Panasonic X400 Service Manual

ORDER NO. OMTD040701C8
Personal Cellular Telephone
EB-X400
900 MHz 1800 MHz Tx Frequency Range 880 - 915 MHz 1710 -1785 MHz Rx Frequency Range 925 - 960 MHz 1805 -1880 MHz Tx / Rx separation 45 MHz 95 MHz RF Channel Bandwidth 200 kHz Number of RF channels 174 374 Speech coding Full rate / Half rate / Enhanced Full rate
°
Operating temperature -10 Type Class 4 Handheld Class 1 Handheld RF Output Power 2 W maximum 1 W maximum Modulation GMSK (BT = 0.3) WAP / GPRS WAP 2.0 / GPRS Class 8 Connection 8 ch / TDMA Voice digitizing 13 kbps RPE-LTP / 13 kps ACLEP / 5.6 kps CELP / VSLEP Transmission speed 270.833 kbps Signal Reception Direct conversion Antenna Impedance 50 (External Connector) Antenna VSWR < 2.1 : 1 Dimensions Height : 84 mm (Excluding antenna) Width : 47.4 mm
Volume 65 cc Weight 85 Main Display LCD : 128 x 128 pixels, 65,536 colours Illumination 10 LEDs for Keypad Backlighting (White)
Keys 16-key Keypad, Navigation key, 1 shutter key SIM 3 V Plug-in type only External DC Supply 5.8 V Voltage Battery 3.7 V nominal, 600mAh, Li-Ion Standby Time 210 hrs Talk Time 4.5 hrs
Talk and standby time will be dependent on network conditions, SIM card, backlight usage and network condition.
C to +55 °C
Depth : 17.5 mm
g
4 LEDs for LCD Backlighting (White) 3 LEDs for Sub LCD (Blue, Green, Orange)
WARNING
This service information is designed for experienced repair technicians only and is not designed for use by the general public. It does not contain warnings or cautions to advise non-technical individuals of potential dangers in attempting to service a product. Products powered by electricity should be serviced or repaired only by experienced professional technicians. Any attempt to service or repair the product or products dealt with in this service information by anyone else could result in serious injury or death.
2004 Panasonic Mobile Communications Co., Ltd.
All rights reserved. Unauthorized copying and
R
distribution is a violation of law.

COMPANY LIABILITY

Every care has been taken to ensure that the contents of this manual give an accurate representation of the equipment. However, Panasonic Mobile Communications Co., Ltd. accepts no responsibility for inaccuracies which may occur and reserves the right to make changes to the specification or design without prior notice. The information contained in this manual and all rights in any design disclosed therein, are and remain the exclusive property of Panasonic Mobile Communications Co., Ltd. Other patents applying to material contained in this publication: CP8 PATENTS
Comments or correspondence concerning this manual should be addressed to: Panasonic Mobile Communications Co., Ltd. 600, Saedo-cho, Tsuzuki-ku, Yokohama, 224-8539, Japan

CONTENTS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.1. Purpose of the Manual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.2. Structure of the Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.3. Servicing Responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
2. GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.3. Handportable Main Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
3. OPERATING INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.2. Controls and Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.3. Liquid Crystal Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
3.4. Text Entry (Edit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
3.5. Menu Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
4. TECHNICAL SPECIFICATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
4.1. Tx Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
4.1.1. Frequency Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
4.1.2. Modulation Phase Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
4.1.3. Output RF Spectrum due to Modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
4.1.4. Outout RF Spectrum due to Switching Transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
4.1.5. Spurious Emissions at Antenna Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
4.1.6. Residual Peak Power
4.2. Rx Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-2
4.2.1. Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
5. TECHNICAL DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
5.1. RF Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
5.1.1. RF Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
5.1.2. Functional Description
5.2. Baseband Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
5.2.1. Baseband Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
5.2.2. Summary of Device/Circuit changes to achieve new features
5.2.3. E-Gold + V3
5.3.4. CPU Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13
5.3.5. Main LCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
5.3.6. IrDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
5.3.7. Polytone IC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
ii
5.2.8. Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
5.2.9. Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
5.2.10. UI Related Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21
5.2.11. Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23
5.2.12. Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24
5.2.13. External Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-26
6. DISASSEMBY / REASSEMBY INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
6.1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
6.1.1. Call Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
6.2. Disassemby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
6.2.1. Lower Case Assembly and Main PCB Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
6.2.2. Upper Case Assembly and Display Module Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
6.2.3. Removal of Hinge Unit and Spigot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
6.2.4. Antenna Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
6.3. Reassemby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
6.3.1. Hinge reassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
7. REPAIR PROCEDURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
7.2. Lead Free (PbF) solder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
7.3. External Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
7.3.1. General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
8. SOFTWARE DOWNLOAD & ADJUSTMENT PROCEDURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
8.1. FlashTool update and operation guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
8.1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
8.2. FlashTool update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
8.3. Software upgrade procedure - FlashTool operation by using SPK file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
8.3.1. 8.4.1. Select SPK file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
8.3.2. COM port set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
8.3.3. Start download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5
8.4. RF Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8
8.4.1. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8
8.4.2. P-test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8
8.4.3. Battery AD / Temperature AD Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9
8.4.4. Battery Voltage AD Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9
8.4.5. Battery Temperature AD Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11
8.4.6. Tansmit Power Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-12
8.4.7. Rxlev Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-17
8.4.8. Data Overwrite Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-19
8.4.9. Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-21
iii
9. REPLACEMENT PARTS LIST
9.1. Case and Cover Parts List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
9.2. Main PCB Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3
9.3. Upper Face PCB Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6
9.4. Hinge PCB Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7
9.5. SIM PCB Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
10. BLOCK DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
10.1. Baseband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
10.2. RF Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
11. CIRCUIT DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1
11.1. Circuit Diagram of Main PCB (Baseband) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1
11.2. Circuit Diagram of Main PCB (RF Band) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2
11.3. Circuit Diagram of Upper Face PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3
11.4. Circuit Diagram of Hinge PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-4
11.5. Circuit Diagram of SIM PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-5
12. LAYOUT DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1
12.1. Layout Diagram of Main PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12-1
12.2. Layout Diagram of Upper Face PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2
12.3. Layout Diagram of Hinge PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12-3
12.4. Layout Diagram of SIM PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12-4
iv

1. INTRODUCTION

WARNING
The equipment described in this manual contains polarised capacitors utilising liquid electrolyte. These devices are entirely safe provided that neither a short-circuit nor reverse polarity connection is made across the capacitor terminals. FAILURE TO OBSERVE THIS WARNING COULD RESULT IN DAMAGE TO THE EQUIPMENT OR, AT WORST, POSSIBLE INJURY TO PERSONNEL RESULTING FROM ELECTRIC SHOCK OR THE AFFECTED CAPACITOR EXPLODING. EXTREME CARE MUST BE EXERCISED AT ALL TIMES WHEN HANDLING THESE DEVICES.
Caution
The equipment described in this manual contains electrostatic devices (ESDs). Damage can occur to these devices if the handling procedures described in Section 4 are not adhered to.
Caution
This equipment may contain an internal battery in addition to the external battery packs. These batteries are recyclable and should be disposed of in accordance with local legislation. They must not be incinerated, or disposed of as ordinary rubbish.

1.1. Purpose of the Manual

This Service manual contains the information and procedures required for installing, operating and servicing the Panasonic GSM Personal Cellular Mobile Telephone system operating on GSM Digital Cellular Networks.

1.2. Structure of the Manual

The manual is structured to provide service engineering personnel with the following information and procedures:
1. General and technical information - provides a basic understanding of the equipment, kits and options, together with detailed information for each of the major component parts.
2. Installation and operating information - provides instructions for unpacking, installing and operating the equipment.
3. Servicing information - provides complete instructions for the testing, disassembly, and reassembly of the product. Step-by-step troubleshooting information is given to enable the isolation and identification of a malfunction, and thus determine what corrective action should be taken. The test information enable verification of the integrity of the equipment after any remedial action has been carried out.
4. Illustrated parts list - provided to enable the identification of all cosmetic and some electrical components, for the ordering of replacement parts.

1.3. Servicing Responsibilities

The procedures described in this manual must performed by qualified service engineering personnel, at an authorized service center. The service engineering personnel are responsible for fault diagnosis and repair of all equipment described in this manual.
– 1-1 –

2. GENERAL DESCRIPTION

2.1. General

This section provides a general description and kit composition details for the GSM Handportable Telephone system and optional kits.

2.2. Features

The Panasonic Telephone Model EB-X400 is a high performance, small, light, handset for business and domestic use. The following features are provided:
1. Triple Rate, which includes Full Rate, Half rate and Enhanced Full Rate (EFR) speech, codec.
2. Dual Band, E-GSM 900 and GSM 1800 operation.
3. Tegic T9 Text Entry.
4. Voice Ringer.
5. Desktop Hand free function comprising integral echo cancellation and noise suppression.
6. Wireless Application Protocol (WAP) Browser.
7. Backup Battery.
8. Downloadable polyphonic melody ring tones.
9. Clock, Calculator and Currency Converter.

2.3. Handportable Main Kit

1
3
2
Figure 2.1: Handportable Main Unit Kit Contents
Item Description
1 Main Unit 2 Battery Standard 3 Battery Cover 4Travel Charger
4
– 2-1 –

3. OPERATING INSTRUCTIONS

3.1. General

This section provides a brief guide to the operation and facilities available on the telephone handset. Refer to the Operating Instructions supplied with the telephone for full operational information.

3.2. Controls and Indicators

Earpiece
Main Display
One Push Auto Open button
Press to open the handset
Left soft key
Multi Function key
Camera/Shutter/Alert mute
Send key
To answer a call or to make an outgoing call
1 key/Vodafone mail key
Press and hold to call Vodafone mail
Asterisk key
Charging Connector
Navigation Key
Selection/scroll/move/Alert mute/Keyguard
Right Soft key Personal Handsfree Connector
Power/End key
Press and hold to switch the phone on/off
International Dialling Prefix key
Pause key/Quite key
Microphone
Camera lens
Self-Portrait mirror
Use to frame self-portrait camera shots
Figure 3.1: Location of Controls and Indicators
Infrared Port
Illumination Light/ Charging Indicator
Lights red during charging
– 3-1 –

3.3. Liquid Crystal Display

The telephone handset has a graphical chip on glass display. The following icons are available:
Main menu screen
Figure 3.2: Liquid Crystal Display

3.4. Text Entry (Edit)

Alphanumeric characters to enter details into the Phonebook, to create text, email, message, etc.
Text Mode
Key
®
T9 (T9 , T9 or T9) (Input language : English)
Alternatives . @ / – _ + 0 0/ (Hold)+ . , ? ! ' @ : ; / 1 *
/ (Hold) Character list A B C 2 (a b c 2) A B C 2 Γ Á Ä Å Æ Ç (a b c 2 α β γ á ä å æ à) 2 D E F 3 (d e f 3) D E F 3 ∆ É (d e f 3 δ ε ζ é è) 3 G H I 4 (g h i 4) G H I 4 Θ (g h i 4 η θ ι ì í) 4 J K L 5 (j k l 5) J K L 5 Λ (j k l 5 κ λ µ)5 M N O 6 (m n o 6) M N O 6 Ξ Ñ Ö Φ (m n o 6 ν ξ ó o ñ ö ø ò) 6 P Q R S 7 (p q r s 7) P Q R S 7 Π Σ (p q r s 7 φ ρ ς σ ß
T U V 8 (t u v 8) T U V 8 Φ Ü (t y v 8 τ υ π ú u ü ù) 8 W X Y Z 9 (w x y z 9) W X Y Z 9 Ψ Ω (w x y z 9 χ ψ ω)9
Shift / (Hold) Input mode Shift / (Hold) Input mode change Space / (Hold) Line feed
Delete text / (Hold) Delete all characters
Multi tap (Input mode indicator : Abc, ABC or abc)
. , ? 1 ! " - : ; @ / * ( ) # + _ = [ ] { } ' ¡ ¿ & % \ ^ ~ | < > ¢ £ $ ¥ ¤
§ Space / (Hold) Character list
)
Space * # / (Hold) Line Feed # / (Hold) Line Feed
Numeric (Input mode indicator : 0-9)
1
7
* / (Hold) Input mode change
NOTE : Displayed characters of T9 vary depending on the selected Input language.
Shift mode
®
Shift mode change The Shift mode changes by pressing (within 1 sec) .
Multi-tap Tegic
Abc -> ABC -> abc T9 -> T9 -> T9
If Input mode is changed, Shift mode is initialised.
Auto capital change
Auto capital affects Abc and T9 . If Input mode is changed to Abc or T9 , the first character is input as upper case and subsequent letters as lower case. (Input mode indicator changes to abc or T9.) If these characters [. (Period) or ! or ?] are input, the next character is input as upper case. (Input mode indicator changes to Abc or T9 .)
– 3-2 –

3.5. Features Menu Structure

Games
Games Download Settings
Messages
Create new Inbox Archive Voicemail (Chat) Cell Broadcast Settings Memory status
Calendar
My Media
Pictures Sounds Shortcuts Text templates Memory status
Camera
Contacts
Contacts list Add contact Call log Speed Dial list View groups Advanced (Service numbers)
Applications
(SIM Tool Kit) Alarm Sound recorder Calculator Infrared
Browser
PANASONIC BOX
Settings
Profiles Sound Vibration Alert Display Language Data connections GSM network Calls Security Time and date Any key answer Keyguard
– 3-3 –

4. TECHNICAL SPECIFICATIONS

4.1. Tx Characteristics

All data is applicable to E-GSM 900 and GSM 1800 except where stated.

4.1.1. Frequency Error

±0.1 ppm max., relative to base station frequency.

4.1.2 Modulation Phase Error

RMS: Equal to or less than 5 ° Peak: Equal to or less than 20 °

4.1.3. Output RF Spectrum due to Modulation

Offset from Centre Frequency (kHz) Maximum Level Relative to Carrier (dB)
±100 +0.5 ±200 –30 ±250 –33 ±400 –60
±600 to 1800 –60

4.1.4. Output RF Spectrum due to Switching Transients

Offset from Centre Frequency (kHz)
E-GSM 900 GSM 1800
±400 –19 –22
±600 –21 –24 ±1200 –21 –24 ±1800 –24 –27
Measurement conditions for output RF spectrum measurements:
Frequency Span 0 Hz
Maximum Level (dBm)
Measurement Bandwidth: 30 kHz Video Bandwidth: 30 kHz (modulation)
100 kHz (switching)
Average (Modulation) over 200 burst Peak Hold (Switching) over 10 burst
– 4-1 –

4.1.5. Spurious Emissions at Antenna Connector

Frequency Range
100 kHz to 50 MHz 10 kHz 30 kHz –36 –36 50 MHz to 500 MHz 100 kHz 300 kHz –36 –36 500 MHz to 1 GHz 0 to 1 MHz 100 kHz 300 kHz –36 –36
1 GHz to 12.75 GHz 0 to 10 MHz 100 kHz 300 kHz –30 –30 (1.0 - 1.710 GHz) Excl. relevant TX band > 10 MHz 300 kHz 1 MHz –30 E-GSM : 880 MHz to 915 MHz > 30 MHz 3 MHz 3 MHz –30 –36 (1.710 - 1.785 GHz) DCS : 1710 MHz to 1785 MHz (off trom edge of
-and the Rx bands relevant Tx band) –30 (1.785 - 12.75 GHz) 925 MHz - 960 MHz 1805 MHz - 1880 MHz
Relevant TX band: 1.8 to 6.0 MHz 30 kHz 100 kHz –36 –36 E-GSM : 880 MHz to 915 MHz > 6.0 MHz 100 kHz 300 kHz –36 –36 DCS : 1710 MHz to 1785 MHz
Frequency
offset
Filter
Bandwidth
Approx
Video B/W
Limits (dBm)
E-GSM 900 GSM1800

4.1.6. Residual Peak Power

Equal to or less than 70 dBc (BW = 300 kHz)

4.2. Rx Characteristics

4.2.1. Sensitivity

E-GSM 900 Full Rate Speech
The reference sensitivity performance in terms of frame erasure, bit error, or residual bit error rates (whichever is appropriate) is specified in the following table, according to the propagation conditions.
Channels Propagation conditions
TCH/FS FER 6.742* class Ib (RBER) 0.42/ class II (RBER) 8.333 120,000 7.5 24,000 9.333 60,000 2.439 8,200
The reference sensitivity level is < –104 dBm.
TU high
Test Limit error rate
%
α
α
Minimum
No of
samples
8,900 0.122*
1,000,000 0.41/
Propagation conditionsRAPropagation conditionsHTStatic Conditions
Test Limit
error rate
%
Minimum
No of
samples
Test Limit
error rate
%
Minimum
No of
samples
Test Limit
error rate
%
α
α
Minimum
No of
samples
164,000
20,000,000
NOTE : 1 < α < 1.6. The value of a can be different for each channel condition but must remain the same for FER and class
1b RBER measurements for the same channel condition.
– 4-2 –
E-GSM 900 Half Rate Speech
The reference sensitivity performance in terms of frame erasure, bit error, or residual bit error rates (whichever is appropriate) is specified in the following table, according to the propagation conditions.
Channels Propagation conditions
TCH/FS (FER) 4.598 13,050 TCH/FS class Ib (BFI = 0) 0.404 148,500 TCH/FS class II (BFI = 0) 7.725 25,500 8.500 20,000 7.600 20,000 TCH/FS (UFR) 6.250 9,600 TCH/FS class Ib ((BFI or UFI) = 0) 0.269 227,000
TU high
Test Limit
error rate
%
Minimum
No of
samples
Propagation conditionsRAPropagation conditions
Test Limit
error rate
%
Minimum
No of
samples
Test Limit
error rate
%
HT
Minimum
No of
samples
GSM 1800 Full Rate Speech
The reference sensitivity performance in terms of frame erasure, bit error, or residual bit error rates (whichever is appropriate) is specified in the following table, according to the propagation conditions.
Channels Propagation conditions
TU high
Test Limit
error rate
%
Minimum
No of
samples
Propagation conditionsRAPropagation conditionsHTStatic Conditions
Test Limit
error rate
%
Minimum
No of
samples
Test Limit
error rate
%
Minimum
No of
samples
Test Limit
error rate
%
Minimum
No of
samples
TCH/FS FER 4.478* class Ib (RBER) 0.32/ class II (RBER) 8.333 600,000 7.5 24,000 9.333 30,000 2.439 8,200
The reference sensitivity level is < –103 dBm.
NOTE: 1 < α < 1.6. The value of a can be different for each channel condition but must remain the same for FER and class
1b RBER measurements for the same channel condition.
α
α
13,400 0.122*
1,500,000 0.41/ α20,000,000
α
164,000
GSM 1800 Half Rate Speech
The reference sensitivity performance in terms of frame erasure, bit error, or residual bit error rates (whichever is appropriate) is specified in the following table, according to the propagation conditions.
Channels Propagation conditions
TCH/FS (FER) 4.706 12,750 TCH/FS class Ib (BFI = 0) 0.426 141,000 TCH/FS class II (BFI = 0) 7.725 25,500 8.735 20,000 7.600 20,000 TCH/FS (UFR) 6.383 9,400 TCH/FS class Ib ((BFI or UFI) = 0) 0.291 206,000
TU high
Test Limit
error rate
%
Minimum
No of
samples
Propagation conditionsRAPropagation conditions
Test Limit
error rate
%
Minimum
No of
samples
Test Limit
error rate
%
HT
Minimum
No of
samples
– 4-3 –
Blocking:
Frequency
±
600 kHz to FR ± 800 kHz
FR FR ± 800 kHz to FR ± 1,6 MHz FR ± 1,6 MHz to FR ± 3 MHz 915 MHz to FR - 3 MHz FR ± 3 MHz to FR 980 MHz FR ± 600 KHz to FR ± 800 KHz 1785 MHz to FR - 3 MHz 835 MHz to < 915 MHz > 980 MHz to 1000 MHz 100 KHz to < 835 MHz > 1000 MHz to 12.75 GHz 100 KHz to 1705 MHz > 1705 MHz to < 1785 MHz > 1920 MHz to 1980 MHz > 1980 MHz to 12.75 GHz
Small MS level in dBµVemf( )
E-GSM 900 GSM 1800
70 70 80 90 90
– 113 113
90 90
_
_
_
_
70 70 80
– 87 87
113 101 101
90
Measurement Conditions: Wanted carrier is 3 dB above reference sensitivity. Interferer is CW. Spurious response exceptions: Six exceptions are permitted IN band 915 - 980 MHz. 24 exceptions are permitted OUTSIDE band 915 - 980 MHz.
Intermodulation Characteristics
Interferer Level ( f1& f2) dBm Interferer Frequencies ( f1&f2 )
49 Wanted frequency= 2f1 - f2,
and [ f1 - f2] = 800 kHz
– 4-4 –

5. TECHNICAL DESCRIPTION

5.1. RF Overview

5.1.1. RF Block Diagram

FL201
Rx SAW Filter DCS
DCS1800 1805 - 1880 MHz
EGSM900 925 - 960 MHz
B7821
FL202
Rx SAW Filter EGSM
B7820
π
/2
1/2
π
/2
1/4
DC offset Compensation
U101 Transceiver IC
I/IB
Q/QB
PLLON
AM_TRIG
DCS1800
1710 - 1785 MHz
VC2
VC1
S101 Antenna Switch module
EGSM900 880 - 915 MHz
U103 PA Module RF3140
FL102 Tx SAW EGSM EFCH897MMTE7
U102 Tx Limiter IC PMB2256V V1.1
π
/2
+
1/4
π
/2
+
1/2
3420 - 3980 MHz
RF Synth
U301 TCXO module MAA****A
26 MHz
13M_BB
AFC
TEMP
CLK/DA/EN TXON PALEVEL BAND_SEL TXON_PA
Figure 5.1. RF Block Diagram

5.1.2. Functional Description

The dual-band receiver comprises mainly an RF transceiver IC and and Front-End module. The transceiver (U101) contains a direct conversion receiver with DC offset calibration circuitry and the following circuit blocks:
8 EGSM900 and DCS1800 internal LNAs. 8 EGSM900 and DCS1800 down-conversion mixers/demodulators. 8 Channel filtering and base-band signal variable gain amplifiers with programmable gain control function.
The Antenna Switch Module S101 is a dual-band antenna switch module. Two external SAW filters EL201 and FL202 for EGSM900 and DCS1800 are used to improve the isolation between 900MHz and 1800MHz. The impedance of these two filters' output is 150 Ω balanced.
EGSM900/DCS1800
The input receiving signals into the LNAs coming from the SAWs provide out-band reflection. However, the receiver is a direct conversion type, there is no need to concern about the image frequency blocking problem.
– 5-1 –
Transmitter Description
The main block for the dual-band transmitter is also the Transceiver IC U101 RF chipset. The Transceiver IC U101's modulator is a direct-conversion architecture, so there are no Tx IF frequencies. The Transceiver IC U101 contains the following Tx blocks:
8 Dual-band (EGSM900/DCS1800) IQ modulators with outputs at final frequencies, and integrated IQ uplink low pass filters. 8 Open collector outputs to the rest of the Tx chains.
The open collector outputs of transceiver U101 are fed via internal H3 filter before application to the dual band inputs of Limiter U102. The function of U102 is to reduce the AM ripple from the I, Q modulators. The 900 MHz output signal from the Tx Limiter U102 must pass through a Tx SAW filter FL102 before entering into the PA Module U103 in order to ensure Tx noise in Rx-band satisfy GSM specifications. For 1800 MHz, the 11.10 specifications are not very severe, so no SAW filtering is needed here. The signals are then attenuated through two attenuators to meet the drive levels of the PA Module U103. Power control is managed through the control line PALEVEL. Harmonics in the PA output signal are attenuated by low-pass filters inside the Front-End Module.
Synthesiser Description
A synthesiser is provided in transceiver IC U101. The internal VCO operates from 3.42 GHz to 3.98 GHz, thus it is equivalent to 2 and 4 times of the DCS and EGSM frequencies. The registers, counters and phase detectors for this synthesiser are included in the transceiver IC U101. To meet GPRS lock-up timing requirement, provides a switched frac-N and integer-N counter. It also provides switched bandwidth loop filter. The TCXO module U301 generates 26 MHz in order to provide the reference clock to the transceiver IC and base-band portion. Baseband circuits provide an automatic frequency control (AFC) voltage to compensate for frequency drift caused by temperature variations. Moreover, there is a thermistor
RT101
which is used for the temperature compensation of PA and the reported RSSI.
DC Power Supplies
The PA runs directly from the battery and consumes no current when not transmitting. Two regulated 2.8 V lines (RF2V8, VCC_VCXO) are provided for the rest of the RF circuitry from the
Antenna
Fixed helical typed antenna is utilised for EB-X400. Its length is 16 mm and located at the top of the lower unit. It covers 900 MHz and 1800 MHz.
U2006
.
– 5-2 –

5.2. Baseband Overview

5.2.1. Baseband Block Diagram

The EB-X400 Baseband is based around a GSM chipset developed by Infineon chip set. The Infineon chipset consists of 2 chips, one is a signal processing chip with DSP and CPU included the analogue baseband (e.g. RF, Audio, SIM), and the other is U2006 (E-Power) which manages power supply and charge control.
VSSPW VANA VINT V3V VRTC
U2006 (E-Power)
CHG
Charge Control
I2C bus
Interface
Control
SDBB
(Step-down)
Reference
LANA
LSIM
LRTC
LINT
LRF1 LRF2 LRF3
VRF2 VRF3VRF1
U2008 Memory
128Mbit Flash
(64M+64M)
+
32Mbit pSRAM
KEY LED Circuit
KP[9:0]
Key Pad
VBAT
A[23:0] D[15:0]
Bus & Port
VIB
CAPCOM
Multicore
Debug
Support
External
Controller
Keypad
Interface
SSCRTCOsc.
I2C
SIM card Interface
SIM
SIM Unit
ASC0ASC
GPT1/GPT2
Watchdog
MMCI
ID Register
SRAM
256k x 8
I2C Bus
Generation
1
Management
GPRS Unit
Upper Unit
VCHG
CHG LED
Circuit
Clock
Power
MCU
C166S
PRAM 1k x 16
LPS
A
VSIM
System Timer
ASC1
IrDA
Colour LCD
128x128
TFT 65K colour
I2
S
DSP
Timer1
Bus
Interface
Unit
GSM
uCapacitor
DSP Serial
Comm.Interface/
DAI
DSP
Timer2
OAK78 DSP
Shared Memory
RF Control
D[7:0]
Step up DC/DC
A[2:1]
VLED
D[7:0] D[7:0]
Figure 5.2. Baseband Block Diagram
Viterbi
HW
Accelerator
Cipher Unit
P ROM P RAM Y RAM X RAM X ROM
RF Control Block
RF Output
AFC
Power Control
Unit
Tri-LED
Circuit
U3001
Companion
IC
VLOG
GMSK
Modulator
Baseband
Filter/
Cordic-
Processor
Voiceband
filters
RX and TX
I2C Bus8080 I/F
U2001 (E-GOLD+ V3)
DAC
DAC
ADC
ADC
ADC
DAC
Switch matrix
Battery & Temp
Measurement
TAP Controller
JTAG
Boundary Scan
Camera Module
VGA CMOS
MUX
Charge Circuit
RF Block
MIC Circuit
PHF Circuit
Melody Gen. IC
REC Circuit
Battery
PHF
Jack
DC

5.2.2. Summary of device/circuit changes to achieve the new features

Baseband Chipset U2001 (E-Gold + V3 / E-Power V1.83)
The EB-X400 baseband is based around a GSM chipset developed by Infineon. Thee chipset comprises two ICs as follows: E-Gold + V3 (U2001) Signal processing IC with DSP and CPU and analogue baseband (e.g. RF, Audio, SIM). E-Power (U2006) power management and charge control IC.
Memory
The ROM/RAM capacity of the EB-X400 external memory U2008 is 64-Mbit Flash + 64-Mbit Flash + 32-Mbit mobile SRAM. A 3-chip stacked MCP (Multi-Chip Package) is used. The 2-Mb E-Gold + V3 internal SRAM is required together with the
external SRAM U2008.
– 5-3 –
Power Source
EB-X400 uses a 600 mAh Lithium-ion battery pack.
Main Colour TFT LCD
A 65536 colour 128 x 128 pixels full-penetration TFT LCD module. A HD66782 chipset is used for the LCD driver.
Integrated Camera
As one of the most characteristic features of the EB-X400 design, an integrated digital camera is introduced. A VGA (640 x 480 pixels) size CMOS camera module. This camera module does not have an integrated SRAM nor a JPEG encoder.
16 polyphonic Melody Ringer
A new Melody generator IC ; U2011 YMU759B is used for the enhanced 16 polyphonic Melody ringer function with ADPCM. Main features of the melody generator IC are as follows ;
8 16 multi-sounds 8 ADPCM decode function (possible to mix-play with melody data) 8 FIFO (512 byte for MIDI, 256 byte for ADPCM) and sequencer installed 8 0.4 W speaker amplifier integrated
IrDA
The IrDA transceiver function is added to EB-X400 to enable wireless data exchange with PCs and other handsets.
Real Time Clock (RTC)
Time and calendar informations provided within U2001, obviating the need for an external RTC. The RTC has following functions: Time counter (SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR) Daily/Weekly Alarm control Time constant interrupt generator High accuracy time correction control
Acoustic Components
Desktop handsfree (DTHF) operation is supported using a DTHF speaker located in the bottom of the handheld unit. Ringing tones are also output from this speaker.
Headset with remote switch
A headset with remote control is available as an accessory. This arrows the user to receive, end or place calls without opening the clamshell of the headset.

5.2.3. U2001 E-Gold + V3 (BASEBAND CHIPSET, DIGITAL AND ANALOGUE CHIP)

The U2001 (E-Gold + V3) manufactured by Infineon contains the DSP, CPU, GSM timing functions and many peripheral functions, this LSI contains the interface circuits to the Audio, RF, SIM and auxiliary analogue functions.
DSP (OAK)
The DSP core is a 16-bit (data and program) high performance fixed-point DSP core and is designed for the mid to high-end telecommunication applications, where low power and portability are still major requirements. The core consists of a high performance central processing unit, including a full featured bit-manipulation unit, RAM and ROM addressing units, and program control logic. The core has an improved set of DSP and general microprocessor functions to meet the application requirements. The DSP can be clocked at up to 78 MHz via a PLL contained within U2001 (E-Gold+ V3).
– 5-4 –
MCU (C166S)
The C166S controller core combines advantages of both RISC and CISC processors in advanced architecture which closely couples on-chip memory and controller peripherals to the core in a very efficient way. This micro controller works in 32 bits or 16 bits instructions and on 32,16 or 8 bit data. The C166S architecture is based on RISC. The core uses multiple variable register banks, and single cycle context switch support. The memory space is organised logically as a van Neumann architecture, but physically the core uses multiple high bandwidth buses and core memory to increase performance.
Memory interface
The U2001 E-Gold + V3 has a physical address space of 128-Mbit / 16-Mbyte. The actual amount of memory needed depends on the features included in the product. The number of features also has an influence on the required memory access speed. The memory data bus is 16 bit wide. The SRAM utilizes the BHEQ signal to support both 8 and 16 bits access for more efficient use. The memory interface of the U2001 E-Gold + V3 supports 1.8 V or 2.6 V operation, allowing flexibility on the choice of memory components. EB-X400 adopted 2.6 V operation because the operation voltage of memory is 3.0 V operation. The memory interface voltage level is selected by connecting the VDD2.0x supplies on E-Gold + to either V_SD or to VINT.
Maximum
Access Time [ns]
GSM stack, basic features 100 13MHz 0 ws 6.5 GSM stack, advanced features 70 26MHz 1 ws 8.67 GPRS stack 70 26MHz 1 ws 8.67
Memory Mapping:
0x00000
0x60000 0x80000
MCU
speed
0x00000
0x60000 0x80000
Number of
write state
SYSTEM Int. RAMSYSTEM Int. RAM
nCS4 Polytone ICnCS4 Polytone IC
nCS3 Companion ICnCS3 Companion IC
Eff. Bus
speed [MHz]
nCS2 Flash2
0x400000
nCS0 Flash1
0x400000
Initialize nCS2 and Not Use
or
Not Initialize _> nCS0
0x800000
0x800000
0xC00000
0xFFFFFF
nCS1 pSRAM
0xC00000
nCS2 Flash2
0xFFFFFF
nCS1 pSRAM
nCS2 Flash2
Normal Case Alternative Case
Figure 5.3. Memory Map
– 5-5 –
Clock Interface
The U2001 (E-Gold + V3) clock generation unit is used to generate all major system clocks. There are two clock signals connected to the clock generation unit.
8 32 kHz clock F32K 8 26 MHz clock F13/26M
The 32 kHz oscillator is used for the Real Time Clock block. As a power-saving feature the 32 kHz clock can be also used for the MCU domain. The 32 kHz oscillator and the RTC block have its own power supply pads. It has the facility for a back-up power source for when the main battery is discharged or remoed temporarily. The 26 MHz clock is used as the major U2001 (E-Gold + V3) clock reference. An on chip shaper is used to maintain the low-swing input level on F13/26M. It can be powered-up with a delay (programmable in ECO block) related to the TCXO power-up. This can slightly reduce overall power consumption.
CLKCTRL Clock Control Register
15 14 13 12 11 10 9 8
13/26 - - AFC32KEN - CPUPRE (2:0) MHz_IN
76 5 4 3210
- CPUH AFCEN SX52M SXMEN CLKAEN SWCLK PLLUP
PLLUP : SWCLK : CLKAEN : SXMEN : SX52M : AFCEN : CPUH : CPUPRE [2:0] : AFC32KEN : 13/26MHz_IN :
CGURST Clock Generation Uint Reset Register
15 14 13 12 11 10 9 8
DSPSLOW 0 0 0 0 0 r r
76 5 4 3210
DSPRST : SIMRST : RTCRST : DSPSLOW :
PLL Power Up Bit PLL Clock Switch Bit CLKANA Enable Bit Coprocessor clock enable Coprocessor clock switch AFC Enable Bit Enables 52 MHz operation of the CPU and serial interface CPU Clock Prescale Factor AFC clock enable during ECO eco sleeep mode Configure the CGU for the operation with either 13 MHz or 26 MHz input
00 00RTCRST SIMRST DSPRST
DSP Reset Bit SIM Card Interface Reset Bit Real Time Clock Rest Bit DSP slow-down control bit
The frequency of clk_pll depends on 13/26 MHZ_IN and DSPSLOW refers to the below table.
DSPSLOW 13/26 MHZ_IN Frequency of Input Frequency of Frequency of Frequency of
00 26 MHz 104 MHz 104 MHz 52MHz 01 13 MHz 104 MHz 104 MHz 52MHz 10 26 MHz 156 MHz 78 MHz 52MHz 11 13 MHz 156 MHz 78 MHz 52MHz
Clock F13/26M clk_pll clk_dsp clk_master
– 5-6 –
Interrupt and Exception Handler
An Interrupt and Exception Handler is responsible for managing all system and core exceptions. There are four different kinds of exceptions that are executed in a similar way:
8 Interrupts generated by the Interrupt Controller (ITC) 8 DMA transfers issued by the Peripheral Event Controller (PEC). 8 Software traps caused by the TRAP instruction 8 Hardware traps issued by faults or specific system states
Normal Interrupt Processing
The CPU temporarily suspends the current program execution and branches to an Interrupt Service Routine (ISR) in order to service an interrupt-requesting device. The current program status [Instruction Pointer (IP), Processor Status Word (PSW), and in segmentation mode, the Code Segment Pointer (CSP)] is saved on the internal system stack. A prioritization scheme with 16 priority levels and with 8 sub-levels (8 group levels) specifies the order of multiple interrupt-request handling. The maximum number of interrupt requests supported by the core architecture is 112 (configured in steps of 16).
Software and Hardware Traps
Trap functions are activated in response to special conditions that occur during the execution of instructions. A trap can also be caused externally by the Non-Maskable Interrupt (NMI) pin. Several hardware trap functions are provided for handling erroneous conditions and exceptions that arise during the program execution. Hardware traps always have highest priority and cause immediate system reaction. The software trap function is invoked by the TRAP instruction, which generates a software interrupt for a specified interrupt vector. For all types of traps, the current program status is saved in the system stack.
Interrupt Processing via the Peripheral Event Controller
A faster alternative to normal interrupt processing is servicing an interrupt requesting device by the C166S's integrated PEC. Triggered by an interrupt request, the PEC performs a single-word or byte data transfer between any two memory locations through one of 16 programmable PEC service channels. During a PEC transfer, the normal program execution of the CPU is halted. No internal program status information needs to be saved. The same prioritization scheme is used for PEC service as for normal interrupt processing.
General Purpose I/O
The MCU can configure the pin functionality of most of the pins after reset. Whether those pins show GPIO functionality or one of the alternate functions ALT0 or ALT1 is defined by the PxCONF and PxALTSEL registers. Because some of input functions appear on more than one pin, the PINSEL register must specify the respective pin. In case of ASCx the active input needs to be set by the SxPISEL register of ASCx. For peripherals which are not able to select or disable their input signal, the corresponding input signal must be enabled by the INPEN register.
– 5-7 –
General purpose I/O lines usage
E-Gold + V3 pin name Ball EB-X60 use Description HLDAQ/CC03IO/DSPIN0/T2IN U7 SDIR IrDA sensor enable/disable T_OUT4/DSPIN0 G14 AM_TRIG Blocker detection in RF LSI T_OUT5/CCI7IO G17 CAM_INT Companion IC interrupt detection nCS0 A15 CSFLASH1 CS for FLASH1 nCS1 C16 CSMSRAM CS for MSRAM nCS2/CC02IOB A17 CSFLASH2 CS for FLASH2 nCS3/EX4IN/DSPIN0/T4EUD D15 CSCAM CS for Companion IC nCS4/DSPOUT E14 POLY_EN CS for Polytone IC RESTR4/EX2IN/CLK32K L15 CAM32K CLK for Companion IC MMCDAT L16 CAM_A[2] Command/data selection for Companion IC LPAOUT0/CC05IO P8 OPDET Open/Close interrupt detection CLKSXM/I2SWAO R17 POLYCLK Clock source for YAHAMA melody IC T_OUT11/CC19IO H15 HOOK_KEY Hook key interrupt detection CC02IO/nHOLD/DSPOUT1 D16 HS_DET Headset insert interrupt detection LPAOUT1/I2SCAO U16 KEYLED Key LED control (ON/OFF) RFSTR3/CC21IO K16 CUR_EN LCD backlight control (ON/OFF) CC00IO/T3OUT R9 TRI_R Tri-color LED (Red) control (ON/OFF) MTSR/SDA R16 TRI_B Tri-color LED (Blue) control (ON/OFF) SSCCLK/SCI U17 TRI_G Tri-color LED (Green) control (ON/OFF) RFSTR2/CC07IO K15 TOPLED1 Charge LED (Red) control (ON/OFF) MMCRORD/LPAOUT3/EX3BIN P15 SHUTDOWN 32 driver amplifier control T_OUT6/T4IN K15 SW_EN PHF path enable signal
Specific I/O
Specific I/Os are reserved for the buzzer and keyboard. Buzzer is not supported in EB-X400 because ringing tones are sounded through a speaker.
9 PWM
The U2001 E-Gold + V3 supports driving a ringer with a digital PWM signal RINGIN. Earpiece buffer one can be switched into ringer mode by setting bit RINGSEL in the voiceband part of the analog control register. The input to RINGIN can be selected by setting the bits RINS0 and RINS1 in the voiceband control register. The ringer input signal is usually a pulse-width modulated signal which can be programmed conveniently.
9 Keypad Interface
The Keypad gives a 6 x 4 scan matrix allowing 24 keys. The keyboard interface provides a passive key detect function, where a key press can be detected without activity scanning the matrix, thus enabling a fast key response, even when the CPU is in idle. The scan period is every 4 msec. If there is a need to support more than 24 keys, the key matrix can be extended by adding scan column output GPIO's. The maximum key resistance is 2 k, leakage between any two key matrix lines must be kept below 5 µA. The End Key is also used to power on the phone it is allocated a complete ROW of the keyboard scan. EB-X400 supports the VSCL games and keypad assignments for VSCL games refers to the below table.
Keypad assignments
Column 1 Column 2 Column 3 Column 4 Column 5 Column 6
KP0 KP1 KP2 KP3 KP4 KP5
Row 0 Left Up * 7 4 1
KP6 (Game C) (Game A)
Row 1 Send Center 0 8 5 2
KP7 (Fire) (Fire)
Row 2 Right Down # 9 6 3
KP8 (Game D) (Game B)
Row 3 Soft_1 Soft_2 Shutter
KP9 Bottom
– 5-8 –
I2C Bus Interface
A standard I2C-Bus interface is implemented, especially to control the Infineon power management device U2006 E-Power. Operation of U2006 can be controlled completely by a set of control registers. E-Gold + can write to the control register via an I2C-bus interface. Using the I2C-bus master interface on E-Gold + the system controller can control most functions of U2006 as soon as power is supplied to E-Gold +. Via the same interface E-Gold + can read status registers permitting monitoring of the state of U2001, e.g. to detect the cause of a reset or whether an external supply voltage for battery charging is applied. The controller may power-down the system or parts of it by writing to the appropriate control register. Powering down parts of the system reduces stand-by power consumption of U2006 and may additionally reduce the power-down current of the attached devices. The I2C-bus interface of E-Power is a pure slave interface. It permits fast-mode operation with clock frequencies up to 400 kHz as described in the I2C-bus specification. Spike suppression is done by analogue filtering. Error protection is used to prevent malfunction due to interference under adverse environmental conditions. For this purpose an 8-bit CRC byte is appended to each command word. Only if the CRC has been verified by U2006 the transferred command will be executed. Correct reception and execution of the transmitted command can be verified by E-Gold + by reading back the transmitted CRC byte.
Timer / Watchdog Timer
The MCU general purpose timer blocks contain 9 16-bit timers and 16 capture compare channels with pulse width modulation options. The Watchdog Timer provides programmable time-out periods derived from the CPU clock. If it is not served before reaching time-out, the Watchdog Timer asserts a hardware reset.
UART (ASC : Asynchronous/Synchronous Serial Interface)
The U2001 E-Gold + V3 has two UART ports, ASC0 and ASC1. ASC0 with automatic baudrate detection running up to 3.28 Mbaud and IrDA DS3001 support up to 115.2 kBaud. ASC1 running up to 3.25 Mbaud and with IrDA support up to 115.2 kBaud. EB-X400 uses ASC0 port for serial interface in factory and software download. ASC1 port is used for DS3001 data transmission.
ASC0 port Assignment
E-Gold + SIGNAL E-Gold+ Ball EB-X400 use I/O
TXD0 M15 Serial interface data TX O RXD0 M16 Serial interface data RX I
ASC1 port Assignment
E-Gold + SIGNAL E-Gold+ Ball EB-X400 use I/O
TXD1 L14 IrDA interface serial data TX O RXD1 L17 IrDA interface serial data RX I
nHLDA U7 IrDA module shutdown(L: Active, H:Shutdown) O
– 5-9 –
Subscriber Identity Module (SIM)
The Chip Card Interface is a customized UART with additional features used for a 3 Volt Subscriber Identity Module (SIM) as specified by ISO 7816. It supports speed enhancement as specified in GSM 11.11 Phase 2+ with baud rates up to 100 kBaud. If the SIM card is disconnected, the chip card interface is able to power down the electrical contacts of the SIM card automatically. E-Gold + V3 features a GSM phase 11/11+ compliant SIM interface, providing support for 3 V normal and high-speed SIM cards. 1.8 V cards are supported inherently, as 1.8 V cards according to specifications, must be able to work also at 3 V. EB-X400 SIM interface is designed to support 3 V technology SIMs.
GSM Timer / RF Control
The GSM Timer and RF control modules are used to control all radio channel timings and to program external devices. The main goal of the GSM timer is to off-load the MCU from scheduling periodic events within a TDMA frame. It provides high flexibility in scheduling and executing events using a programmable RAM table and is able to generate timing and trigger signals as well as interrupts to both the MCU and to the DSP. The RF Control Unit transmits user defined control information to up to 5 devices via two separate serial interfaces. The RAM of the RF Control Unit holds up to 40 messages and 6 times 16 values for power amplifier ramping. The reference counter of the GSM Timer Unit is the TDMA counter of the TDMA Compare Unit. The TDMA counter is a programmable modulo 10000 D 15 bit counter, operated by a 0.461 µsec clock and allows to measure the length of one TDMA frame (4.615 msec) with a resolution of one eights of a bit. The RAM of the GSM Timer Unit contains the information at what time within a TDMA frame, one (or more) of the 26 output signals TRIG (25 : 0) change its value (called timing compare value), and the new values of all output signals at this time. One timing compare value and the corresponding TRIG (25:0) signal values are called timing event. The RAM operates like a FIFO. The TDMA Compare Unit compares the last timing compare value of the FIFO with the TDMA counter value. When both values are identical, the corresponding output values for TRIG (25 : 0) are read out of the RAM and taken over by the external signals. After a match, the RAM address is incremented by the address generator of the RAM Control Block and the next timing compare value is address decoder.
T_OUT Name Feature Ball EB-X400 Use Connection
T_OUT0 TXON F16 Transmitter block power control SmartiDC T_OUT1 PLLON F14 Phase Lock Loop ON SmartiDC T_OUT2 BAND_SEL F15 Band select GSM/DCS SmartiDC T_OUT3 NC G16 No Connection T_OUT4 AM_TRIG G14 AM signal detection SmartiDC T_OUT5 CAM_INT G17 Camera Module interrupt Companion IC T_OUT6 NC E17 No Connection T_OUT7 DISP_RST F17 Display Reset Signal LCD Module T_OUT8 TXON_PA G15 Power Amplifier ON Power Amplifier
T_OUT9 EP_INT H16 E-Power interrupt E-Power T_OUT10 GND J14 Ground Ground T_OUT11 HOOK_KEY H15 Hook Key detection on Personal HF Personal HF T_OUT12 NC K17 No Connection
RTC
Real Time Clock block in U2001 E-Gold + V3 is used for EB-X400. The integrated RTC in the E-Gold + consumes only approx. 1 - 2 µA, hence backup can be provided simply by adding a large capacitance on the RTC supply. In backup mode (E-Gold + powered off) with only the RTC running, the RTC will operate down to app. 1 V. EB-X400 has very large backup capacitors. Thus, EB-X400 inserts a series resistor to avoid initial charging of the capacitor and clamps the RTC supply, preventing the RTC circuit to work during E-Gold + initialization. EB-X400 uses the micro capacitor instead of backup battery to save the cost and chip mount area. The Transceiver IC U101 (PMB6256VV1.1) set does not support the backup function in these LSIs, it is necessary to add the external regulator and power control circuit for backup battery charging. The backup battery capacity is 50 µAh (2.6 V to 0.0 V discharge).
– 5-10 –
Uplink / Downlink I & Q
U2001 (E-Gold + V3) performs GMSK modulation on data samples received form DSP at 270 Kbits per second. The I & Q signals are multiplexed to interface with the SMARTi RF IC.
Earpiece
Ringer
Car Kit
1 2 3 4 5 6 7 8 9
0 #
DAC
ADC
Speech
and Channel
Decoding
Viterbi HW
Accelerator
Speech
and Channel
Encoding
E-GOLD + V3
(PMB7850)
Realtime
Clock
GPRS Unit
2-Mbit SRAM
Infineon 16-Bit Core
Equalizer
OAK+
Modulator
C166S
GSMK
Timer
Power Mgmt.
GSM
ADC
ADC
GSM
Cipher Unit
DAC
DAC
Interfaces
SSC
22
I C I S DAI JTAG
MMC
Blue
tooth IF
ASC IrDA
DAC
AFC
CLK DAT ENA
26 MHz
I
Q
RF Control
Compensation
Control
Logic
Automatic
GSM 900/1800
Offset
GSM 1900
SMARTi-DC-3
(PMB6257)
SAM
Fast PLL
only for
Tri-Band
Rx/Tx
Power
Amplifier
FLASHDisplay
Figure 5.4. Functional structure of the baseband Uplink / Downlink path
Power amplifier Ramp
The PA control ensures that the power ramp up and down sequences are generated. Each power ramp up/down sequence consists of 16 values of 10-bit length which represents the shape of the rising (falling) edge of the desired ramping curve in digital form. All 10-bit values are delivered in serial manner to the power-ramping path of GAIM.
Shape
The Ramp Shape is defined by 16 steps, the shape can be defined differently for rising and falling ramps. Typically a raised cosine shape will be used as a starting basis of the ramp shape.
TOUT(i)
trig_start
ramp up
ramp down
RFSTR(5) GAIM_CLK
123 1516 1718 303132
GAIM_DATA
PAOUT
0 V
Figure 5.5. Raised and fall cosine for the PA ramp
– 5-11 –
AFC Control
The Automatic Frequency Control (AFC) Unit generates a pulse number modulated (PNM) signal which can be low pass filtered externally to make a programmable DC voltage for controlling the external VCXO. The PNM signal repeats itself with a period depending on the number of bits used in register AFCVAL. For standard applications, the upper 11 bits are used and the PNM signal repeats every 2048 13 MHz clock cycles. (Approx. 158 µsec, frequency 6.35 kHz) For each 13 MHz clock input to the block, the output is driven to "1" or "0". The ratio of the number of "1"s to "0"s output in a period is proportional to the value of the AFCVAL register. The "1"s are distributed equally in a PNM period. No pulse deviates more from a perfect distribution by more than 1 input clock period. For instance if the value 7 is programmed, the leading edge of the seven 77 nsec wide pulses are separated by 293, 293, 292, 293, 292, 293 and 292 clock periods, which is near the ideal value of 292.57. The equal spacing in a period ensures that most of the energy in the signal appears at harmonics of 6.35 kHz, (in this case 7 x 6.35 kHz), and very little at 6.35 kHz. Because of this the requirements for the low pass filter are considerably reduced compared to a pulse width modulated output or a pulse number modulated signal with unequal distribution. In this example which uses 11-bits, the lowest frequency component in the spectrum of any E-Gold + V3 PNM sequence is 6.35 kHz and has an effective amplitude of less than 1 LSB.
Audio
E-Gold + V3 provides the analogue interface for the digital audio samples processed by the DSP in E-Gold + V3.
Voice Uplink and Downlink path
1
MUX
ADC
Scal_In Scal_Mic
Biquad-
2
In #1
Biquad-
In #2
Tone
Side_
1
In #1
Biquad-
In #2
Tone
Generator
#1
Gain_
Out
Tone_
Mix
Tone
Generator
#2
Speech
_Mix
Tone
Generator
#3
VOICEBAND-SAMPLE-BUFFER
DAC
Scal_ Out
Scal_ Rec
Biquad-
2
Biquad-Filter
Input Output
a0
T
a1
2
T
a2
Truncation
to 16 bits
2
b1
b2
T
T
Figure 5.6. Voice ADC and DAC block diagram
Auxiliary A/D
U2001 (E-Gold + V3) provides 5-input 10-bit A/D converters for monitoring. These inputs are available externally to monitor the main battery voltage, charger voltage and charger current monitoring. The functions of the four external A/D inputs are as follows.
E-Gold+ V3 A/D inputs
E-Gold + input Pin No. Function Values
VBAT P1 Battery voltage TBAT P2 Battery Temperature TENV P3 Environment Temperature
TVCO H1 Quartz Temperature No connection in EB-X400
BTEC N2 Battery technology identification No connection in EB-X400
– 5-12 –
The figure shows an AD converter path, starting from the analog inputs, the buffer amplifier, the Σ∆ modulator and digital decimating low-pass filter. The voltage is divided in an optional resistor divider to adapt to the input range of the modulators, and the resulting voltage difference to the reference voltage Vref is converted to a 6.5 Mbit/s bitstream at the output of the
Σ∆ modulator. This bitstream is converted to a 16-bit value in the decimating low pass filter.
R1
Σ∆
Vin
R2R3
V1
R5
R6
V2
Σ∆
R5
Vref
R4
Figure 5.7. AD Converter Path
8 Battery Temperature (TBAT) :
The battery packs used for EB-X400 contain a negative temperature coefficient thermistor. The basic parameters of the thermistor are as follows: R25 = 10 kΩ ± 1% B = 3435K ± 1%
8 Calibration :
And EB-X400 has values of electrical volume for A/D calibration as follows. Battery voltage : VBAT1, VBAT2 Battery temperature : TBAT1, TBAT2 Environment temperature : TENV1, TENV2
R6

5.2.4. CPU MEMORY

EB-X400 uses following memory configuration.
128 Mbits Flash memory organised as 4M x 16 + 4M x 16
EB-X400 uses Dual operation Flash memory + mobile RAM 3-chip stacked type MCP (Multi-Chip Package) to reduce chip mount spaces. 36-Mbit RAM consists of 4-Mbit internal SRAM of E-Gold + V3 and 32-Mbit external mobile RAM on the MCP device.
36 Mbits RAM organised as 128k x 32 (Internal SRAM) + 2M x 16 (mobile RAM)
RAM Timing
This Timing chart is described in U2001 (E-Gold + V3) specification:
ABRIDGED APPROVAL FORM – PMB7850 Info Sheet
FLASH Timing
This Timing chart is described in U2001 (E-Gold + V3) specification:
ABRIDGED APPROVAL FORM – PMB7850 Info Sheet
– 5-13 –

5.2.5. Main LCD

A 128 x 128 pixel graphical display is used to give maximum information. It can display Chinese and large character sets.
The HD66782 display driver is used. This driver has Display RAM. LCD glass size is as follows.
View area
Effective area
128 x 128 pixels
0.0200 mm
26.092 mm
26.099
30.4 mm
28.100 mm
0.204 mm
mm
0.204 mm
0.013 mm
Figure 5.8. LCD Glass Size
The display driver is controlled by setting command register and display data registers. To send data or command to display driver, nCS; provided from companion IC; is used for chip select. These registers are assigned as follows.
Command register: $01C0:0000 Data register: $01C1:0000
These registers are write access only.

5.2.6. IrDA

The IrDA module is mounted on the upper unit PCB. EB-X400 supports IrDA file transfer and object exchange, but does not support IrDA dial-up. In a special asynchronous mode of U2001 (E-Gold+ V3), the ASC supports IrDA data transmissions up to 115.2 KBaud with fixed or programmable IrDA pulse width. An autobaud detection unit detects asynchronous data frames with its baudrate and mode, with automatic initialization of the baudrate generator and the mode control bits.
– 5-14 –
Loading...
+ 63 hidden pages