1.2Acronyms and abbreviations...........................................................................................................................................7
2.11 Local bus.........................................................................................................................................................................27
2.13 USB interface..................................................................................................................................................................29
2.14 Serial port........................................................................................................................................................................30
2.15 SLIC/SLAC and TDM interface.....................................................................................................................................32
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
3.2.3Hardware version register (HWVER)................................................................................................................45
3.2.4Software version register (SWVER)..................................................................................................................46
3.2.5Reset control register (RSTCON1).................................................................................................................... 46
3.2.6Reset control register (RSTCON2).................................................................................................................... 47
3.2.8Flash control and status register (FLHCSR)...................................................................................................... 49
3.2.9Fan control and status register (FANCSR)........................................................................................................ 49
3.2.10 Panel LED control and status register (LEDCSR).............................................................................................50
3.2.11 SFP+ control and status register (SFPCSR).......................................................................................................51
3.2.12 Miscellaneous control and status register (MISCCSR)..................................................................................... 51
4.2Ethernet port map............................................................................................................................................................57
4.6Flashing and updating images.........................................................................................................................................60
4.6.1Flashing images on and booting from NOR flash..............................................................................................60
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Freescale Semiconductor, Inc.5
Page 6
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
6Freescale Semiconductor, Inc.
Page 7
Chapter 1
Overview
This manual describes the features and operation of a high performance reference
platform that supports QorIQ Power Architecture® processors including:
• T1040
• T1020
The T1040RDB is optimized to support high-bandwidth DDR3L memory and a full
complement of high-speed SerDes ports.
NOTE
The dual-core version of the T1040 SoC is known as T1020.
1.1Related documentation
The documents below may be available only under a non-disclosure agreement (NDA).
To request access to these documents, contact your local field applications engineer or
sales representative.
Table 1-1. Related documentation
Document nameDescription
QorIQ T1040, T1020 Data Sheet
(T1040, T1020)
QorIQ T1040 Reference Manual
(T1040RM)
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Freescale Semiconductor, Inc.7
Provides specific data regarding bus timing, signal behavior, and AC, DC, and thermal
characteristics, as well as other design considerations
This document provides a detailed description on the QorIQ T1040 multicore processor,
and its features, such as memory map, serial interfaces, power supply, chip features,
and clock information.
Page 8
Silicon features
1.2Acronyms and abbreviations
The following table contains acronyms and abbreviations used in this document.
Table 1-2. Acronyms and abbreviations
TermDescription
COPCommon On-chip Processor
CPCCoreNet Platform Cache
CPLDComplex Programmable Logic Device
DIMMDual in-line memory module
DIPDual in-line package
DMADirect Memory Access
DPAAData Path Acceleration Architecture
DRAMDynamic random-access memory
DUTDevice under test
ECCError detection and correction
EMIEthernet Management interface
eSDHCEnhanced Secure Digital Host Controller
eSPIEnhanced Serial Peripheral Interface
FXSForeign Exchange Station
FXOForeign Exchange Office
I2CInter - Integrated Circuit
IFCIntegrated Flash Controller
JTAGJoint Test Action Group
MDCManagement Data Clock
MDIOManagement Data Input/Output
PCIePCI Express
PORPower-on reset
PSUPower Supply Unit
QManQueue Manager
SATASerial Advanced Technology Attachment
SDSecure Digital
SerDesSerializer/Deserializer
SGMIISerial Gigabit Media Independent Interface
SPISerial Peripheral Interface
SYSCLKSystem Clock
UARTUniversal asynchronous receiver/transmitter
VCCVoltage for circuit
VTTVoltage for terminal
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
8Freescale Semiconductor, Inc.
Page 9
1.3Silicon features
NOTE
For a description of the features of the T1040 SoC, see QorIQ
T1040 Reference Manual (T1040RM).
1.4Board features
The features of the T1040RDB-PA board are as follows:
Eight lanes of SerDes connections with support for:
•
• PCIe that supports Gen 1 and Gen 2
• SGMII
• QSGMII
• SATA 2.0
• DDR controller
• Supports data rates up to 1600 MHz
• Supports one DDR3L DIMM of single-, dual-, or quad-rank type
• DDR power supply (1.35 V) with automatic tracking of VTT
• IFC
• NAND flash: 8-bit, async, 1 GB
• NOR: 16-bit, non-multiplexed, 128 MB, support of eight virtual banks
• Ethernet
• Two onboard RGMII 10/100/1G Ethernet ports, PHY #0 remains powered up
during deep-sleep
• One onboard SGMII 10/100/1G Ethernet Port
• Two onboard QSGMII 10/100/1G PHYs connecting to 8 GE ports
• CPLD
• Manages system power and reset sequencing
• Manages DUT, board, clock configuration
• Reset and interrupt monitor and control
• General fault monitoring and logging
• Sleep mode control
• Clocks
• SYSCLK at 100 MHz
• DDRCLK at 66.66 MHz
• USBCLK at 24 MHz
• Single Oscillator Source reference clocking at 100 MHz
• Power Supplies
Chapter 1 Overview
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Freescale Semiconductor, Inc.9
Page 10
(Peripheral access
management unit)
C
oreNet™ Coherency Manager
Security monitor
Power management
SD/eSDHC/eMMC
2x DUART
16b IFC
eSPI, 4x GPIO
32/64-bit
DDR3L/4
memory controller
Real-time
debug
Watchpoint
cross
trigger
Perf
Monitor
2 x USB2.0 w/PHY
4x I2C
Power Architecture
®
e5500
32 KB
D-Cache
32 KB
I-Cache
256 KB
backside
L2 cache
256 KB
platf
orm cache
Security fuse processor
DIU
Security
5.4
(XoR,
CRC)
P
attern
match
engine
2.2
Queue
Manager
Buf
fer
Manager
1G 1G 1G
Parse, classify,
distr
ibute
8-port
s
witch
1G 1G 1G 1G
1G 1G 1G 1G
2x DMA
PCl Express 2.0
PCI Express 2.0
PCI Express 2.0
PCI Express 2.0
SATA 2.0
SATA 2.0
TDM/HDLC
TDM/HDLC
QUICC
Engine
Trace
8-lane, 5 GHz SerDes
PAMU
Frame Manager
1G
Aurora
Block diagram
• Dedicated PMBus regulator for core power adjustable from 0.7 V to 1.3 V at 35
A
• USB
• Supports two USB 2.0 ports with integrated PHYs. Two type A ports with 5
V@1.5 A per port
• SDHC port that connects directly to card slot
• SPI
• One onboard 64 MB SPI flash
• Onboard support of SPI EEPROM, TDM SLAC control, and TDM riser card
control
• TDM interface through optional riser card, also support FXS/FXO on board
• I2C bus
• Devices connected: EEPROM, thermal monitor, VCore power controller
• Other IO
• Two serial ports
1.5Block diagram
This section provides a high-level overview of the T1040 SoC and the T1040RDB board.
The figures below show the major functional units within the T1040 device and the
T1040RDB board.
10Freescale Semiconductor, Inc.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Figure 1-1. T1040 SoC block diagram
Page 11
Clocks, POR, reset and
po
wer supply circuit
JTAG
USB Type A x2
USB Conn *2
DDR3L 72bit
I2C_1
MT18KSF71272HZ-1G6 (4GB)
1.6G,DDR3L/72bit 4GB
(UDIMM)
Address:0x4c
Address:0x50
EEPROM(AT24C256)
Temp sensor (ADT7461)
CPLD
(EPM240G)
RESET
Interrupt
Power on conf
Other control
Local bus (16bit)
Local bus (8bit)
SPI bus
NOR FLASH
S29GL01GP11TFIV10
(128MB)
PCIe x1
SATA (T1040 only)
SDXC Card
T1/E1
QUICC Engine connector for
PMC plug-in card
QUICC Engine
Interface
SATA
RJ45
TXD,RXD,RTS,CTS
RGMII
SGMII
T1040
IFC
SPISATA
QE
TDM
DUART
RGMII
USB2.0
COP
DDR3
I2C
Mini PCle
PClex1
QSGMII
QSGMII
F104S8A
(QGMII->Copper)
Magnetic
X4
Magnetic
X4
RJ45
X4
RJ45
X4
Magnetic
(GSTS009LF)
RTL8211DN
(SGMII>Copper)
2Pin-Conn
FX
O
Relay
FXS1
Le88266DLC
MAX3232
SerDes
RJ45
RJ45
RJ45
RJ45
RJ1
1
RJ11
RJ11
RJ11
FXS2
FXS3
FXS4
TXD,RXD,RTS,CTS
Le88266DLC
MAX3232
RGMII
F104S8A
(QGMII->Copper)
Magnetic
(GSTS009LF)
Magnetic
(GSTS009LF)
RTL8211E-VB
(RGMII->Copper)
RTL8211E-VB
(RGMII->Copper)
SDXCPCle
NAND FLASH
MT29F8G08ABABAWP.121T
(1GB)
SPI FLASH
N25Q512A13GSF40F
(64MB)
Mini PCle
PCIe x1
PCIe x1
Chapter 1 Overview
Figure 1-2. T1040RDB board block diagram
Freescale Semiconductor, Inc.11
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Page 12
Block diagram
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
12Freescale Semiconductor, Inc.
Page 13
Chapter 2
Architecture
This section explains:
• Processor
• Power
• Clocks
• Reset
• DDR
• SerDes port
• Ethernet controllers
• Ethernet management interface
• I2C
• SPI interface
• Local bus
• SDHC interface
• USB interface
• Serial port
• SLIC/SLAC and TDM interface
• JTAG/COP port
• Connectors, headers, jumper, push buttons and LED
• Temperature
• DIP switch definition
2.1Processor
The T1040RDB supports as many features of the T1040 as possible, as detailed in the
following sections. The T1040RDB supports this by isolating OVDD-powered signals
through external translation devices or the CPLD wherever required.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Freescale Semiconductor, Inc.13
Page 14
Power
2.2Power
The power supply system of the T1040RDB board uses power from a standard ATX
power supply unit (PSU) to provide the required power supplies to the processor, CPLD,
and peripheral devices. In addition to meeting required power specifications, the
following goals guide the power supply architecture:
• Monolithic power supply for VCC that powers internal cores and platform logic
• T1040RDB can access IR36021 via software to check the current and voltage values
or to program the voltage changes
• All power supplies are sequenced per hardware specifications
The figure below shows an overview of the power supply.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
14Freescale Semiconductor, Inc.
Page 15
BEAD
ATX PS
12V_SLP
5V0_SLP
VCORE_EN
VCORE_PGOOD
CPLD
PM_BUS
VPG
R
egulator
IR36021/
3550
3V3_SLP
VCC_DRV_3.3V
VCC_DRV_7V
12V_SLP
MIC30102
YM
SVO_SLP
IOPWR_EN
1V0 (4A)
1V5 (1.5A)
IR3473
1V35
1V8
2V5
3V3
VTT/MVREF
1V0S
DVDD
MIC47100
TPS51200
1V35_SLP
1V8_SLP
VDD_EN
2V5
EVDD_SEL
For T1040,DVDD=3.3V
3V3
EVDD
3V3
1V8
T2081_EN
12V_SLP
OPWR_EN
3V3
12V
1V0_LP
NCP571
12V
BATH/BATL
DC/DC
3V3
OVDD_SLP
3V3_SLP
1V8_SLP
EPM570
VDD
PCA9546
BATH/BATL
3V3
5V0_SLP
USB:MIC2506
DVDD/AVDD
Le88266*2
SD Card
IN
VDD
3V3
SPI FLASH
N25QS1
2A13G
VCC
3V3
3V3
NAND FLASH
MT29F8G08ABB
AWP
VCC/VCOD
VIO
OVDD
3V3
VCC
NOR FLASH
JS28F00AM29EWHA
2V5
VDD25/VDD25A
VSC8514*2
VDD1/VDD1A
1V0
OVDD_SLP
VCCRE
J11
IDT9FGV0641
ICS843002*2
3V3
1V8_SLP
OVDD
OVDD_SLP
100M OSC
S
ys_refclk
66.67M OSC
DDR_r
efclk
VCORE_SLP_40A
VCORE
VDD_EN
VCORE_EN
CPLD
1V35
OVDD_SLP
0.33ohm
OVDD
VCORE_SLP
3V3_SLP
OVDD_SLP
1V05
1V35
1V8_SLP
3V3_SLP
1V8
3V3
0ohm[NC]
MVREF
1V0_LP
OVDD
OVDD
OVDD_SLP
0ohm[NC]
0ohm
BEAD
XVDD
AVDD_SD1_PLL1
AVDD_SD1_PLL2
AVDD_PLAT
AVDD_D1
AVDD_CGA1
AVDD_CGA2
USB_SVDD[1:2]
USB_HVDD[1:2]
USB_OVDD[1:2]
S1VDD[1:7]
X1VDD[1:5]
T1040
O1VDD[1:3]
OVDD[1:8]
D1_MVREF
VDD_IP
TH_VDD
FA_VL
PROG_MTR
PROG_SFP
EVDD1
DVDD[1:3]
CVDD1
LVDD[1:2]
L1VDD[1:2]
G1VDD[1:19]
VDD[1:47]
VDDC[1:7]
PIPCIE3212*5
VDD
3V3
3V3
3V3_SLP
VDD
MAX3232*2
AVDD/DVDO
RTL8211E-VB
U49
DVDD(15/21)
2V5_SLP
3V3
AVDD/DVDD
RTL8211E-VB/DN
U46/U52
DVDD(15/21)
2V5
3V3
12V
3V3
12V
TDM SLOT
PCIEX4 SLOT
1V5
3V3
MINI PCIE SLOT*2
12V
FAN Conn *4
SVO_SLP
IOPWR_EN
IR3473
IR3473
SVO_SLP
IR3473
SVO_SLP
IR3473
SVO_SLP
IR3473
SVO_SLP
OPWR_EN
(Always_On)
3V3_SLP(9A)
OPWR_EN
(Always_On)
2V5_SLP(1.5A)
ODRPWR_EN
(Always_On)
1V35_SLP(6.5A)
(Switchable)
(Switchable)
VDD_EN
IOPWR_EN
DDRPWR_EN
EVDD_SEL
T2081_EN
OPWR_EN
(Always_On)
1V8_SLP(2A)
SVDD
0ohm
BEAD
BEAD
BEAD
0.33ohm
5.1ohm
5.1ohm
5.1ohm
5.1ohm
J10
J9
EVDD
DVDD
OVDD
2V5
2V5_SLP
1V5_SLP
VCORE
VCORE_SLP
Chapter 2 Architecture
2.3Clocks
The clock circuitry provides clocks for the processor for:
•
SYSCLK (single-ended and differential)
• DDRCLK
• SerDes clocks (two independent options)
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Freescale Semiconductor, Inc.15
Figure 2-1. Power distribution
Page 16
Clocks
• Ethernet clocks
• USB clock
The architecture of the clock section is shown in the figure below.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
16Freescale Semiconductor, Inc.
Page 17
P
E
X
S
L
O
T
M
I
N
I
P
E
X
S
L
O
T
M
I
N
I
P
E
X
S
L
O
T
25MHz
ICS843002
(ONL
Y FOR T1040)
125MHz
ICS843002
25MHz
OSC-100MHz
OSC-66.66MHz
OSC-24MHz
IDT9FGV0641
DIFSYSCLK_OE
PEXCLK_OE
25MHz
MPEX2_REFCLK_P/N(100M)
T1040
DDRCLK (66.66MHz)
USB_REFCLK (24MHz)
SYSCLK (100MHz)
SD_REFCLK1_P/N
(125MHz)
QSG2_REFCLK_P/N
(125MHz)
QSG1_REFCLK_P/N
(125MHz)
F104S8A
F104S8A
MPEX1_REFCLK_P/N(100M)
PEX_REFCLK_P/N(100M)
SD_REFCLK2_P/N(100M)
SYS_REFCLK_P/N(100M)
Chapter 2 Architecture
Figure 2-2. Clock distribution
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Freescale Semiconductor, Inc.17
Page 18
ATX PS
PWR_GODD
GND
Push-Button
MAX811S
(Power-on RST)
PON_RST_N
COP_SRST_N
COP_ITF
T1040
HESET_REQ_N
HRSET_N
PORESET_N
Reset
source
select
RST_CTL
DDR_RSTN
TDMR_RST
TDMR
SLOT
QSG2_RST_N
QSGMII
GE PHY
QSG1_RST_N
EC1_RST_N
RGMII
GE PHY1
Soft reset register
RSTCON1 & RSTCON2
SW_RST
7
CPLD
COP_HRST_N
6
5
4
3
2
1
0
EC2_RST_N
RGMII
GE PHY2
DDR3/
DDR3L
CORE_power
(IR36021)
VCORE_PGD
NOR
FLASH
PEX SLOT
MINI PEX
SLOT
MINI PEX
SLOT
SGMII
GE PHY
QSGMII
GE PHY
MPEX2_RST
PEX_RST
MPEX1_RST
NOR_RSTN
SG_RST_N
Reset
2.4Reset
The CPLD manages the reset signals to and from the T1040 processor and the other
devices on the T1040RDB board. The figure below shows an overview of the reset
architecture.
Figure 2-3. CPLD logical
2.5DDR
The T1040RDB supports high-speed DRAM with an unbuffered DDR3L (240pin) socket
(UDIMM), featuring single-, dual-, and quad-rank support. The memory interface
includes all the necessary termination and I/O power, and is routed so as to achieve
maximum performance of the memory bus, as shown in the below figure.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
18Freescale Semiconductor, Inc.
Page 19
IV35_SLP
DDR_DQ[0:63]
DDR_ECC[0:7]
DDR_MA[0:1
5]
DDR_MDQS[0:8]
DDR_MDM[0:8]
DDR_MBA[0:2]
DDR_MDOT[0:1],DDR_MAPAR_OUT,DDR_MPAR_ERR
DDR_MCS[0:3]
DDR_MCK_P[0:1]_P/N
DDR_CAS,DDR_RAS,DDR_WE
DDR_MCKE[0:1]
IV35_SLP
DDR_RST_N
(CPLD)
I2C1_SCL,I2C1_SDA
MV_REF
VTT
IV35_SLP
(SPD_ADDR-0X51)
DDR3 DIMM SOCKET 240PIN
DIMM
T1040
DL_MDIC1
DL_MDIC0
IR3475
TPS
51200
For T1040:R-162Ohm
CKE_ISO_EN(CPLD)
Chapter 2 Architecture
Figure 2-4. T1040 and DDR connection
Although the platforms support all types, ranks and speeds of DIMMs within the
specification of the T1040, not all combinations of these three exist on the memory
market. Thus, the system is shipped with a “representative” DIMM, as noted in the below
table.
Other suitable memory DIMMs can be purchased and installed if needed; however,
Freescale only supplies the device shown.
To comply with T1040 specifications, multiplexers are used to re-route and group the
SerDes lanes as shown in the figure below.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
20Freescale Semiconductor, Inc.
Page 21
T1040
SD1_RXn/TXn_P/N
PI3PCIE321
2
SGMII_RX/TX
RTL8211DN
(SGMII_PHY)
F104S8A
(QSGMII_PHY)
SD1_RXn/TXn_P/N(QSGMII2_RX/TX)
CPLD
SD1_RXn/TXn_P/N(PEX[0])
MPEX[1]
PEX[1]
Mini_PCle
SLOT
SATA
SD1_RXn/TXn_P/N
SD1_RXn/TXn_P/N
SD1_RXn/TXn_P/N
SD1_RXn/TXn_P/N
PI3PCIE3212
PI3PCIE3212
PI3PCIE3212
PI3PCIE3212
QSGMII1_RX/TX
MPEX[2]
PEX[2]
PEX[3]
SATA
Mini_PCle
SLOT
PCle SLOT
F104S8A
(QSGMII_PHY)
n - [0:7]
SD1_RXn/TXn_P/N
Chapter 2 Architecture
Figure 2-5. SerDes lane connections
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Freescale Semiconductor, Inc.21
Page 22
T1040
SGMII
MDIO/MDC
R
TL8211DN
Transformer
RJ-45 Port
EMI1
SGMII
SerDes port
2.6.1PCIe support
The T1040RDB supports evaluation of PCIe using any standard PCIe Gen 1/Gen 2 card.
2.6.2SGMII support
The T1040RDB board supports evaluation of the SGMII protocol using the RTL8211DN
PHY.
The figure below shows the connectivity of the SGMII interface.
Figure 2-6. SGMII connection
2.6.3QSGMII support
The T1040RDB board supports evaluation of the QSGMII protocol using an F104S8A
four-port Ethernet PHY. The figure below shows the connectivity of the QSGMII
interface.
22Freescale Semiconductor, Inc.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Page 23
QSGMII
T1
040
EMII
QGMII
QSGMII
F104S8A
Transformer
Transformer
RJ-45 Port
RJ-45 Port
QGMII
F104S8A
MDIO/MDC
2.6.4SATA support
Chapter 2 Architecture
Figure 2-7. QSGMII connection
SATA may be evaluated through an onboard SATA connector.
2.7Ethernet controllers
The T1040 SoC supports two Ethernet controllers (EC), which can connect to the
Ethernet PHYs using the MII or RGMII protocols. On the T1040RDB board, the EC1
and EC2 ports operate in the RGMII mode only. Both ports connect to the Realtek
RTL8211 PHYs. The T1040RDB board supports energy efficient Ethernet on EC1 and
sleep mode on EC2.
The figure below shows the connectivity of the EC1 and EC2 interfaces.
Freescale Semiconductor, Inc.23
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Page 24
RGMII
ETH. Cntr. 1
T1040
EMI1
RGMII
RGMII
RTL8211E_VB
Transformer
Transformer
RJ-45 Port
RJ-45 Port
ETH. Cntr. 2
RGMII
RTL8211E_VB
MDIO/MDC
Ethernet management interface
Figure 2-8. RGMII connection
2.8Ethernet management interface
The T1040 Ethernet management interface (EMI1) is used with the onboard RGMII,
SGMII, and QSGMII PHYs. The figure below shows the EMI block.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
24Freescale Semiconductor, Inc.
Page 25
OE
2V5
2V5_SLP
EMII_MDC_SLP
EMII_MDIO_SLP
R
TL8211E-VB
(RGMII PHY)
PHY_ADDR=0X01
RTL8211E-VB
(RGMII PHY)
RTL8211DN
(SGMII PHY)
F104S8A
(QSGMII PHY)
F104S8A
(QSGMII PHY)
PHY_ADDR-0X02
PHY_ADDR-0X03
PHY_ADDR-0X04-07
PHY_ADDR-0X08-08
T1040
74LVC1G66*2
Chapter 2 Architecture
Figure 2-9. Management Data Input/Output (MDIO) connection
2.9I2C
The T1040 devices support up to four I2C buses in order to make the I2C resources
equally available to both local and remote systems. The T1040RDB board uses I2C1 port
to access onboard devices, such as SPD on the DDR3L DIMM, thermal sensor
(ADT7461), and core power regulator (IR36021) . The I2C2 bus uses multiplexers to
partition the I2C bus into several sub-buses, called channels. The two mini-PCIe slots use
channel 0-1, or I2C2_CH0-1, channel 2 is unused on the T1040RDB board. The PCIe
slot uses channel 3.
The figure below shows the I2C subsystem.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Freescale Semiconductor, Inc.25
Page 26
FET Isolation
(IRLML6346)
I2C1
I2C1_SCL
DDR3 DIMM
ADT7
461
(Thermal sensor)
AT24C256
I2C_ADDR=0x51
Mini_PCle SLOT
Mini_PCle SLOT
PCle SLOT
I2C2_SDA
I2C2_SCL
I2C2
PCA9546
Channel 0
I2C_ADDR-0X77
T1040
I2C1_SDA
I2C2_MPEX2_SCL
I2C2_MPEX2_SDA
I2C2_PEX_SCL
I2C2_PEX_SDA
I2C_ADDR=0x4C
I2C_ADDR=0x50
I2C_ADDR=0x08
Test_mode_ADDR=0x0A
I2C_ADDR=0x6A
DVDD
I2C2_MPEX1_SCL
I2C2_MPEX1_SD
A
FET
Isolation
3V3
I2C1_SCL_SLP
IR36021
(C
ore_Power)
IDT9FGV0641
I2C1_SDA_SLP
Channel 1
Channel 2
Channel 3
SPI interface
Figure 2-10. I2C bus connection
2.10SPI interface
The T1040 serial peripheral interface (SPI) pins are used for the following purposes:
• Onboard SPI device access to various SPI memory devices
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
26Freescale Semiconductor, Inc.
Page 27
SPI
T1040
PROC_SPI_CS0-3
PROC_SPI_MOSI/MISO_CLK
OVDD-1.8V
3.3V
SPI_MOSI/MISO_CLK
TXBN0304
(OVDD to 3.3V)
SPI_CS3
SPI_CS2
SPI_CS1
Le88266
(SLAC)
Le88266
(SLAC)
TDM Riser card connector
N25Q512A
(64MB FLASH)
SPI_CS0
Chapter 2 Architecture
• Offboard (TDM riser) device
• Onboard SLAC device access
SPI 0 is connected to the SPI EEPROM. SPI 1 and 2 are connected to the SLAC chips for
FXS voice support and SPI 3 is connected to the TDM riser card connector.
The figure below shows the overall connections of SPI.
Figure 2-11. SPI bus connections
2.11Local bus
The T1040 Integrated Flash Controller (IFC), also called the local bus, supports 32-bit
addressing and 8- or 16-bit data widths, for a variety of devices. IFC lets to manage all
these resources effectively with maximum performance and flexibility. The figure below
shows an overview of the IFC bus.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Freescale Semiconductor, Inc.27
Page 28
T1040
ADDR[0,31], DATA[0,15], Control
TXBN0304
(1
.8V->3.3V)
CPLD
Cfg_vbank[0:2]
IFC_A5-A7
XORs
IFC_VA5-7
NOR_CS
NOR FLASH
(JS28F00AM29EWHA)
NAND_CS
NAND FLASH
(MT29F8G08ABABAWP)
(3.3V)
SDHC interface
Figure 2-12. IFC bus connection
If SW3.4 is ON:
Table 2-3. IFC bus address
CS#MemoryAddressBus width
CS0NOR flash0xe800000016 bit
CS1NAND flash0xff8000008 bit
CS2CPLD0xffdf00008 bit
If SW3.4 is OFF:
CS#MemoryAddressBus width
CS0NAND flash0xff8000008 bit
CS1NOR flash0xe800000016 bit
CS2CPLD0xffdf00008 bit
Table 2-4. IFC bus address
2.12SDHC interface
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
28Freescale Semiconductor, Inc.
Page 29
T1040
SDHC_WP
SDHC_CD
SDHC_CLK
SDHC_CMD
SDHC_D
AT[0:3]
Clamping
diodes
1V83V3
WP
CD
CLK
CMD
DAT[0:3]
SD Card
Chapter 2 Architecture
The enhanced SD host controller (eSDHC) provides an interface between the host system
and SD/MMC cards. Booting from the eSDHC interface is supported via the processor’s
on-chip ROM.
On the RDB, a single connector is used for both SD and MMC memory cards as shown
in the figure below.
Figure 2-13. SDHC connection
2.13USB interface
The T1040RDB board consists of two integrated USB 2.0 controllers that allow direct
connection to the USB ports with appropriate protection circuitry and power supplies.
The USB features are as follows:
High-speed (480 Mbit/s), full-speed (12 Mbit/s), and low-speed (1.5 Mbit/s)
•
operation
• Host mode
• Dual stacked Type A connection
The USB ports are connected to a standard Type A connector (USB1 and USB2) for
compatibility with most USB peripherals.
Power for the ports is provided by a MIC2506YM switch, which supplies 5 V at up to 1
A per port. The power-enable and power-fault-detect pins are connected directly to the
T1040 for individual port management.
The figure below shows the USB connectivity on the T1040RDB board.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Freescale Semiconductor, Inc.29
Page 30
T1040
USB1_UID
USB1_UDP
, UDM
USB1_VBUSCLMP
USB1USB2
USB2_VBUSCLMP
USB2_DRVVBUS
USB2_PWRFAULT
USB1_DRVVBUS
USB1_PWRFAULT
USB2_UDP, UDM
USB2_UID
IBIAS_REXT
INSTALLED: Host mode (default)
90 OHm diff.imp.
CMHD3595
USB Type A
CMHD3595
10K
1%
24MHz
USB CLK
USB CLKIN
90 OHm diff.imp.
USB Type A
INSTALLED: Host mode (default)
5V0
18.2K
51.1K
18.2K51.1K
MIC2506YM
Serial port
Figure 2-14. USB connection
2.14Serial port
The T1040 processor has two UART controllers, which provide RS-232 standard
interconnection between the board and an external host. The serial connection is
configured to run at 115.2 kbit/s, with 8 bits, no parity, and one stop bit.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
• Clear-to-send (CTS) and ready-to-send (RTS) modem control functions
• Software-selectable serial interface data format that includes:
• Data length
• Parity
• 1/1.5/2 stop bit
• Baud rate
• Overrun, parity, and framing error detection
The UART ports are routed to the RJ45 connectors, as shown in the figure below.
Figure 2-15. UART connection
The table below shows the connection setting for the UART RJ45 and the DB9 female
cable (Part number: 600-76847-000).
Table 2-5. RJ45 and DB9 connection
RJ45 pin numberRS-232 signalDB9 female pin number
1RTS8
2N/C
3TXD2
4GND
5GND5
6RXD3
7N/C
8CTS7
Freescale Semiconductor, Inc.31
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Page 32
TDM
SPI1
T1
040
SPI2
SLIC2
I/O
SLIC1
RJ11 FXS Port
Control
Relay
RJ11 FXS Port
RJ11 FXS Port
RJ11 FXS Port
RJ11 FXO Port
SLIC/SLAC and TDM interface
Before powering up the T1040RDB board, configure the serial port of the attached
computer with the following values:
• Data rate: 115200 bit/s
• Number of data bits: 8
• Parity: None
• Number of stop bits: 1
• Flow control: Hardware/None
2.15SLIC/SLAC and TDM interface
The T1040 TDM interface is connected to two dual SLIC/SLAC devices from Zarlink.
The Zarlink Le88266 Automatic Battery Switching (ABS) VoicePort™ device
implements a dual-channel telephone line interface by providing all the necessary voice
interface functions from the high voltage subscriber line to the T1040 digital TDM
interface.
The Zarlink device provides a line interface which meets the requirements of short and
medium loop (up to 1500 Ohms total at 1 REN) applications. Features include: high
voltage switching regulator, line test capabilities, integrated ringing (up to 92-Vpk),
worldwide software programmability with wideband capability, flexible signal generator
with tone cadencing and caller ID generation. These device features allow for Voice over
Broadband solutions to be enabled on the T1040RDB. The below Figure shows how the
SLIC is connected to the TDM interface of T1040 device
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
32Freescale Semiconductor, Inc.
Figure 2-16. TDM connection
Page 33
PC
USB Port
USB
probe
T1040RDB
COP Port
TDO
TDI
NC
TCK
TMS
SRESET_B
HRESET_B
CKS
TP_OUT
GND
NC
GND
NC
CKSTP_IN
VDD_SENSE
TRST_B
NC
1
Chapter 2 Architecture
2.16JTAG/COP port
The common on-chip processor (COP) is part of the T1040 JTAG module and is
implemented as a set of additional instructions and logic. This port can connect to a
dedicated probe and debugger for extensive system debugging. Freescale offers
CodeWarrior as debugger and CodeWarrior TAP as probe. Several third-party probes in
the market can also connect to the host computer through the Ethernet port or USB port.
A setup using a USB based probe is shown in the figure below.
Figure 2-17. Debugger connection
The 16-pin generic header connector carries the COP/JTAG signals and the additional
signals for system debugging. The pin-out of this connector is shown in the figure below.
Figure 2-18. JTAG header
Freescale Semiconductor, Inc.33
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Page 34
Connectors, headers, jumper, push buttons and LED
The table below displays the connections made from the T1040RDB COP Connector.
Table 2-6. JTAG header definition
Pin#Signal nameConnection
1TDOConnected directly between the processor and JTAG/COP connector.
2NCNot connected
3TDIConnected directly between the processor and JTAG/COP connector
4TSRTRouted to the RESET PLD. TRST to the processor is generated from the PLD.
5NCNot connected
6VDD_SENSEPulled to 3.3V via a 10 Ohm resistor
7TCKConnected directly between the processor and JTAG/COP connector.
8CKSTP_INConnected directly between the processor and JTAG/COP connector.
9TMSConnected directly between the processor and JTAG/COP connector.
10NCNot connected
11SRESETRouted to the RESET PLD. SRESET to the processor is generated from the PLD.
12GNDConnected to ground
13HRESETRouted to the RESET PLD. SRESET to the processor is generated from the PLD.
14KEYNot connected
15CSKTP_OUTConnected directly between the processor and JTAG/COP connector
16GNDConnected to ground
2.17Connectors, headers, jumper, push buttons and LED
This section explains:
Connectors
•
• Headers
• Jumper
• Push buttons
• LEDs
The figure below shows the diagram of T1040RDB platform.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
34Freescale Semiconductor, Inc.
Page 35
Chapter 2 Architecture
Figure 2-19. T1040RDB
2.17.1Connectors
The table below lists the various connectors on the T1040RDB platform.
Table 2-7. Connector on board
Reference DesignatorsUsed ForNotes
J1UDIMM
J3COP/JTAGUsed for debugging T1040
J5SD card
J13(2 ports)UART
Table continues on the next page...
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Freescale Semiconductor, Inc.35
Page 36
Connectors, headers, jumper, push buttons and LED
Table 2-7. Connector on board (continued)
J14(2 ports)Ethernet portsRGMII -> Copper
J15 (4 ports)Ethernet portsQSGMII -> Copper
J18PCIe x4 CardIntended use is for PCIe cards that are
25 W or less
J19,J20Mini-PCIe cards
J21SATA
J22,J23FXS ports
J24FXO port
J30Battery Holder
J34CPU fan
J37ATX power
J41Dual Type A USB
J42Ethernet portSGMII -> Copper
J43TDM Riser card
J33,J44-J46Case fan
2.17.2Headers
The below table lists the various headers on the T1040RDB platform.
Table 2-8. Header on Board
Reference DesignatorsUsed ForNotes
J26Altera CPLD HeaderUsed for programming the Altera CPLD
device
J28IR36021 HeaderUsed for programming IR36021
2.17.3Jumper
The below table describes how jumpers are used on the T1040RDB platform:
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Freescale Semiconductor, Inc.37
Page 38
I2C Bus
T1
040
TEMP_ANODE
Thermal sensor
(ADT7461)
DXP1
DXN
TEMP_CATHODE
THERM
ALERT/THERM2
OVER ALARM
THERM ALARM
CPLD
PWM
FAN_Power
DIP switch definition
The T1040 has a thermal diode attached to the die, allowing direct temperature
measurement. These pins are connected to an ADT7461 2-channel thermal monitor,
which allows direct reading of the temperature of the die and is accurate to ±1° C. The
second channel of the ADT7461 measures the ambient (board) temperature. The
ADT7461 temperature warning and alarm signals are connected to the CPLD for
monitoring. The CPLD or user software may use these signals to adjust CPU FAN speed
to protect the CPU from over-temperature failure.
2.19DIP switch definition
The T1040RDB card has user selectable switches, for evaluating different boot
configurations and other special configurations for this device. The CPLD allows
software to override the configuration pins; for example, when the board is in a board
farm. In order to use the CPLD override option, software sets an override bit that allows
the CPLD to override the switch setting during reset.
38Freescale Semiconductor, Inc.
Figure 2-20. Thermal Sensor connection
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Page 39
T1040
POR & Override
CPLD Register
CPLD
cfg_xxx
switch
Figure 2-21. CPLD and DIP switch connection
The table below shows how POR configuration is done through switches.
Chapter 2 Architecture
NOTE
0 and 1 are represented by ON and OFF respectively on the
board.
NOTE
The recommended value for the switch settings for NOR flash
is below. Refer this for value of reserved switches:
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Freescale Semiconductor, Inc.39
Page 40
DIP switch definition
Table 2-12. POR configuration through switches
(continued)
SW2[5:6]cfg_svr[0:1]IFC_A[16:17]ReservedReserved
SW2[7]cfg_dram_typeIFC_A21DRAM type selection0: DDR4(1.2V)
1: DDR3L(1.35V)
SW2[8]cfg_rsp_disIFC_AVDReservedReserved
SW3[1]cfg_eng_use0IFC_WE0Sys_clock selection0: differential sys_clk is
selected
1:single sys_clk is
selected
SW3[2:3]cfg_eng_use[1:2]ReservedReservedReserved
SW3[4]BOOT_FLASH_SEL-Boot flash selection0: NOR Flash
1: NAND Flash
SW3[5:7]CFG_VBANK[0:2]-Flash bank select0: Default
SW3[8]TEST_SEL_NTEST_SEL_B-0: T1020
1: T1040
1. For SW3[4] : BOOT_FLASH_SEL, it can act as boot flash selection. When BOOT_FLASH_SEL=0, NOR Flash is boot
flash, when BOOT_FLASH_SEL=1, NAND Flash is boot flash.
2. SW3[5:7] can be used to change the staring address for the memory banks. For example, the NOR FLASH memory is
divided into eight memory banks with 16MB size each. Eight different U-Boot image can be programmed into each
memory bank, though normally only settings for bank 0 and bank 4 are used. When NOR FLASH is selected as boot flash
(CS0 is connected to NOR FLASH by setting SW3[4] to ON, RCW[0:8] is set to 0_0111_xxxx using SW1[1:8] and SW2[1]),
a different U-Boot image can be selected to boot up the board, by setting SW3[5:7].
For other boot sources configured by the DIP switch, see the QorIQ T1040 Reference Manual (T1040RM).
1
2
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
40Freescale Semiconductor, Inc.
Page 41
Chapter 3
CPLD specification
This section explains how to program CPLD and provide details about the CPLD
memory map.
3.1CPLD programming
To program CPLD:
Connect Altera USB-blaster to the CPLD header.
1.
2. Run altera\61\quartus\bin\quartus.exe to open Quartus II.
3. Select Tools->Programmer from the menu bar.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Freescale Semiconductor, Inc.41
Page 42
CPLD programming
4. Click the Hardware Setup button to find the USB-blaster connected to the PC.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
42Freescale Semiconductor, Inc.
Page 43
5. Switch on the board, click Auto Detect to detect EPM240.
Chapter 3 CPLD specification
6. Right-click EPM240, select Change File from the context menu and find the *.pof
3Software version register (SWVER)8RSee section3.2.4/46
10Reset control register (RSTCON1)8w1cSee section3.2.5/46
11Reset control register (RSTCON2)8w1cSee section3.2.6/47
12INTSR8RSee section3.2.7/48
13Flash control and status register (FLHCSR)8R/WSee section3.2.8/49
14Fan control and status register (FANCSR)8R/W3.2.9/49
15Panel LED control and status register (LEDCSR)8R/WSee section3.2.10/50
16SFP+ control and status register (SFPCSR)8R/W00h3.2.11/51
17Miscellaneous control and status register (MISCCSR)8R/WSee section3.2.12/51
18Boot configuration override register (BOOTOR)8R/WSee section3.2.13/52
19Boot configuration register 1 (BOOTCFG1)8R/WSee section3.2.14/52
1ABoot configuration register 2 (BOOTCFG2)8R/WSee section3.2.15/52
Register name
Width
(in bits)
Access Reset value
Section/
page
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
44Freescale Semiconductor, Inc.
Page 45
3.2.1Chip ID1 register (CHIPID1 )
Address: 0h base + 0h offset = 0h
Bit01234567
ReadCHIPID1
Write
Reset
01010101
CHIPID1 field descriptions
FieldDescription
0–7
CHIPID1
0x55, Identification of the CPLD image.
3.2.2Chip ID2 register (CHIPID2)
Chapter 3 CPLD specification
Address: 0h base + 1h offset = 1h
Bit01234567
ReadCHIPID2
Write
Reset
10101010
CHIPID2 field descriptions
FieldDescription
0–7
CHIPID2
0xaa, Identification of the CPLD image.
3.2.3Hardware version register (HWVER)
Address: 0h base + 2h offset = 2h
Bit01234567
ReadHW_VER
Write
Reset
n*n*n*n*n*n*n*n*
* Notes:
HW_VER field: n=Depends on PLD image revision•
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Freescale Semiconductor, Inc.45
Page 46
CPLD memory map
HWVER field descriptions
FieldDescription
0–7
HW_VER
The version field of the hardware board.
3.2.4Software version register (SWVER)
Address: 0h base + 3h offset = 3h
Bit01234567
ReadSW_VER
Write
Reset
* Notes:
SW_VER field: n=Depends on PLD image version•
n*n*n*n*n*n*n*n*
SWVER field descriptions
FieldDescription
0–7
SW_VER
The version field of the CPLD software.
3.2.5Reset control register (RSTCON1)
Address: 0h base + 10h offset = 10h
Bit01234567
ReadSW_RST
Writew1cw1cw1cw1c
Reset
FieldDescription
0
SW_RST
1
2
EC1_RST
3
EC2_RST
00000000
0: No reset occurs.
1: Writing logic 1 will produce whole board reset# signal, this bit can auto clear.
This field is reserved.
0: No reset occurs.
1: Write a logic 1 produces RGMII PHY1(RTL82111E-VB) reset# signal, this bit can auto clear.
0: No reset occurs.
1: Writing logic 1 produces RGMII PHY2(RTL82111E-VB) reset# signal, this bit can auto clear.
Reserved
EC1_RSTEC2_RSTSG_RSTQSG1_RST QSG2_RSTXG_RST
RSTCON1 field descriptions
w1cw1c
w1c
Table continues on the next page...
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
46Freescale Semiconductor, Inc.
Page 47
RSTCON1 field descriptions (continued)
FieldDescription
4
SG_RST
5
QSG1_RST
6
QSG2_RST
7
XG_RST
0: No reset occurs.
1: Writing logic 1 produces SGMII PHY(RTL82111DN) reset# signal, this bit can auto clear.
0: No reset occurs.
1: Writing logic 1 produces QSGMII PHY(VSC8514) reset# signal, this bit can auto clear.
0: No reset occurs.
1: Writing logic 1 produces 10G PHY(CS4315) reset# signal, this bit can auto clear.
0: No reset occurs
1: Writing logic 1 produces 10G PHY (CS4315)reset# signal, this bit can auto clear.(Bit 7 needs to go)
3.2.6Reset control register (RSTCON2)
Address: 0h base + 11h offset = 11h
Bit01234567
Read
Write
Reset
Reserved
00000000
TDMR_RSTPEX_RST
w1c
Chapter 3 CPLD specification
MPEX1_
RST
w1c
w1cw1c
MPEX2_
RST
RSTCON2 field descriptions
FieldDescription
0–3
4
TDMR_RST
5
PEX_RST
6
MPEX1_RST
7
MPEX2_RST
This field is reserved.
0: No reset occurs.
1: Writing logic 1 produces TDM riser card reset# signal, this bit can auto clear.
0: No reset occurs.
1: Writing logic 1 produces PCIe x4 slot reset# signal, this bit can auto clear.
0: No reset occurs.
1: Writing logic 1 produces miniPCIe card1 reset# signal, this bit can auto clear.
0: No reset occurs
1: Writing logic 1 produces miniPCIe card2 reset# signal, this bit can auto clear.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
TDMR2_INT field: Depends on PLD image revision.•
TDMR1_INT field: Depends on PLD image revision.•
POTSB_INT field: Depends on PLD image revision.•
POTSA_INT field: Depends on PLD image revision.•
QSG2_INT field: Depends on PLD image revision.•
QSG1_INT field: Depends on PLD image revision.•
SG_INT field: Depends on PLD image revision.•
THERM_INT field: Depends on PLD image revision.•
n*n*n*n*n*n*n*n*
INTSR field descriptions
FieldDescription
0
THERM_INT
1
SG_INT
2
QSG1_INT
3
QSG2_INT
4
POTSA_INT
5
POTSB_INT
6
TDMR1_INT
7
TDMR2_INT
0: No interrupt occurs.
1: Board over temperature interrupt occurs.
0: No interrupt occurs.
1: SGMII PHY(RTL8211DN) interrupt occurs
0: No interrupt pending
1: QSGMII PHY1(VSC8514) interrupt occurs.
0: No interrupt pending
1: QSGMII PHY2(VSC8514) interrupt occurs
0: No interrupt pending
1: POTS A interrupt occurs
0: No interrupt pending
1: POTS B interrupt occurs.
0: No interrupt pending
1: TDM riser card interrupt 1 occurs.
0: No interrupt pending
1: TDM riser card interrupt 2 occurs.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
48Freescale Semiconductor, Inc.
Page 49
3.2.8Flash control and status register (FLHCSR)
Address: 0h base + 13h offset = 13h
Bit01234567
Read BOOT_SEL
Write
Reset
n0nnn000
BANK_OR
SW_BANK_
SEL0
FLHCSR field descriptions
FieldDescription
0
BOOT_SEL
1
BANK_OR
2
SW_BANK_SEL0
3
SW_BANK_SEL1
4
SW_BANK_SEL2
5
BANK_SEL0
6
BANK_SEL1
7
BANK_SEL2
0: Boot from 16-bit NOR flash.
1: Boot from 8-bit NAND flash.
0: NOR flash bank select from CPLD override disable.
1: NOR flash bank select from CPLD override enable.
NOR flash bank select bit0 of switch status is 0.
1: NOR flash bank select bit0 of switch status is 1.
0: NOR flash bank select bit1 of switch status is 0.
1: NOR flash bank select bit1 of switch status is 1.
0: NOR flash bank select bit2 of switch status is 0.
1: NOR flash bank select bit2 of switch status is 1.
0: NOR flash bank select bit0 set 0.
1: NOR flash bank select bit0 set 1.
0: NOR flash bank select bit1 set 0.
1: NOR flash bank select bit1 set 1
0: NOR flash bank select bit2 set 0.
1: NOR flash bank select bit2 set 1.
SW_BANK_
SEL1
SW_BANK_
SEL2
BANK_
SEL0
Chapter 3 CPLD specification
BANK_
SEL1
BANK_
SEL2
3.2.9Fan control and status register (FANCSR)
Address: 0h base + 14h offset = 14h
Bit01234567
Read
Write
Reset
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Freescale Semiconductor, Inc.49
ReservedFAN_PWM
Page 50
CPLD memory map
FANCSR field descriptions
FieldDescription
0–3
-
4–7
FAN_PWM
This field is reserved.
0000: PWM duty cycle is 0%, fan stop running.
0001~1110: PWM duty cycle is 6.7%~93.3%, fan speed control.
1111: PWM duty cycle is 100%, fan full speed.
3.2.10Panel LED control and status register (LEDCSR )
Address: 0h base + 15h offset = 15h
Bit01234567
Read
Write
Reset
STS_LEDFXS1_LEDFXS2_LEDFXS3_LEDFXS4_LEDFXO_LED
000000nn
XG_LED1XG_LED2
LEDCSR field descriptions
FieldDescription
0
STS_LED
1
FXS1_LED
2
FXS2_LED
3
FXS3_LED
4
FXS4_LED
5
FXO_LED
6
XG_LED1
7
XG_LED2
0: Panel STATUS LED off.
1: Panel STATUS LED on.
0: Panel FXS1 LED off
1: Panel FXS1 LED on
0: Panel FXS2 LED off
1: Panel FXS2 LED on
0: Panel FXS3 LED off
10: Panel FXS3 LED on
0: Panel FXS4 LED off
1: Panel FXS4 LED on
0: Panel FXO LED off
1: Panel FXO LED on
0: Panel XG TX LED off when SFP+ not present or TX disabled
1: Panel XG TX LED on when SFP+ present and TX enabled
0: Panel XG RX LED off when SFP+ not present or RX los.
1: Panel XG RX LED on when SFP+ present and RX optical received
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
50Freescale Semiconductor, Inc.
Page 51
Chapter 3 CPLD specification
3.2.11SFP+ control and status register (SFPCSR )
Address: 0h base + 16h offset = 16h
Bit01234567
Read
Write
Reset
00000000
Reserved
SFPCSR field descriptions
FieldDescription
0–7
-
This field is reserved.
3.2.12Miscellaneous control and status register (MISCCSR )
Address: 0h base + 17h offset = 17h
Bit01234567
Read
Write
Reset
SPI_CS3_
SEL
00110nnn
SLEEP_ENREQ_MD
MISCCSR field descriptions
FieldDescription
0
SPI_CS3_SEL
1
SLEEP_EN
2–3
REQ_MD
4
TDMR_PRS
5
PEX_PRS
6
T2081_DET
7
TEST_SEL_N
0: SPI_CS3 select TDMR SPI CS0
1: SPI_CS3 select TDMR SPI CS1
Before entering deep sleep mode, set ‘1’ to this bit, after exiting deep sleep mode, set ‘0’ to this bit
0Normal operation
1Deep sleep enable bit
00No reset occurs when HRESET_REQ triggered.
01HRESET occurs when HRESET_REQ triggered.
10Reserved
11PORESET occurs when HRESET_REQ triggered.
0: TDM riser card not present
1: TDM riser card present
0PCIe card not present in x4 slot.
1PCIe card present in x4 slot.
0: T1040 on board
1: T2081 on board
0: TEST_SEL_N pin status is 0
1: TEST_SEL_N pin status is 1
TDMR_PRSPEX_PRST2081_DET
TEST_SEL_
N
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Freescale Semiconductor, Inc.59
Page 60
SDK Build details
For a detailed switch default description, see Table 2-12
4.5SDK Build details
For information on build details, see the SDK documentation.
4.6Flashing and updating images
This section explains:
• Flashing images on NOR flash and booting from NOR Flash
• Flashing eSPI boot images
• Booting Linux
4.6.1Flashing images on and booting from NOR flash
Onboard Images can be updated as mentioned below. On board re-start, the board should
boot with new images. For information about switch settings, see Switch settings
• RCW programming on current bank (from U-Boot prompt)
For T1040RDB, use rcw/t1040rdb/RR_P_66/ rcw_1400MHz.bin
NOTE
This RCW can change depending upon the requirements
=> tftp 1000000 <rcw>.bin
=> protect off all
=> erase 0xe8000000 0xe801ffff
=> cp.b 0x1000000 0xe8000000 $filesize
• FMan microcode programming on current bank (from U-Boot prompt)
=> tftp 0x3000000 <fsl_fman_ucode>.bin
=> protect off all
Un-Protect Flash Bank # 1
=> erase 0xEFF00000 eff1ffff
5. Change board switch configuration for NAND boot.
6. Switch on the board.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
62Freescale Semiconductor, Inc.
Page 63
Chapter 4 Software configuration
NOTE
For more information about building U-Boot images,
generating PBL images, see eSPI/SD/NAND boot in SDK
documentation.
4.6.4Flashing SD card boot images
The steps for flashing and updating images for SD card are as follows:
You need to write two images, the first is the PBL1.bin produced by QCS tool, the second
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
64Freescale Semiconductor, Inc.
Page 65
Appendix A
Revision History
Table A-1 summarizes revisions to this document.
Table A-1. Revision history
RevisionDateDescription
006/2015Initial release.
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
Freescale Semiconductor, Inc.65
Page 66
QorIQ T1040 Reference Design Board User Guide, Rev. 0, 06/2015
66Freescale Semiconductor, Inc.
Page 67
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.
Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. Flexis and Processor
Expert are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.