastability parameters for the 74F50729 are: τ 135ps and τ 9.8 X 106 sec where τ represents a function of the rate at which a latch in a metastable state resolves that condition and To represents a function of the measurement of the propensity of a latch to enter a metastable state.

Set (SDn) and reset (RDn) are asynchronous positive±edge triggered inputs and operate independently of the clock (CPn) input. Data must be stable just one setup time prior to the low±to±high transition of the clock for guaranteed propagation delays.

Clock triggering occurs at a voltage level and is not directly related to the transition time of the positive±going pulse. Following the hold time interval, data at the Dn input may be changed without affecting the levels of the output.

 

 

TYPICAL SUPPLY

TYPE

TYPICAL fMAX

CURRENT (TOTAL)

74F50729

120 MHz

19mA

 

 

 

ORDERING INFORMATION

 

 

 

 

 

 

ORDER CODE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMMERCIAL RANGE

 

INDUSTRIAL RANGE

 

 

DESCRIPTION

VCC = 5V ±10%,

 

VCC = 5V ±10%,

PKG DWG #

 

 

 

 

 

 

Tamb = 0°C to +70°C

 

Tamb = ±40°C to +85°C

 

 

14±pin plastic DIP

N74F50729N

 

I74F50729N

SOT27-1

 

 

 

 

 

 

 

 

 

 

 

14±pin plastic SO

N74F50729D

 

I74F50729D

SOT108-1

 

INPUT AND OUTPUT LOADING AND FAN OUT TABLE

 

 

 

PINS

DESCRIPTION

74F (U.L.) HIGH/

LOAD VALUE HIGH/

 

LOW

LOW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D0, D1

Data inputs

1.0/0.417

20μA/250μA

 

 

 

 

 

 

 

 

 

 

CP0, CP1

Clock inputs (active rising edge)

1.0/1.0

20μA/20μA

 

 

 

 

 

 

 

 

 

 

SD0, SD1

Set inputs (active rising edge)

1.0/1.0

20μA/20μA

 

 

 

 

 

 

 

 

 

 

RD0, RD1

Reset inputs (active rising edge)

1.0/1.0

20μA/20μA

 

 

 

 

 

 

 

 

 

Q0, Q1,

 

 

 

 

Data outputs

750/33

15mA/20mA

 

Q0, Q1

 

NOTE: One (1.0) FAST unit load is defined as: 20μA in the high state and 0.6mA in the low state.

1990 Sep 14

2

853-1390 00420

Philips Semiconductors

Product specification

 

 

 

Synchronizing dual D-type flip-flop with edge-triggered

74F50729

set and reset and metastable immune characteristics

LOGIC SYMBOL

 

 

 

 

 

 

 

 

 

 

IEC/IEEE SYMBOL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

S

&

3

 

 

 

 

 

2

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

3

 

 

 

D0

D1

 

 

 

 

1D

 

 

 

 

CP0

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SD0

 

 

 

 

 

 

 

 

1

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

RD0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

CP1

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

SD1

 

 

 

 

 

 

 

 

S

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

 

RD1

 

 

 

 

 

 

 

 

 

11

 

C2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q0

Q0

Q1 Q1

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2D

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

6

9

8

 

 

13

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = Pin 14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GND = Pin 7

 

 

 

 

 

 

SF00612

 

 

 

 

 

 

 

SF00613

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

METASTABLE IMMUNE CHARACTERISTICS

Philips Semiconductors uses the term `metastable immune' to describe characteristics of some of the products in its family. Specifically the 74F50XXX family presently consist of 4 products which will not glitch or display metastable immune characteristics. This term means that the outputs will not glitch or display an output anomaly under any circumstances including setup and hold time violations. This claim is easily verified on the 74F5074. By running two independent signal generators (see Fig. 1) at nearly the same frequency (in this case 10MHz clock and 10.02 MHz data) the device±under±test can be often be driven into metastable state. If the Q output is then used to trigger a digital scope set to infinite persistence the Q output will build a waveform. An experiment was run by continuously operating the devices in the region where metastability will occur.

When the device±under±test is a 74F74 (which was not designed with metastable immune characteristics) the waveform will appear as in Fig. 2.

Figure 2 shows clearly that the Q output can vary in time with respect to the Q trigger point. This also implies that the Q or Q output waveshapes may be distorted. This can be verified on an analog scope with a charge plate CRT. Perhaps of even greater interest are the dots running along the 3.5V volt line in the upper right hand quadrant. These show that the Q output did not change state even though the Q output glitched to at least 1.5 volt, the trigger point of the scope.

When the device±under±test is a metastable immune part, such as

the 74F5074, the waveform will appear as in Fig. 3. The 74F5074 Q output will appear as in Fig. 3. The 74F5074 Q output will not vary with respect to the Q trigger point even when the a part is driven into a metastable state. Any tendency towards internal metastability is resolved by Philips Semiconductors patented circuitry. If a metastable event occurs within the flop the only outward

manifestation of the event will be an increased clock±to±Q/Q propagation delay. This propagation delay is, of course, a function of the metastability characteristics of the part defined by τ and T0.

The metastability characteristics of the 74F5074 and related part types represent state±of±the±art TTL technology.

After determining the T0 and t of the flop, calculating the mean time between failures (MTBF) is simple. Suppose a designer wants to use the 74F50729 for synchronizing asynchronous data that is arriving at 10MHz (as measured by a frequency counter), has a clock frequency of 50MHz, and has decided that he would like to sample the output of the 74F50729 10 nanoseconds after the clock edge. He simply plugs his number into the equation below:

MTBF = e(t'/t)/ TofCfI

In this formula, fC is the frequency of the clock, fI is the average input event frequency, and t' is the time after the clock pulse that the output is sampled (t' < h, h being the normal propagation delay). In this situation the fI will be twice the data frequency of 20 MHz because input events consist of both of low and high transitions. Multiplying fI by fC gives an answer of 1015 Hz2. From Fig. 3. it is clear that the MTBF is greater than 1010 seconds. Using the above formula the actual MTBF is 1.51 X 1010 seconds or about 480 years.

SIGNAL GENERATOR

 

D

Q

 

TRIGGER

 

 

DIGITAL

SCOPE

 

 

 

 

 

 

 

SIGNAL GENERATOR

 

CP Q

 

 

INPUT

 

 

 

SF00586

Figure 1. Test Setup

1990 Sep 14

3

Philips N74F50729D, N74F50729N Datasheet

Philips Semiconductors

Product specification

 

 

 

Synchronizing dual D-type flip-flop with edge-triggered

74F50729

set and reset and metastable immune characteristics

COMPARISON OF METASTABLE IMMUNE AND NON±IMMUNE CHARACTERISTICS

4

3

2

1

0

Time base = 2.00ns/div Trigger level = 1.5 Volts Trigger slope = positive

SF00587

Figure 2. 74F74 Q output triggered by Q output, setup and hold times violated

3

2

1

0

Time base = 2.00ns/div Trigger level = 1.5 Volts Trigger slope = positive

SF00588

Figure 3. 74F74 Q output triggered by Q output, setup and hold times violated

1990 Sep 14

4

Loading...
+ 8 hidden pages