Philips BF824W Datasheet

DISCRETE SEMICONDUCTORS
DATA SH EET
ok, halfpage
M3D102
BF824W
PNP medium frequency transistor
Product specification Supersedes data of 1997 Jul 07
1999 Apr 15
Philips Semiconductors Product specification
PNP medium frequency transistor BF824W
FEATURES
Low current (max. 25 mA)
Low voltage (max. 30 V).
APPLICATIONS
RF stages in FM front-ends in common base configuration.
DESCRIPTION
PNP medium frequency transistor in a SOT323 plastic package.
MARKING
TYPE NUMBER MARKING CODE
(1)
BF824W F8
Note
1. = - : Made in Hong Kong.
= t : Made in Malaysia.
PINNING
PIN DESCRIPTION
1 base 2 emitter 3 collector
handbook, halfpage
Top view
3
1
1
2
MAM048
Fig.1 Simplified outline (SOT323) and symbol.
3
2
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
CBO
V
CEO
V
EBO
I
C
I
CM
P
tot
T
stg
T
j
T
amb
collector-base voltage open emitter −−30 V collector-emitter voltage open base −−30 V emitter-base voltage open collector −−4V collector current (DC) −−25 mA peak collector current −−25 mA total power dissipation T
25 °C; note 1 200 mW
amb
storage temperature 65 +150 °C junction temperature 150 °C operating ambient temperature 65 +150 °C
Note
1. Transistor mounted on an FR4 printed-circuit board.
1999 Apr 15 2
Philips Semiconductors Product specification
PNP medium frequency transistor BF824W
THERMAL CHARACTERISTICS
SYMBOL PARAMETER CONDITIONS VALUE UNIT
R
th j-a
Note
1. Transistor mounted on an FR4 printed-circuit board.
CHARACTERISTICS
=25°C unless otherwise specified.
T
amb
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
I
CBO
I
EBO
h
FE
V
BE
C
rb
f
T
thermal resistance from junction to ambient note 1 625 K/W
collector cut-off current IE= 0; VCB= 30 V −−50 nA
I
= 0; VCB= 30 V; Tj= 150 °C −−10 µA
E
emitter cut-off current IC= 0; VEB= 4V −−100 nA DC current gain IC= 1 mA; VCE= 10 V 25
I
= 4 mA; VCE= 10 V 25
C
base-emitter voltage IC= 4 mA; VCE= 10 V −−900 mV feedback capacitance IC= 0; VCE= 10 V; f = 1 MHz 0.3 pF transition frequency VCE= 10 V; f = 100 MHz; note 1
I
= 1 mA 250 MHz
C
I
= 4 mA 400 MHz
C
I
= 8 mA 390 MHz
C
Note
1. Pulse test: t
300 µs; δ≤0.02.
p
1999 Apr 15 3
Loading...
+ 5 hidden pages