查询NTB4302供应商
NTP4302, NTB4302
Power MOSFET
74 Amps, 30 Volts
N−Channel TO−220 and D2PAK
Features
• Low R
• Higher Efficiency Extending Battery Life
• Diode Exhibits High Speed, Soft Recovery
• Avalanche Energy Specified
• I
T ypical Applications
• DC−DC Converters
• Low Voltage Motor Control
• Power Management in Portable and Battery Powered Products: Ie:
MAXIMUM RATINGS (T
Drain−to−Source Voltage V
Drain−to−Gate Voltage (RGS = 10 MΩ) V
Gate−to−Source Voltage
Drain Current
Total Power Dissipation @ TC = 25°C
Operating and Storage Temperature Range TJ, T
Single Pulse Drain−to−Source Avalanche
Thermal Resistance
Maximum Lead Temperature for Soldering
1. When surface mounted to an FR4 Board using minimum recommended Pad
2. Current limited by internal lead wires.
DS(on)
Specified at Elevated Temperature
DSS
Computers, Printers, Cellular and Cordless Telephones, and PCMCIA
Cards
= 25°C unless otherwise noted)
J
Rating
− Continuous
− Continuous @ T
− Continuous @ T
− Single Pulse (t
Derate above 25°C
Energy − Starting T
(V
= 30 Vdc, VGS = 10 Vdc, L = 5.0 mH
DD
I
= 17 A, VDS = 30 Vdc, RG = 25 Ω)
L(pk)
− Junction−to−Case
− Junction−to−Ambient (Note 1)
Purposes, 1/8″ from case for 10 seconds
Size, (Cu Area 0.412 in
= 25°C
C
= 100°C
C
10 µs)
p
= 25°C
J
2
).
Symbol Value Unit
stg
30 Vdc
30 Vdc
20
74
47
175
80
0.66WW/°C
−55 to
+150
722 mJ
1.55
70
260 °C
V
E
R
R
DSS
DGR
GS
I
I
I
DM
P
AS
θ
θ
T
D
D
D
JC
JA
L
Vdc
Adc
Apk
°C
°C/W
1
2
Gate
http://onsemi.com
74 AMPERES
30 VOLTS
R
3
Drain
NTx4302
LLYWW
1
Drain
DS(on)
4
4
2
= 9.3 mΩ Max
N−Channel
G
TO−220AB
CASE 221A
STYLE 5
MARKING DIAGRAMS
& PIN ASSIGNMENTS
3
Source
D
S
1
2
3
D2PAK
CASE 418AA
STYLE 2
4
Drain
NTx4302
LLYWW
1
Gate
x = P or B
NTx4302 = Device Code
LL = Location Code
Y = Year
WW = Work Week
Drain
3
2
Source
4
Semiconductor Components Industries, LLC, 2003
October, 2003 − Rev. 1
ORDERING INFORMATION
Device Package Shipping
NTP4302 TO−220AB 50 Units/Rail
NTB4302 D2PAK 50 Units/Rail
NTB4302T4 D2PAK 800/Tape & Reel
1 Publication Order Number:
NTP4302/D
NTP4302, NTB4302
dIS/dt = 100 A/µs) (Note 3)
ELECTRICAL CHARACTERISTICS (T
= 25°C unless otherwise noted)
J
Characteristic
OFF CHARACTERISTICS
Drain−to−Source Breakdown Voltage (Note 3)
= 0 Vdc, ID = 250 µAdc)
(V
GS
Temperature Coefficient (Positive)
Zero Gate Voltage Drain Current
(V
= 30 Vdc, VGS = 0 Vdc)
DS
= 30 Vdc, VGS = 0 Vdc, TJ = 125°C)
(V
DS
Gate−Body Leakage Current (VGS = ±20 Vdc, VDS = 0 Vdc) I
ON CHARACTERISTICS (Note 3)
Gate Threshold Voltage (Note 3)
(V
= VGS, ID = 250 µAdc)
DS
Threshold Temperature Coefficient (Negative)
Static Drain−to−Source On−Resistance (Note 3)
= 10 Vdc, ID = 37 Adc)
(V
GS
(V
= 10 Vdc, ID = 20 Adc)
GS
= 4.5 Vdc, ID = 10 Adc)
(V
GS
Forward Transconductance (Note 3) (VDS = 10 Vdc, ID = 20 Adc) g
DYNAMIC CHARACTERISTICS
Input Capacitance
Output Capacitance
(VDS = 24 Vdc, VGS = 0 Vdc,
f = 1.0 MHz
Transfer Capacitance
SWITCHING CHARACTERISTICS (Note 4)
Turn−On Delay Time
Rise Time
Turn−Off Delay Time
V
(V
= 24 Vdc, ID = 20 Adc,
DD
= 10 Vdc, RG = 2.5 Ω) (Note 3)
GS
20
,
Fall Time t
Turn−On Delay Time t
Rise Time
Turn−Off Delay Time
V
(V
= 24 Vdc, ID = 10 Adc,
DD
= 4.5 Vdc, RG = 2.5 Ω) (Note 3)
GS
10
,
Fall Time t
Gate Charge
(VDS = 24 Vdc, ID = 37 Adc,
V
= 4.5 Vdc) (Note 3
= 4.5
SOURCE−DRAIN DIODE CHARACTERISTICS
Forward On−Voltage
(IS = 20 Adc, VGS = 0 Vdc) (Note 3)
(I
= 20 Adc, VGS = 0 Vdc, TJ = 125°C)
S
Reverse Recovery Time
(IS = 20 Adc, VGS = 0 Vdc,
dI
/dt = 100 A/µs) (Note 3
Reverse Recovery Stored Charge Q
3. Pulse Test: Pulse Width ≤300 µs, Duty Cycle ≤ 2%.
4. Switching characteristics are independent of operating junction temperatures.
Symbol Min Typ Max Unit
V
(BR)DSS
I
DSS
GSS
V
GS(th)
R
DS(on)
C
C
C
t
d(on)
t
d(off)
d(on)
t
d(off)
Q
Q
Q
V
t
t
t
FS
iss
oss
rss
t
t
gs
gd
SD
rr
a
b
RR
30
−
−
−
25
−
−
−
−
−
1.0
10
− − ±100 nAdc
1.0
−
− 6.8
1.9
−3.8
6.8
9.5
3.0
−
9.3
9.3
12.5
− 40 − mhos
− 2050 2400 pF
− 640 800
− 225 310
− 10 18 ns
r
− 22 35
− 45 75
f
− 35 70
− 18 − ns
r
− 70 −
− 32 −
f
T
− 30 −
− 28 − nC
− 7.5 −
− 19 −
−
−
0.90
0.75
1.3
−
− 37 −
− 21 −
− 16 −
− 0.035 − µC
Vdc
mV/°C
µAdc
Vdc
mV/°C
mΩ
Vdc
ns
http://onsemi.com
2
NTP4302, NTB4302
70
7 V
60
5 V
50
40
30
20
, DRAIN CURRENT (AMPS)
D
I
10
0
0 2.5
0.5 1.5
VDS, DRAIN−TO−SOURCE VOLTAGE (VOLTS)
VGS = 10 V
4.6 V
3 V 2.8 V
TJ = 25C
Figure 1. On−Region Characteristics Figure 2. Transfer Characteristics
0.08
0.06
60
4.4 V
4 V
3.8 V
3.4 V
3.2 V
21
ID = 20 A
= 25°C
T
J
, DRAIN CURRENT (AMPS)
D
I
3
0.015
VDS ≥ 10 V
50
40
30
20
10
0.01
TJ = 25°C
TJ = 100°C
TJ = −55°C
0
26
TJ = 25°C
345
V
, GATE−TO−SOURCE VOLTAGE (VOLTS)
GS
VGS = 4.5 V
0.04
0.005
0.02
, DRAIN−TO−SOURCE RESISTANCE (Ω)
0
042610
DS(on)
R
VGS, GATE−TO−SOURCE VOLTAGE (VOLTS)
80302010 40 70
, DRAIN−TO−SOURCE RESISTANCE (Ω)
DS(on)
R
Figure 3. On−Resistance versus
Gate−to−Source V oltage
1.6
1.4
1.2
0.8
1
ID = 20 A
V
= 10 V
GS
10000
1000
100
, LEAKAGE (nA)
DSS
I
VGS = 10 V
0
ID, DRAIN CURRENT (AMPS)
50 60
Figure 4. On−Resistance versus Drain Current
and Gate Voltage
VGS = 0 V
TJ = 150°C
TJ = 100°C
10
0.6
−50 50250−25 75 100
, DRAIN−TO−SOURCE RESISTANCE (NORMALIZED)
DS(on)
R
TJ, JUNCTION TEMPERATURE (°C)
Figure 5. On−Resistance Variation with
Temperature
1
150125
020251510 30
http://onsemi.com
3
VDS, DRAIN−TO−SOURCE VOLTAGE (VOLTS)
Figure 6. Drain−to−Source Leakage Current
versus V oltage