Philips 74LV109PW, 74LV109N, 74LV109DB, 74LV109D Datasheet

INTEGRATED CIRCUITS
74LV109
Dual JK
flip-flop with set and reset;
positive-edge trigger
Product specification Supersedes data of 1997 Jun 06 IC24 Data Handbook
 
1998 Apr 20
Philips Semiconductors Product specification
74L V109Dual JK flip-flop with set and reset; positive-edge trigger
FEA TURES
Optimized for low voltage applications: 1.0 to 3.6 V
Accepts TTL input levels between V
Typical V
T
amb
Typical V
T
amb
(output ground bounce) < 0.8 V at V
OLP
= 25°C
(output VOH undershoot) > 2 V at V
OHV
= 25°C
= 2.7 V and V
CC
CC
CC
CC
= 3.3 V,
= 3.3 V,
Output capability: standard
I
category: flip-flops
CC
QUICK REFERENCE DATA
GND = 0 V; T
= 25°C; tr =t
amb
SYMBOL
Propagation delay
t
PHL/tPLH
nCP to nQ, nQ nSD to nQ, nQ nRD to nQ, nQ
f
max
C
C
I
PD
Maximum clock frequency 77 MHz Input capacitance 3.5 pF Power dissipation capacitance per flip-flop VI = GND to V
NOTE:
is used to determine the dynamic power dissipation (PD in µW)
1. C
PD
P
= CPD × V
D
= input frequency in MHz; CL = output load capacitance in pF;
f
i
= output frequency in MHz; VCC = supply voltage in V;
f
o
Σ (C
× V
L
2
× fi Σ (CL × V
CC
2
× fo) = sum of the outputs.
CC
2.5 ns
f
PARAMETER CONDITIONS TYPICAL UNIT
2
× fo) where:
CC
= 3.6 V
CL = 15 pF; VCC = 3.3 V
DESCRIPTION
The 74LV109 is a low-voltage Si-gate CMOS device that is pin and function compatible with 74HC/HCT109.
The 74LV109 is a dual positive-edge triggered JK featuring individual J, K
) inputs; also complementary Q and Q outputs.
(R
D
inputs, clock (CP) inputs, set (SD) and reset
The set and reset are asynchronous active LOW inputs and operate independently of the clock input.
The J and K
inputs control the state changes of the flip-flops as described in the mode select function table. The J and K be stable one set-up time prior to the LOW-to-HIGH clock transition for predictable operation.
The JK
design allows operation as a D-type flip-flop by tying the
J and K
inputs together.
Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.
14 12 12
CC
1
20 pF
-type flip-flop
inputs must
ns
ORDERING INFORMATION
PACKAGES TEMPERATURE RANGE OUTSIDE NORTH AMERICA NORTH AMERICA PKG. DWG. #
16-Pin Plastic DIL –40°C to +125°C 74LV109 N 74LV109 N SOT38-4 16-Pin Plastic SO –40°C to +125°C 74LV109 D 74LV109 D SOT109-1 16-Pin Plastic SSOP Type II –40°C to +125°C 74LV109 DB 74LV109 DB SOT338-1 16-Pin Plastic TSSOP Type I –40°C to +125°C 74LV109 PW 74LV109PW DH SOT403-1
PIN CONFIGURATION
1R
1
D
2
1J
3
1K
4
1CP 1S
5
D
6
1Q
7
1Q
GND
1998 Apr 20 853-1986 19255
16 15 14 13 12 11 10
98
SV00517
V 2R
2J 2K 2CP
2S 2Q
2Q
CC
D
D
PIN DESCRIPTION
PIN
NUMBER
1, 15 1RD, 2R
2, 14, 3, 13
4, 12 1CP, 2CP
5, 11 1S 6, 10 1Q, 2Q True flip-flop outputs
7, 9 1Q, 2Q Complement flip-flop outputs 8 GND Ground (0 V) 16 V
2
SYMBOL FUNCTION
Asynchronous reset input
D
(active LOW)
1J, 2J, 1K, 2K
Synchronous inputs; flip-flops 1 and 2 Clock input (LOW-to-HIGH,
edge-triggered) Asynchronous set inputs
2S
D,
D
(active LOW)
CC
Positive supply voltage
Philips Semiconductors Product specification
Dual JK
flip-flop with set and reset; positive-edge trigger
LOGIC SYMBOL (IEEE/IEC)
5
S
2
1J
4
C1
3
1K
1
R
(a) (b)
610
79
LOGIC SYMBOL
11
5
1S
2S
D
74LV109
FUNCTIONAL DIAGRAM
11
S
14
1J
12
13
15
D
C1
1K
R
SV00519
5
1S
D
S
D
1J
2
1CP
4
1K
3
1R
D
1
11
2S
D
2J
14
2CP
12
2K
13
2R
15
D
J
CP
K
J
K
CP
R
S
R
Q
FF1
Q
D
D
Q
FF2
Q
D
1Q
1Q
2Q
10
2Q
SV00520
6
7
9
14 2J
4 1CP
12 2CP
13 2K
LOGIC DIAGRAM
2 1J
3 1K
J
CP
K
CP
1Q 6
Q
2Q 10
7
1Q
Q
2Q
9
2R
1R
D
D
15
1
SV00518
C
K
J
S
R
C
C
C
C
C
C
C
C
Q
Q
1998 Apr 20
C
SV00521
3
Philips Semiconductors Product specification
OPERATING MODES
Dual JK
flip-flop with set and reset; positive-edge trigger
74LV109
FUNCTION TABLE
INPUTS OUTPUTS
nS
D
nR
D
nCP nJ nK nQ nQ
Asynchronous set L H X X X H L Asynchronous reset H L X X X L H Undetermined L L X X X H H
Toggle H H h l q q Load “0” (reset) H H l l L H
Load “1” (set) H H h h H L Hold “no change” H H l h q q
NOTES:
H = HIGH voltage level h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition L = LOW voltage level I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition q = lower case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH CP transition. X = don’t care = LOW-to-HIGH CP transition
RECOMMENDED OPERATING CONDITIONS
SYMBOL PARAMETER CONDITIONS MIN TYP. MAX UNIT
V
V
T
amb
tr, t
NOTE:
1. The LV is guaranteed to function down to V
DC supply voltage See Note 1 1.0 3.3 3.6 V
CC
V
Input voltage 0 V
I
Output voltage 0 V
O
Operating ambient temperature range in free air
Input rise and fall times except for
f
Schmitt-trigger inputs
CC
See DC and AC
characteristics
VCC = 1.0V to 2.0V VCC = 2.0V to 2.7V VCC = 2.7V to 3.6V
= 1.0V (input levels GND or VCC); DC characteristics are guaranteed from VCC = 1.2V to VCC = 3.6V.
-40
-40 –
– –
– – –
CC CC
+85
+125
500 200 100
ns/V
V V
°C
ABSOLUTE MAXIMUM RATINGS
1, 2
In accordance with the Absolute Maximum Rating System (IEC 134). Voltages are referenced to GND (ground = 0V).
SYMBOL
V
CC
"I
IK
"I
OK
"I
O
"I
GND
"I
CC
T
stg
P
TOT
DC supply voltage –0.5 to +4.6 V DC input diode current VI < –0.5 or VI > VCC + 0.5V 20 mA DC output diode current VO < –0.5 or VO > VCC + 0.5V 50 mA DC output source or sink current
– standard outputs DC VCC or GND current for types with
,
– standard outputs 50 Storage temperature range –65 to +150 °C
Power dissipation per package – plastic DIL – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)
PARAMETER CONDITIONS RATING UNIT
–0.5V < VO < VCC + 0.5V
25
mA
mA
for temperature range: –40 to +125°C above +70°C derate linearly with 12 mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K
750 500 400
mW
NOTE:
1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability .
2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
1998 Apr 20
4
Loading...
+ 8 hidden pages