Philips N74F50109N, N74F50109D Datasheet

0 (0)

INTEGRATED CIRCUITS

74F50109

Synchronizing dual J-K positive edge-triggered flip-flop with metastable immune characteristics

Product specification

1990 Sep 14

IC15 Data Handbook

m n r

Philips Semiconductors

 

Product specification

 

 

 

 

 

 

 

 

 

 

 

 

Synchronizing dual J±K positive edge-triggered

74F50109

flip-flop with metastable immune characteristics

FEATURE

Metastable immune characteristics

Output skew guaranteed less than 1.5ns

High source current (IOH = 15mA) ideal for clock driver applications

Pinout compatible with 74F109

See 74F5074 for synchronizing dual D-type flip-flop

See 74F50728 for synchronizing cascaded D-type flip-flop

See 74F50729 for synchronizing dual D-type flip-flop with edge-triggered set and reset

TYPE

TYPICAL fmax

TYPICAL SUPPLY

 

 

CURRENT( TOTAL)

 

 

 

74F50109

150MHz

22mA

 

 

 

ORDERING INFORMATION

 

 

 

 

 

 

 

 

 

 

ORDER CODE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMMERCIAL RANGE

 

 

DESCRIPTION

 

 

VCC = 5V ±10%,

 

PKG DWG #

 

 

 

 

 

 

 

 

 

 

Tamb = 0°C to +70°C

 

 

16±pin plastic DIP

 

N74F50109N

 

SOT38-4

 

 

 

 

 

 

 

 

 

 

 

 

16±pin plastic SO

 

N74F50109D

 

SOT109-1

 

 

 

 

 

 

 

 

 

 

 

INPUT AND OUTPUT LOADING

 

AND FAN OUT TABLE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

74F (U.L.)

LOAD

 

 

PINS

 

DESCRIPTION

HIGH/

VALUE

 

 

 

 

 

 

 

 

 

 

 

LOW

HIGH/LOW

 

 

 

 

 

 

 

 

 

 

 

 

 

J0, J1

J inputs

1.0/0.417

20μA/250μA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K inputs

1.0/0.417

20μA/250μA

 

 

K0, K1

 

CP0, CP1

Clock inputs

1.0/0.033

20μA/20μA

 

(active rising edge)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set inputs

 

 

20μA/20μA

 

SD0, SD1

1.0/0.033

 

 

(active low)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset inputs

 

 

20μA/20μA

RD0, RD1

1.0/0.033

 

(active low)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q0, Q1,

 

 

 

 

Data outputs

750/33

15mA/20mA

Q0, Q1

NOTE: One (1.0) FAST unit load is defined as: 20μA in the high state and 0.6mA in the low state.

PIN CONFIGURATION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RD0

 

1

 

16

 

VCC

 

 

 

 

J0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

15

 

 

 

 

 

RD1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K0

 

3

 

14

 

 

J1

 

 

CP0

 

 

 

 

 

 

 

 

 

 

 

4

 

13

 

 

K1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

12

 

CP1

 

 

SD0

 

 

 

Q0

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

11

 

 

 

 

 

SD1

 

 

 

 

 

 

 

 

 

 

 

Q1

 

 

 

 

 

 

 

7

 

10

 

 

 

 

Q0

 

 

GND

 

 

 

 

 

 

 

 

 

 

8

 

9

 

 

 

 

 

Q1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SF00598

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LOGIC SYMBOL

 

 

 

2

14

3

 

13

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CP0

J0

 

J1

 

K0

K1

 

 

 

 

5

 

SD0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

RD0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

CP1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

SD1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

 

RD1

Q0

Q0

 

Q1 Q1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

7

10

 

9

 

VCC = Pin 16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GND = Pin 8

 

 

 

 

 

 

 

SF00599

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IEC/IEEE SYMBOL

2

1J

6

 

 

 

4

C1

 

 

 

 

 

3

 

1K

7

 

 

 

1

 

R

 

 

 

 

 

 

5

 

S

 

14

 

 

 

2J

 

 

 

 

10

12

 

C2

 

 

 

 

 

13

 

2K

 

 

 

 

9

15

R

 

11

 

S

 

 

 

 

 

 

 

 

 

 

SF00600

September 14, 1990

2

853-1388 00422

Philips Semiconductors

 

Product specification

 

 

 

 

 

 

 

 

Synchronizing dual J±K positive edge-triggered

74F50109

flip-flop with metastable immune characteristics

LOGIC DIAGRAM

Q

7, 9

6, 10

 

Q

K

3, 13

 

 

 

J

2, 14

 

 

 

CP

4, 12

 

 

 

SD

5, 11

 

 

 

RD

1, 15

 

 

 

VCC = Pin 16

 

GND = Pin 8

SF00601

 

 

DESCRIPTION

 

The 74F50109 is a dual positive edge-triggered JK-type flip-flop featuring individual J, K, clock, set, and reset inputs; also true and complementary outputs.

Set (SD) and reset (RD) are asynchronous active low inputs and operate independently of the clock (CP) input.

The J and K are edge±triggered inputs which control the state changes of the flip±flops as described in the function table.

The J and K inputs must be stable just one setup time prior to the low±to±high transition of the clock for guaranteed propagation

delays. The JK design allows operation as a D flip±flop by tying J and K inputs together.

The 74F50109 is designed so that the outputs can never display a metastable state due to setup and hold time violations. If setup time and hold time are violated the propagation delays may be extended beyond the specifications but the outputs will not glitch or display a metastable state. Typical metastability parameters for the 74F50109 are: τ 135ps and τ 9.8 X 106 sec where τ represents a function of the rate at which a latch in a metastable state resolves that condition and T0 represents a function of the measurement of the propensity of a latch to enter a metastable state.

device±under±test can be often be driven into a metastable state. If the Q output is then used to trigger a digital scope set to infinite persistence the Q output will build a waveform.0 An experiment was run by continuously operating the devices in the region where metastability will occur.

When the device±under±test is a 74F74 (which was not designed with metastable immune characteristics) the waveform will appear as in Fig. 2.

Fig. 2 shows clearly that the Q output can vary in time with respect to the Q trigger point. This also implies that the Q or Q output waveshapes may be distorted. This can be verified on an analog scope with a charge plate CRT. Perhaps of even greater interest are the dots running along the 3.5V volt line in the upper right hand quadrant. These show that the Q output did not change state even though the Q output glitched to at least 1.5 volts, the trigger point of the scope.

When the device±under±test is a metastable immune part, such as the 74F5074, the waveform will appear as in Fig. 3. The 74F5074 Q output will appear as in Fig. 3. The 74F5074 Q output will not vary with respect to the Q trigger point even when the a part is driven into a metastable state. Any tendency towards internal metastability is resolved by Philips Semiconductors patented circuitry. If a metastable event occurs within the flop the only outward manifestation of the event will be an increased clock±to±Q/Q propagation delay. This propagation delay is, of course, a function of the metastability characteristics of the part defined by τ and T0.

The metastability characteristics of the 74F5074 and related part types represent state±of±the±art TTL technology.

After determining the T0 and t of the flop, calculating the mean time between failures (MTBF) is simple. Suppose a designer wants to use the 74F50729 for synchronizing asynchronous data that is arriving at 10MHz (as measured by a frequency counter), has a clock frequency of 50MHz, and has decided that he would like to sample the output of the 74F50109 10 nanoseconds after the clock edge. He simply plugs his number into the equation below:

MTBF = e(t'/t)/ TofCfI

In this formula, fC is the frequency of the clock, fI is the average input event frequency, and t' is the time after the clock pulse that the output is sampled (t' < h, h being the normal propagation delay). In this situation the fI will be twice the data frequency of 20 MHz because input events consist of both of low and high transitions. Multiplying fI by fC gives an answer of 1015 Hz2. From Fig. 4 it is clear that the MTBF is greater than 1010 seconds. Using the above formula MTBF is 1.51 X 1010 seconds or about 480 years.

METASTABLE IMMUNE CHARACTERISTICS

Philips Semiconductors uses the term 'metastable immune' to describe characteristics of some of the products in its FAST family.

Specifically the 74F50XXX family presently consist of 4 products which displays metastable immune characteristics. This term means that the outputs will not glitch or display an output anomaly under any circumstances including setup and hold time violations.

This claim is easily verified on the 74F5074. By running two independent signal generators (see Fig. 1) at nearly the same frequency (in this case 10MHz clock and 10.02 MHz data) the

 

 

 

 

 

 

 

 

 

 

SIGNAL GENERATOR

 

D

Q

 

TRIGGER

 

 

 

 

 

 

 

 

 

 

 

DIGITAL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCOPE

 

 

SIGNAL GENERATOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CP

Q

 

INPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SF00586

 

 

 

 

 

 

 

 

 

Figure 1.

Test setup

 

 

September 14, 1990

3

Philips N74F50109N, N74F50109D Datasheet

Philips Semiconductors

 

Product specification

 

 

 

 

 

 

 

 

Synchronizing dual J±K positive edge-triggered

74F50109

flip-flop with metastable immune characteristics

COMPARISON OF METASTABLE IMMUNE AND NON±IMMUNE CHARACTERISTICS

4

3

2

1

0

Time base = 2.00ns/div Trigger level = 1.5 Volts Trigger slope = positive

SF00602

Figure 2. 74F74 Q output triggered by Q output, Setup and Hold times violated

3

2

1

0

Time base = 2.00ns/div Trigger level = 1.5 Volts Trigger slope = positive

SF00588

Figure 3. 74F74 Q output triggered by Q output, Setup and Hold times violated

September 14, 1990

4

Loading...
+ 8 hidden pages