查询NTF3055-160供应商
NTF3055-160
Preferred Device
Power MOSFET
2.0 Amps, 60 Volts
N–Channel SOT–223
Designed for low voltage, high speed switching applications in
power supplies, converters and power motor controls and bridge
circuits.
http://onsemi.com
Applications
• Power Supplies
• Converters
• Power Motor Controls
• Bridge Circuits
MAXIMUM RATINGS (T
Drain–to–Source Voltage V
Drain–to–Gate Voltage (RGS = 1.0 MΩ) V
Gate–to–Source Voltage
– Continuous
– Non–repetitive (tp ≤ 10 ms)
Drain Current
– Continuous @ TA = 25°C
– Continuous @ TA = 100°C
– Single Pulse (tp ≤ 10 µs)
Total Power Dissipation @ TA = 25°C (Note 1.)
Total Power Dissipation @ TA = 25°C (Note 2.)
Derate above 25°C
Operating and Storage Temperature Range TJ, T
Single Pulse Drain–to–Source Avalanche
Energy – Starting TJ = 25°C
(VDD = 25 Vdc, VGS = 10 Vdc,
IL(pk) = 6.0 Apk, L = 10 mH, VDS = 60 Vdc)
Thermal Resistance
– Junction to Ambient (Note 1.)
– Junction to Ambient (Note 2.)
Maximum Lead Temperature for Soldering
Purposes, 1/8″ from case for 10 seconds
1. When surface mounted to an FR4 board using 1″ pad size,
(Cu. Area 1.127 in2).
2. When surface mounted to an FR4 board using minimum recommended pad
size, 2–2.4 oz. (Cu. Area 0.272 in2).
= 25°C unless otherwise noted)
C
Rating
Symbol Value Unit
stg
60 Vdc
60 Vdc
± 20
± 30
2.0
1.2
6.0
2.1
1.3
0.014
–55 to
175
65 mJ
72.3
114
260 °C
Vdc
Vpk
Adc
Apk
W
W
W/°C
°C
°C/W
DSS
DGR
V
GS
I
I
I
DM
P
E
AS
R
θJA
R
θJA
T
D
D
D
L
2.0 AMPERES
60 VOLTS
R
DS(on)
G
4
1
2
3
5160 = Device Code
L = Location Code
WW = Work Week
PIN ASSIGNMENT
ORDERING INFORMATION
= 160 m
N–Channel
D
S
SOT–223
CASE 318E
STYLE 3
4
Drain
Gate Drain Source
321
MARKING
DIAGRAM
5160
LWW
Semiconductor Components Industries, LLC, 2001
July, 2001 – Rev. 0
Device Package Shipping
NTF3055–160T1 SOT–223 1000 Tape & Reel
NTF3055–160T3 SOT–223 4000 Tape & Reel
NTF3055–160T3LF SOT–223 4000 Tape & Reel
1
Publication Order Number:
NTF3055–160/D
NTF3055–160
ELECTRICAL CHARACTERISTICS (T
Characteristic Symbol Min Typ Max Unit
= 25°C unless otherwise noted)
A
OFF CHARACTERISTICS
Drain–to–Source Breakdown Voltage (Note 3.)
(VGS = 0 Vdc, ID = 250 µAdc)
Temperature Coefficient (Positive)
Zero Gate Voltage Drain Current
(VDS = 60 Vdc, VGS = 0 Vdc)
(VDS = 60 Vdc, VGS = 0 Vdc, TJ = 150°C)
Gate–Body Leakage Current (VGS = ± 20 Vdc, VDS = 0 Vdc) I
ON CHARACTERISTICS (Note 3.)
Gate Threshold Voltage
(VDS = VGS, ID = 250 µAdc)
Threshold Temperature Coefficient (Negative)
Static Drain–to–Source On–Resistance (Note 3.)
(VGS = 10 Vdc, ID = 1.0 Adc)
Static Drain–to–Source On–Resistance (Note 3.)
(VGS = 10 Vdc, ID = 2.0 Adc)
(VGS = 10 Vdc, ID = 1.0 Adc, TJ = 150°C)
Forward Transconductance (Note 3.) (VDS = 8.0 Vdc, ID = 1.5 Adc)
(Note 3.)
DYNAMIC CHARACTERISTICS
Input Capacitance
Output Capacitance
Transfer Capacitance
(VDS = 25 Vdc, VGS = 0 V,
f = 1.0 MHz
= 1.0
SWITCHING CHARACTERISTICS (Note 4.)
Turn–On Delay Time
Rise Time
Turn–Off Delay Time
Fall Time
Gate Charge
(VDD = 30 Vdc, ID = 2.0 Adc,
VGS = 10 Vdc,
RG = 9.1 Ω) (Note 3.)
(VDS = 48 Vdc, ID = 2.0 Adc,
V
= 10 Vdc) (Note 3.
= 10
SOURCE–DRAIN DIODE CHARACTERISTICS
Forward On–Voltage (IS = 2.0 Adc, VGS = 0 Vdc)
Reverse Recovery Time
Reverse Recovery Stored Charge Q
3. Pulse Test: Pulse Width ≤300 µs, Duty Cycle ≤2.0%.
4. Switching characteristics are independent of operating junction temperatures.
(IS = 2.0 Adc, VGS = 0 Vdc,
TJ = 150°C) (Note 3.)
(IS = 2.0 Adc, VGS = 0 Vdc,
2.0
dIS/dt = 100 A/µs) (Note 3.)
0
,
V
(BR)DSS
I
DSS
GSS
V
GS(th)
R
DS(on)
V
DS(on)
g
fs
C
iss
C
oss
C
rss
t
d(on)
t
r
t
d(off)
t
f
Q
Q
Q
V
SD
t
rr
t
a
t
b
RR
60
–
–
–
– – ± 100 nAdc
2.0
–
– 142 160
– 0.142
– 1.8 – Mhos
– 200 280
– 68 100
– 26 40
– 9.2 20
– 9.2 20
– 16 40
– 9.2 20
T
1
2
– 6.9 14
– 1.4 –
– 3.0 –
–
–
– 28.9 –
– 19.1 –
– 9.8 –
– 0.030 – µC
72
72
–
–
3.1
6.6
0.270
0.86
0.70
–
–
1.0
10
4.0
–
0.384
–
1.0
–
Vdc
mV/°C
µAdc
Vdc
mV/°C
mΩ
Vdc
pF
ns
nC
Vdc
ns
http://onsemi.com
2
NTF3055–160
3.6
3.2
2.8
2.4
2
1.6
1.2
0.8
DRAIN CURRENT (AMPS)
D,
I
0.4
0
0
0.4
V
DS,
VGS = 8 V
VGS = 10 V
DRAIN–TO–SOURCE VOLTAGE (VOLTS)
Figure 1. On–Region Characteristics Figure 2. Transfer Characteristics
0.28
VGS = 10 V
0.24
0.2
0.16
2.8
2.4
2
1.6
1.2
0.8
0.4
0
0.2
VDS ≥ 10 V
TJ = 25°C
TJ = 100°C
TJ = –55°C
V
GATE–TO–SOURCE VOLTAGE (VOLTS)
GS,
VGS = 15 V
TJ = 25°C
VGS = 6 V
VGS = 7 V
1.2 2 3 6.23.8 5.43.4 4.2 4.6 5 5.8
TJ = 100°C
TJ = 25°C
VGS = 5.5 V
VGS = 5 V
VGS = 4.5 V
2.4
DRAIN CURRENT (AMPS)
D,
I
2.81.60.8
0.28
0.24
0.16
0.12
0.08
0.04
DRAIN–TO–SOURCE RESISTANCE (Ω)
0
DS(on),
R
0
0.5 2 3.5
1
ID, DRAIN CURRENT (AMPS)
TJ = –55°C
Figure 3. On–Resistance versus
Gate–to–Source Voltage
V
GATE–TO–SOURCE VOLTAGE (VOLTS)
GS,
2
ID = 1 A
VGS = 10 V
1.8
1.6
1.4
1.2
1
0.8
0.6
–50 50250–25 75 125100
DRAIN–TO–SOURCE RESISTANCE (NORMALIZED)
DS(on),
R
TJ, JUNCTION TEMPERATURE (°C)
Figure 5. On–Resistance Variation with
Temperature
0.12
0.08
0.04
DRAIN–TO–SOURCE RESISTANCE (Ω)
2.51.5
3
4
0
0 0.5 2 3.52.51.5134
DS(on),
R
ID, DRAIN CURRENT (AMPS)
Figure 4. On–Resistance versus Drain Current
and Gate Voltage
1000
VGS = 0 V
TJ = 150°C
100
TJ = 125°C
, LEAKAGE (nA)
150
175
10
DSS
I
1
04060302010 50
V
DRAIN–TO–SOURCE VOLTAGE (VOLTS)
DS,
TJ = 100°C
Figure 6. Drain–to–Source Leakage Current
versus V oltage
http://onsemi.com
3