ON Semiconductor EMD5DXV6-D, EMD5DXV6T5 Service Manual

EMD5DXV6T1, EMD5DXV6T5
Preferred Devices
Product Preview
NPN and PNP Silicon Surface Mount Transistors with Monolithic Bias Resistor Network
The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base−emitter resistor. These digital transistors are designed to replace a single device and its external resistor bias network. The BRT eliminates these individual components by integrating them into a single device. In the EMD5DXV6T1 series, two complementary BRT devices are housed in the SOT−563 package which is ideal for low power surface mount applications where board space is at a premium.
Simplifies Circuit Design
Reduces Board Space
Reduces Component Count
Available in 8 mm, 7 inch Tape and Reel
Lead Free Solder Plating
http://onsemi.com
(1)(2)(3)
R
1
R
Q
1
R
2
(4) (5) (6)
4
5
6
SOT−563
CASE 463A
PLASTIC
MARKING DIAGRAM
2
Q
R
1
3
2
1
2
This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.
U5 D
U5 = Specific Device Code D = Date Code
ORDERING INFORMATION
Device Package Shipping
EMD5DXV6T1 SOT−563 4 mm pitch
4000/Tape & Reel
EMD5DXV6T5 SOT−563 2 mm pitch
8000/Tape & Reel
Preferred devices are recommended choices for future use and best overall value.
Semiconductor Components Industries, LLC, 2003
July, 2003 − Rev. P1
1 Publication Order Number:
EMD5DXV6/D
EMD5DXV6T1, EMD5DXV6T5
MAXIMUM RATINGS (T
= 25°C unless otherwise noted, common for Q1 and Q2, − minus sign for Q1 (PNP) omitted)
A
Rating
Symbol Value Unit
Collector-Base Voltage V Collector-Emitter Voltage V Collector Current I
THERMAL CHARACTERISTICS
Characteristic
(One Junction Heated)
Total Device Dissipation TA = 25°C Derate above 25°C
Thermal Resistance Junction-to-Ambient R
Characteristic
(Both Junctions Heated)
Total Device Dissipation TA = 25°C Derate above 25°C
Thermal Resistance Junction-to-Ambient R
Junction and Storage Temperature TJ, T
1. FR−4 @ Minimum Pad
Symbol Max Unit
Symbol Max Unit
CBO CEO
C
P
D
JA
P
D
JA
stg
50 Vdc 50 Vdc
100 mAdc
357
(Note 1)
2.9
(Note 1)
350
(Note 1)
500
(Note 1)
4.0
(Note 1)
250
(Note 1)
−55 to +150
mW
mW/°C
°C/W
mW
mW/°C
°C/W
°C
http://onsemi.com
2
EMD5DXV6T1, EMD5DXV6T5
ELECTRICAL CHARACTERISTICS (T
Characteristic
= 25°C unless otherwise noted)
A
Symbol Min Typ Max Unit
Q1 TRANSISTOR: PNP OFF CHARACTERISTICS
Collector-Base Cutoff Current (VCB = 50 V, IE = 0) I Collector-Emitter Cutoff Current (VCB = 50 V, IB = 0) I Emitter-Base Cutoff Current (VEB = 6.0, IC = 5.0 mA) I
CBO CEO EBO
100 nAdc
500 nAdc
1.0 mAdc
ON CHARACTERISTICS
Collector-Base Breakdown Voltage (IC = 10 A, IE = 0) V Collector-Emitter Breakdown Voltage (IC = 2.0 mA, IB = 0) V DC Current Gain (VCE = 10 V, IC = 5.0 mA) h Collector−Emitter Saturation Voltage (IC = 10 mA, IB = 0.3 mA) V Output Voltage (on) (VCC = 5.0 V, V Output Voltage (off) (VCC = 5.0 V, V
= 2.5 V, RL = 1.0 k) V
B
= 0.5 V, RL = 1.0 k) V
B
(BR)CBO (BR)CEO
FE
CE(SAT)
OL OH
Input Resistor R1 3.3 4.7 6.1 k Resistor Ratio R1/R2 0.38 0.47 0.56
50 Vdc 50 Vdc 20 35
0.25 Vdc
0.2 Vdc
4.9 Vdc
Q2 TRANSISTOR: NPN OFF CHARACTERISTICS
Collector-Base Cutoff Current (VCB = 50 V, IE = 0) I Collector-Emitter Cutoff Current (VCB = 50 V, IB = 0) I Emitter-Base Cutoff Current (VEB = 6.0, IC = 5.0 mA) I
CBO CEO EBO
100 nAdc
500 nAdc
0.1 mAdc
ON CHARACTERISTICS
Collector-Base Breakdown Voltage (IC = 10 A, IE = 0) V Collector-Emitter Breakdown Voltage (IC = 2.0 mA, IB = 0) V DC Current Gain (VCE = 10 V, IC = 5.0 mA) h Collector−Emitter Saturation Voltage (IC = 10 mA, IB = 0.3 mA) V Output Voltage (on) (VCC = 5.0 V, V Output Voltage (off) (VCC = 5.0 V, V
= 2.5 V, RL = 1.0 k) V
B
= 0.5 V, RL = 1.0 k) V
B
(BR)CBO (BR)CEO
FE
CE(SAT)
OL OH
Input Resistor R1 33 47 61 k Resistor Ratio R1/R2 0.8 1.0 1.2
50 Vdc 50 Vdc 80 140
0.25 Vdc
0.2 Vdc
4.9 Vdc
http://onsemi.com
3
EMD5DXV6T1, EMD5DXV6T5
250
200
150
100
R
= 833°C/W
50
, POWER DISSIPATION (MILLIWATTS)
D
P
0
−50 0 50 100 150
JA
, AMBIENT TEMPERATURE (°C)
T
A
Figure 1. Derating Curve
http://onsemi.com
4
EMD5DXV6T1, EMD5DXV6T5
TYPICAL ELECTRICAL CHARACTERISTICS — EMD5DXV6T1 PNP TRANSISTOR
, MAXIMUM COLLECTOR VOLTAGE (VOLTS)
0.01
CE(sat)
V
0.1
1
IC/IB = 10
T
=75°C
A
25°C
1000
100
VCE = 10 V
T
=75°C
A
−25°C
25°C
−25°C
, DC CURRENT GAIN
10
FE
h
1
0
20 50
, COLLECTOR CURRENT (mA)
I
C
Figure 2. V
3010 60
versus I
CE(sat)
40
C
12
1 1000
100
10
I
, COLLECTOR CURRENT (mA)
C
Figure 3. DC Current Gain
100
f = 1 MHz
10
= 0 mA
I
E
T
= 25°C
A
75°C
10
8
6
, CAPACITANCE (pF)
4
ob
C
SERIES 1
2
0
01020 3040
15 25 35 455
V
, REVERSE BIAS VOLTAGE (VOLTS)
R
Figure 4. Output Capacitance Figure 5. Output Current versus Input Voltage
0.1
, COLLECTOR CURRENT (mA)
C
I
0.01
1
VO = 5 V
T
=−25°C
A
25°C
0
2468 12
V
, INPUT VOLTAGE (VOLTS)
in
10
http://onsemi.com
5
EMD5DXV6T1, EMD5DXV6T5
TYPICAL ELECTRICAL CHARACTERISTICS — EMD5DXV6T1 NPN TRANSISTOR
0.1
, MAXIMUM COLLECTOR VOLTAGE (VOLTS)
0.01
CE(sat)
V
0.8
0.6
10
IC/IB = 10
1
1000
VCE = 10 V
T
=75°C
A
25°C
−25°C
T
=−25°C
A
25°C
75°C
0
Figure 6. V
20 40
, COLLECTOR CURRENT (mA)
I
C
versus I
CE(sat)
C
50
1
f = 1 MHz I
= 0 mA
E
= 25°C
T
A
100
, DC CURRENT GAIN
FE
h
10
1 100
I
, COLLECTOR CURRENT (mA)
C
10
Figure 7. DC Current Gain
100
75°C
10
25°C
T
=−25°C
A
1
0.4
, CAPACITANCE (pF)
ob
C
0.2
0
010203040
, REVERSE BIAS VOLTAGE (VOLTS)
V
R
Figure 8. Output Capacitance
100
VO = 0.2 V
10
1
, INPUT VOLTAGE (VOLTS)
in
V
0.1 010 203040 50
Figure 10. Input Voltage versus Output Current
0.1
0.01
, COLLECTOR CURRENT (mA)
C
I
50
, COLLECTOR CURRENT (mA)
I
C
0.001
T
=−25°C
A
VO = 5 V
0246810
, INPUT VOLTAGE (VOLTS)
V
in
Figure 9. Output Current versus Input Voltage
25°C
75°C
http://onsemi.com
6
EMD5DXV6T1, EMD5DXV6T5
INFORMATION FOR USING THE SOT−563 SURFACE MOUNT PACKAGE
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the to­tal design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection
1.35
0.0531
0.5
0.0197
SOT−563
SOT−563 POWER DISSIPATION
The power dissipation of the SOT−563 is a function of the pad size. This can vary from the minimum pad size for soldering to a pad size given for maximum power dissipa­tion. Power dissipation for a surface mount device is deter­mined by T of the die, R
, the maximum rated junction temperature
J(max)
, the thermal resistance from the device
JA
junction to ambient, and the operating temperature, TA. Us­ing the values provided on the data sheet for the SOT−563 package, PD can be calculated as follows:
PD =
J(max)
R
A
JA
T
− T
The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature T
of 25°C,
A
one can calculate the power dissipation of the device which in this case is 150 milliwatts.
150°C − 25°C
PD =
833°C/W
= 150 milliwatts
The 833°C/W for the SOT−563 package assumes the use of the recommended footprint on a glass epoxy printed cir­cuit board to achieve a power dissipation of 150 milliwatts. There are other alternatives to achieving higher power dis­sipation from the SOT−563 package. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad
. Using a board material such as Thermal Clad, an aluminum core board, the power dis­sipation can be doubled using the same footprint.
0.3
0.0118
0.0394
interface between the board and the package. With the cor­rect pad geometry, the packages will self align when sub­jected to a solder reflow process.
0.45
0.0177
1.0
0.5
0.0197
mm
SCALE 20:1
inches
SOLDERING PRECAUTIONS
The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. There­fore, the following items should always be observed in or­der to minimize the thermal stress to which the devices are subjected.
Always preheat the device.
The delta temperature between the preheat and solder-
ing should be 100°C or less.*
When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum tem­perature ratings as shown on the data sheet. When using infrared heating with the reflow soldering meth­od, the difference shall be a maximum of 10°C.
The soldering temperature and time shall not exceed
260°C for more than 10 seconds.
When shifting from preheating to soldering, the maxi-
mum temperature gradient shall be 5°C or less.
After soldering has been completed, the device should
be allowed to cool naturally for at least three minutes. Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress.
Mechanical stress or shock should not be applied dur-
ing cooling.
* Soldering a device without preheating can cause exces­sive thermal shock and stress which can result in damage to the device.
http://onsemi.com
7
A
−X−
6
12 3
G
45
D
0.08 (0.003) X
EMD5DXV6T1, EMD5DXV6T5
PACKAGE DIMENSIONS
SOT−563, 6 LEAD
CASE 463A−01
ISSUE O
B
−Y−
6 5 PL
C
M
Y
K
S
J
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
MILLIMETERS
DIMAMIN MAX MIN MAX
1.50 1.70 0.059 0.067
B 1.10 1.30 0.043 0.051 C 0.50 0.60 0.020 0.024 D 0.17 0.27 0.007 0.011 G 0.50 BSC 0.020 BSC J 0.08 0.18 0.003 0.007 K
0.10 0.30
S
1.50 1.70
INCHES
0.004 0.012
0.059 0.067
STYLE 1:
PIN 1. EMITTER 1
2. BASE 1
3. COLLECTOR 2
4. EMITTER 2
5. BASE 2
6. COLLECTOR 1
STYLE 2:
PIN 1. EMITTER 1
2. EMITTER2
3. BASE 2
4. COLLECTOR 2
5. BASE 1
6. COLLECTOR 1
STYLE 3:
PIN 1. CATHODE 1
2. CATHODE 1
3. ANODE/ANODE 2
4. CATHODE 2
5. CATHODE 2
6. ANODE/ANODE 1
STYLE 4:
PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. EMITTER
5. COLLECTOR
6. COLLECTOR
Thermal Clad is a trademark of the Bergquist Company.
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800−282−9855 Toll Free USA/Canada
http://onsemi.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Phone: 81−3−5773−3850
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.
EMD5DXV6/D
8
Loading...