NSC NS32FX16V-20, NS32FX16V-25 Datasheet

TL/EE10818
NS32FX16-15/NS32FX16-20/NS32FX16-25 Imaging/Signal Processor
PRELIMINARY
July 1991
NS32FX16-15/NS32FX16-20/NS32FX16-25 Imaging/Signal Processor
General Description
The NS32FX16 is a high-performance 32-bit member of the Series 32000/EP
TM
family of National’s Embedded System
Processors
TM
specifically optimized for CCITT Group 2 and Group 3 Facsimile Applications, Data Modems, Voice Mail Systems, Laser Printers, or any combination of the above.
It can perform all the computations and control functions required for a stand-alone Fax system, a PC add-in Fax/ Data Modem card or a Laser/Fax system.
It also meets the performance requirements to implement 9600 and 7200 bps modems complying with CCITT V.29 and V.27 standards.
The NS32FX16 provides a 16 Mbyte Linear external ad­dress space and a 16-bit external data bus.
The CPU core, which is the same as that of the NS32CG16, incorporates a 32-bit ALU and instruction pipeline, and an 8-byte prefetch queue.
Also integrated on-chip with the CPU are a DSP Module and a 384-byte RAM Array. The DSP Module executes vector operations on complex variables and is specially designed to enhance performance in modem applications. The vector operations can also be used to efficiently implement FIR Filters and other DSP primitives. The on-chip RAM Array is used to store the coefficients of the various filters and can be accessed by both the CPU and the DSP Module.
The NS32FX16 capabilities can be expanded by using an external floating point unit (FPU) which directly interfaces to the NS32FX16 using the slave protocol. The CPU-FPU clus­ter features high speed execution of the floating-point in­structions.
The NS32FX16 highly-efficient architecture combined with the NS32CG16 graphics instructions and the high-perform­ance vector operation capability, makes the device the ideal choice for Postscript
TM
and Fax applications.
Features
Y
Software compatible with the Series 32000/EP processors
Y
Designed around the CPU core of the NS32CG16
Y
32-bit architecture and implementation
Y
On-chip DSP Module for high-speed DSP operations
Y
Special support for graphics applications Ð 18 graphics instructions Ð Binary compression/expansion capability for font
storage using RLL encoding Ð Pattern magnification Ð Interface to an external BITBLT processing units for
fast color BITBLT operations
Y
384-byte on-chip RAM array
Y
On-chip clock generator
Y
Floating-point support via the NS32081 or NS32181
Y
Optimal interface to large memory arrays via the NS32CG821 and the DP84xx family of DRAM control­lers
Y
Power save mode
Y
High-speed CMOS technology
Y
68-pin PLCC package
Block Diagram
TL/EE/10818– 67
Series 32000Éis a registered trademark of National Semiconductor Corporation. EP
TM
and Embedded System ProcessorsTMare trademarks of National Semiconductor Corporation.
C
1995 National Semiconductor Corporation RRD-B30M115/Printed in U. S. A.
Table of Contents
1.0 PRODUCT INTRODUCTION
1.1 NS32FX16 Special Features
2.0 ARCHITECTURAL DESCRIPTION
2.1 Register Set
2.1.1 General Purpose Registers
2.1.2 Address Registers
2.1.3 Processor Status Register
2.1.4 Configuration Register
2.1.5 DSP Module Registers
2.1.6 RAM Array
2.2 Memory Organization
2.2.1 Address Mapping
2.3 Modular Software Support
2.4 Instruction Set
2.4.1 General Instruction Format
2.4.2 Addressing Modes
2.4.3 Instruction Set Summary
2.4 Graphic Support
2.5.1 Frame Buffer Addressing
2.5.2 BITBLT Fundamentals
2.5.2.1 Frame Buffer Architecture
2.5.2.2 BIT Alignment
2.5.2.3 Block Boundaries and Destination Masks
2.5.2.4 BITBLT Directions
2.5.2.5 BITBLT Variations
2.5.3 Graphics Support Instructions
2.5.3.1 BITBLT (BIT-aligned BLock Transfer)
2.5.3.2 Pattern Fill
2.5.3.3 Data Compression, Expansion and Magnify
2.5.3.3.1 Magnifying Compressed Data
3.0 FUNCTIONAL DESCRIPTION
3.1 Instruction Execution
3.1.1 Operating States
3.1.2 Instruction Endings
3.1.2.1 Completed Instructions
3.1.2.2 Suspended Instructions
3.1.2.3 Terminated Instructions
3.1.2.3 Partially Completed Instructions
3.1.3 Slave Processor Instructions
3.1.3.1 Slave Processor Protocol
3.1.3.2 Floating-Point Instructions
3.2 Exception Processing
3.2.1 Exception Acknowledge Sequence
3.2.2 Returning from an Exception Service Procedure
3.2.3 Maskable Interrupts
3.2.3.1 Non-Vectored Mode
3.2.3.2 Vectored Mode: Non-Cascaded Case
3.2.3.3 Vectored Mode: Cascaded Case
3.2.4 Non-Maskable Interrupt
3.2.5 Traps
3.2.6 Priority among Exceptions
3.2.7 Exception Acknowledge Sequences: Detailed Flow
3.2.7.1 Maskable/Non-Maskable Interrupt
Sequence
3.2.7.2 SLAVE/ILL/SVC/DVZ/FLG/BPT/UND
Trap Sequence
3.2.7.3 Trace Trap Sequence
3.3 Debugging Support
3.3.1 Instruction Tracing
3.4 DSP Module (DSPM)
3.4.1 DSPM Operation
3.4.2 Complex Number Representation
3.4.3 DSPM Instructions
3.4.4 Circular Buffers
3.5 System Interface
3.5.1 Power and Grounding
3.5.2 Clocking
3.5.3 Power Save Mode
3.5.4 Resetting
3.5.5 Bus Cycles
3.5.5.1 Bus Status
3.5.5.2 Basic Read and Write Cycles
3.5.5.3 Cycle Extension
3.5.5.4 Instruction Fetch Cycles
3.5.5.5 Interrupt Control Cycles
3.5.5.6 Special Bus Cycles
3.5.5.7 Slave Processor Bus Cycles
3.5.5.8 Data Access Sequences
3.5.5.9 Bus Access Control
3.5.5.10 Instruction Status
2
Table of Contents (Continued)
4.0 DEVICE SPECIFICATIONS
4.1 NS32FX16 Pin Descriptions
4.1.1 Supplies
4.1.2 Input Signals
4.1.3 Output Signals
4.1.4 Input-Output Signals
4.2 Absolute Maximum Ratings
4.3 Electrical Characteristics
4.4 Switching Characteristics
4.4.1 Definitions
4.4.2 Timing Tables
4.4.2.1 Output Signals: Internal Propagation Delays
4.4.2.2 Input Signal Requirements
4.4.3 Timing Diagrams
Appendix A: INSTRUCTION FORMATS
Appendix B: INSTRUCTION EXECUTION TIMES
B.1 Basic and Floating-Point Instructions
B.1.1 Equations
B.1.2 Notes on Table Use
B.1.3 Calculation of the Execution Time TEX for Basic
Instructions
B.1.4 Calculation of the Execution Time TEX for
Floating-Point Instructions
B.2 Special Graphics Instructions
B.2.1 Execution Time Calculation for Special
Graphics Instructions
B.3 DSPM Instructions
List of Illustrations
CPU Block Diagram АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА1-1
NS32FX16 Internal Registers АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-1
Processor Status Register (PSR) ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-2
Configuration Register (CFG) АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-3
DSP Module Registers Address Map ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-4
CPTR Register FormatАААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-5
CTL Register Format ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-6
ST Register Format АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-7
On-Chip RAM Array Address Map АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-8
NS32FX16 Address Mapping АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-9
NS32FX16 Run-Time Environment АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-10
General Instruction Format ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-11
Index Byte Format АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-12
Displacement EncodingsААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-13
Correspondence between Linear and Cartesian Addressing АААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-14
32-Pixel by 32-Scan Line Frame BufferААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-15
Overlapping BITBLT Blocks АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-16
3
List of Illustrations (Continued)
B B Instructions Format АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-17
BITWT Instruction Format АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-18
EXTBLT Instruction Format АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-19
MOVMPi Instruction Format АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-20
TBITS Instruction Format АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-21
SBITS Instruction Format АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-22
SBITPS Instruction Format ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-23
Bus Activity for a Simple BITBLT OperationААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-24
Operating States ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-1
Slave Processor Protocol ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-2
Slave Processor Status Word АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-3
Interrupt Dispatch Table АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-4
Exception Acknowledge Sequence ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-5
Return from Trap (RETTn) Instruction Flow АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-6
Return from Interrupt (RETI) Instruction Flow АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-7
Interrupt Control Unit Connections (16 Levels) ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-8
Cascaded Interrupt Control Unit Connections АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-9
Exception Processing Flowchart АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-10
Service Sequence АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-11
DSP Module Block Diagram АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-12
Memory Organization of a Complex Vector ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-13
Power and Ground Connections АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-14
Crystal InterconnectionsР30 MHz АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-15
Crystal InterconnectionsР40 MHz, 50 MHz АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-16
Recommended Reset ConnectionsАААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-17
Power-On Reset Requirements ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-18
General Reset Timings АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-19
Bus ConnectionsАААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-20
Read Cycle Timing АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-21
Write Cycle Timing АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-22
Cycle Extension of a Read Cycle АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-23
Special Bus Cycle Timing АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-24
Slave Processor Read Cycle ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-25
Slave Processor Write CycleАААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-26
NS32FX16 and FPU Interconnections ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-27
Memory Interface ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-28
HOLD
Timing, Bus Initially Idle АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-29
HOLD Timing, Bus Initially Not Idle АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-30
4
List of Illustrations (Continued)
Connection DiagramАААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-1
Output Signals Specification Standard АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-2
Input Signals Specification StandardАААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-3
Read CycleАААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-4
Write CycleАААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-5
Special Bus Cycle АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-6
HOLD
Acknowledge Timing (Bus Initially Not Idle) АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-7
HOLD Timing (Bus Initially Idle) АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-8
External DMA Controller Bus Cycle ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-9
Slave Processor Write TimingААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-10
Slave Processor Read Timing АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-11
SPC
Timing АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-12
PFS Signal Timing АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-13
ILO Signal Timing ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-14
Clock Waveforms ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-15
INT
Signal Timing ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-16
NITI Signal Timing АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-17
Power-On Reset АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-18
Non-Power-On ResetАААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА4-19
List of Tables
NS32FX16 Addressing Modes ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-1
NS32FX16 Instruction Set Summary АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-2
‘op’ and ‘i’ Field Encodings АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА2-3
Floating-Point Instruction ProtocolsААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-1
Summary of Exception Processing ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-2
DSPM Instructions Summary АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-3
Circular Buffer Sizes АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-4
External Oscillator SpecificationsААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-5
Interrupt SequencesАААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-6
Bus Cycle CategoriesААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-7
Data Access Sequences АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААА3-8
Basic Instructions ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААB-1
Floating-Point Instructions: CPU Portion ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААB-2
Average Instruction Execution Times with No Wait-States АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААB-3
Average Instruction Execution Times with Wait-States ААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААB-4
DSPM Instruction Execution Times АААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААААB-5
5
1.0 Product Introduction
The NS32FX16 is a high speed CMOS microprocessor in the Series 32000/EP family.
It includes two main execution units: the NS32CG16 com­patible CPU core and the DSP Module. The CPU core is designed for general purpose computations and system control functions. The DSP Module is tuned to perform the DSP primitives needed in Voice Band Modems. The NS32FX16 also incorporates a 384-byte RAM Array as a shared resource for both the CPU core and the DSP Mod­ule.
The NS32FX16 is software-compatible with all other CPUs in the family.
The device incorporates all of the Series 32000 advanced architectural features, with the exception of the virtual mem­ory capability.
Brief descriptions of the NS32FX16 features that are shared with other members of the family are provided below:
Powerful Addressing Modes. Nine addressing modes available to all instructions are included to access data structures efficiently.
Data Types. The architecture provides for numerous data types, such as byte, word, doubleword, and BCD, which may be arranged into a wide variety of data structures.
Symmetric Instruction Set. While avoiding special case instructions that compilers can’t use, the Series 32000 fami­ly incorporates powerful instructions for control operations, such as array indexing and external procedure calls, which save considerable space and time for compiled code.
Memory-to-Memory Operations. The Series 32000 CPUs represent two-address machines. This means that each op­erand can be referenced by any one of the addressing modes provided.
This powerful memory-to-memory architecture permits memory locations to be treated as registers for all useful operations. This is important for temporary operands as well as for context switching.
Large, Uniform Addressing. The NS32FX16 has 24-bit ad­dress pointers that can address up to 16 megabytes without any segmentation; this addressing scheme provides flexible memory management without add-on expense.
Modular Software Support. Any software package for the Series 32000 architecture can be developed independent of all other packages, without regard to individual addressing. In addition, ROM code is totally relocatable and easy to access, which allows a significant reduction in hardware and software cost.
Software Processor Concept. The Series 32000 architec­ture allows future expansions of the instruction set that can be executed by special slave processors, acting as exten-
sions to the CPU. This concept of slave processors is unique to the Series 32000 architecture. It allows software compatibility even for future components because the slave hardware is transparent to the software. With future ad­vances in semiconductor technology, the slaves can be physically integrated on the CPU chip itself.
To summarize, the architectural features cited above pro­vide three primary performance advantages and character­istics:
#
High-Level Language Support
#
Easy Future Growth Path
#
Application Flexibility
1.1 NS32FX16 SPECIAL FEATURES
In addition to the above Series 32000 features, the NS32FX16 provides features that make the device extreme­ly attractive for a wide range of applications where graphics support, low chip count, and low power consumption are required.
The most relevant of these features are the enhanced Digi­tal Signal Processing performance which makes the chip very attractive for facsimile applications, and the graphics support capabilities, that can be used in applications such as printers, CRT terminals, and other varieties of display systems, where text and graphics are to be handled.
Graphics support is provided by eighteen instructions that allow operations such as BITBLT, data compression/expan­sion, fills, and line drawing, to be performed very efficiently. In addition, the device can be easily interfaced to an exter­nal BITBLT Processing Unit (BPU) for high BITBLT perform­ance.
The NS32FX16 allows systems to be built with a relatively small amount of random logic. The bus is highly optimized to allow simple interfacing to a large variety of DRAMs and peripheral devices. All the relevant bus access signals and clock signals are generated on-chip. The cycle extension logic is also incorporated on-chip.
The device is fabricated in a low-power, high speed CMOS technology. It also includes a power-save feature that al­lows the clock to be slowed down under software control, thus minimizing the power consumption. This feature can be used in those applications where power saving during peri­ods of low performance demand is highly desirable.
The power save feature, the DSP Module and the Bus Char­acteristics are described in the ‘‘Functional Description’’ section. A general overview of BITBLT operations and a description of the graphics support instructions is provided in Section 2.5. Details on all the NS32FX16 graphics in­structions can be found in the NS32CG16 Printer/Display Processor Programmer’s Reference Supplement.
6
1.0 Product Introduction (Continued)
Below is a summary of the instructions that are directly ap­plicable to graphics along with their intended use.
Instruction Application
BBAND The BITBLT group of instructions provide a BBOR method of quickly imaging characters, BBFOR creating patterns, windowing and other BBXOR block oriented effects. BBSTOD BITWT EXTBLT
MOVMP Move Multiple Pattern is a very fast
instruction for clearing memory and drawing patterns and lines.
TBITS Test Bit String will measure the length of 1’s
or 0’s in an image, supporting many data compression methods (RLL), TBITS may also be used to test for boundaries of images.
SBITS Set Bit String is a very fast instruction for
filling objects, outline characters and drawing horizontal lines. The TBITS and SBITS instructions support Group 3 and Group 4 CCITT standards for compression and decompression algorithms.
SBITPS Set Bit Perpendicular String is a very fast
instruction for drawing vertical, horizontal and 45
§
lines. In printing applications SBITS and SBITPS may be used to express portrait and landscape respectively from the same compressed font data. The size of the character may be scaled as it is drawn.
SBIT The Bit group of instructions enable single CBIT pixels anywhere in memory to be set, TBIT cleared, tested or inverted. IBIT
INDEX The INDEX instruction combines a multiply-
add sequence into a single instruction. This provides a fast translation of an X-Y address to a pixel relative address.
2.0 Architectural Description
2.1 REGISTER SET
The NS32FX16 has 23 internal registers and a 384-byte RAM array. 17 of these registers belong to the CPU portion of the device and are addressed either implicitly by specific instructions or through the register addressing mode. The other 6 control the operation of the DSP Module, and are memory mapped.
Figure 2-1
shows the NS32FX16 internal
registers.
CPU Registers
General Purpose
w
32 Bits
x
R0–R7
Address
PC
SP0, SP1
FP
SB
INTBASE
MOD
Processor Status
PSR
Configuration
CFG
Peripherals Registers
DSP Module
w
32 Bits
x
A
Y
O DPTR
CPTR
CTL
ST
RAM Array
C[0]–C[95
]
FIGURE 2-1. NS32FX16 Internal Registers
7
2.0 Architectural Description (Continued)
2.1.1 General Purpose Registers
There are eight registers (R0 – R7) used for satisfying the high speed general storage requirements, such as holding temporary variables and addresses. The general purpose registers are free for any use by the programmer. They are 32 bits in length. If a general purpose register is specified for an operand that is 8 or 16 bits long, only the low part of the register is used; the high part is not referenced or modified.
2.1.2 Address Registers
The seven address registers are used by the processor to implement specific address functions. Except for the MOD register that is 16 bits wide, all the others are 32 bits. A description of the address registers follows.
PCÐProgram Counter. The PC register is a pointer to the first byte of the instruction currently being executed. The PC is used to reference memory in the program section.
SP0, SP1ÐStack Pointers. The SP0 register points to the lowest address of the last item stored on the INTERRUPT STACK. This stack is normally used only by the operating system. It is used primarily for storing temporary data, and holding return information for operating system subroutines and interrupt and trap service routines. The SP1 register points to the lowest address of the last item stored on the USER STACK. This stack is used by normal user programs to hold temporary data and subroutine return information.
When a reference is made to the selected Stack Pointer (see PSR S-bit), the terms ‘‘SP Register’’ or ‘‘SP’’ are used. SP refers to either SP0 or SP1, depending on the setting of the S bit in the PSR register. If the S bit in the PSR is 0, SP refers to SP0. If the S bit in the PSR is 1 then SP refers to SP1.
Stacks in the Series 32000 architecture grow downward in memory. A Push operation pre-decrements the Stack Point­er by the operand length. A Pop operation post-increments the Stack Pointer by the operand length.
FPÐFrame Pointer. The FP register is used by a procedure to access parameters and local variables on the stack. The FP register is set up on procedure entry with the ENTER instruction and restored on procedure termination with the EXIT instruction.
The frame pointer holds the address in memory occupied by the old contents of the frame pointer.
SBÐStatic Base. The SB register points to the global vari­ables of a software module. This register is used to support relocatable global variables for software modules. The SB register holds the lowest address in memory occupied by the global variables of a module.
INTBASEÐInterrupt Base. The INTBASE register holds the address of the dispatch table for interrupts and traps (Section 3.2.1).
MODÐModule. The MOD register holds the address of the module descriptor of the currently executing software mod­ule. The MOD register is 16 bits long, therefore the module table must be contained within the first 64 kbytes of memo­ry.
2.1.3 Processor Status Register
The Processor Status Register (PSR) holds status informa­tion for the microprocessor.
The PSR is sixteen bits long, divided into two eight-bit halves. The low order eight bits are accessible to all pro­grams, but the high order eight bits are accessible only to programs executing in Supervisor Mode.
15 8 7 0
BIPSUNZFJKLTC
FIGURE 2-2. Processor Status Register (PSR)
C The C bit indicates that a carry or borrow occurred after
an addition or subtraction instruction. It can be used with the ADDC and SUBC instructions to perform multiple­precision integer arithmetic calculations. It may have a setting of 0 (no carry or borrow) or 1 (carry or borrow).
T The T bit causes program tracing. If this bit is set to 1, a
TRC trap is executed after every instruction (Section
3.3.1).
L The L bit is altered by comparison instructions. In a com-
parison instruction the L bit is set to ‘‘1’’ if the second operand is less than the first operand, when both oper­ands are interpreted as unsigned integers. Otherwise, it is set to ‘‘0’’. In Floating-Point comparisons, this bit is always cleared.
K Reserved for use by the CPU.
J Reserved for use by the CPU.
F The F bit is a general condition flag, which is altered by
many instructions (e.g., integer arithmetic instructions use it to indicate overflow).
Z The Z bit is altered by comparison instructions. In a com-
parison instruction the Z bit is set to ‘‘1’’ if the second operand is equal to the first operand; otherwise it is set to ‘‘0’’.
N The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to ‘‘1’’ if the sec­ond operand is less than the first operand, when both operands are interpreted as signed integers. Otherwise, it is set to ‘‘0’’.
U If the U bit is ‘‘1’’ no privileged instructions may be exe-
cuted. If the U bit is ‘‘0’’ then all instructions may be executed. When U
e
0 the processor is said to be in Su-
pervisor Mode; when U
e
1 the processor is said to be in User Mode. A User Mode program is restricted from exe­cuting certain instructions and accessing certain regis­ters which could interfere with the operating system. For example, a User Mode program is prevented from changing the setting of the flag used to indicate its own privilege mode. A Supervisor Mode program is assumed to be a trusted part of the operating system, hence it has no such restrictions.
S The S bit specifies whether the SP0 register or SP1 reg-
ister is used as the Stack Pointer. The bit is automatical­ly cleared on interrupts and traps. It may have a setting of 0 (use the SP0 register) or 1 (use the SP1 register).
P The P bit prevents a TRC trap from occurring more than
once for an instruction (Section 3.3.1). It may have a setting of 0 (no trace pending) or 1 (trace pending).
8
2.0 Architectural Description (Continued)
I If I
e
1, then all interrupts will be accepted. If Ie0, only the NMI interrupt is accepted. Trap enables are not af­fected by this bit.
B Reserved for use by the CPU. This bit is set to 1 during
the execution of the EXTBLT instruction and causes the BPU
signal to become active. Upon reset, B is set to
zero and the BPU
signal is set high.
Note 1: When an interrupt is acknowledged, the B, I, P, S and U bits are set
to zero and the BPU
signal is set high. A return from interrupt will restore the original values from the copy of the PSR register saved in the interrupt stack.
Note 2: If BITBLT (BB) or EXTBLT instructions are executed in an interrupt
routine, the PSR bits J and K must be cleared first.
2.1.4 Configuration Register
The Configuration Register (CFG) is 8 bits wide, of which four bits are implemented. The implemented bits are used to declare the presence of certain external devices and to se­lect the clock scaling factor. CFG is programmed by the SETCFG instruction. The format of CFG is shown in
Figure
2-3
. The various control bits are described below.
70
CMF I
FIGURE 2-3. Configuration Register (CFG)
I Interrupt vectoring. This bit controls whether maskable
interrupts are handled in nonvectored (I
e
0) or vectored
(I
e
1) mode. Refer to Section 3.2.3 for more information.
F Floating-point instruction set. This bit indicates whether
a floating-point unit (FPU) is present to execute floating­point instructions. If this bit is 0 when the CPU executes a floating-point instruction, a Trap (UND) occurs. If this bit is 1, then the CPU transfers the instruction and any necessary operands to the FPU using the slave-proces­sor protocol described in Section 3.1.3.1.
M Clock scaling. This bit is used in conjuction with the C bit
to select the clock scaling factor.
C Clock scaling. Same as the M bit above. Refer to Sec-
tion 3.5.3 on ‘‘Power Save Mode’’ for details.
2.1.5 DSP Module Registers
The DSP Module (DSPM) contains 6 memory-mapped reg­isters. All the registers, except ST, are readable and writa­ble. ST is read-only.
Accesses to these registers must be aligned; word and dou­ble-word accesses must occur on word and double-word address boundaries respectively. Section 2.2. Failing to do so will cause unpredictable results.
Figure 2-4
shows the
address map of the DSP Module Registers.
Register Names
Register
Addresses
A FFFFD400
Y FFFFD404
0 DPTR FFFFD408
CPTR FFFFD40C
CTL FFFFD40E
ST FFFFD410
FIGURE 2-4. DSP Module Registers Address Map
AÐAccumulator. This 32-bit register holds one complex
number, and is mapped into two consecutive 16-bit words, called A0 and A1.
Internally, A0 and A1 are 32-bit registers, however, only bits 15–30 (16 bits) are accessible. The rest of the bits are used for bigger dynamic range during intermediate calculations. Section 3.4.
YÐMultiplier Input Register. This 32-bit register holds one complex operand. The Y register is mapped into two con­secutive words called Y0 and Y1.
DPTRÐData Pointer. 24-bit pointer pointing at the data vector in main memory. In order to implement circular buff­ers, only the least significant bits of DPTR are incremented. When the end of a buffer is reached, the least significant bits of DPTR are reloaded with zeros. The number of bits that are set to zero (which defines the size of the circular buffer) is controlled by the CTL register. The least-signifi­cant 16-bit word of DPTR is called DPTR0, and the most­significant byte is called DPTR1. Bits 24– 31 are reserved and should be set to 0.
CPTRÐCoefficient Memory Vector Pointer. This 16-bit register holds the address and length of the coefficient vec­tor, stored in the on-chip RAM array. The format of CPTR is shown in
Figure 2 – 5
.
15 14 8 7 6 0
0 LNGT 0 STRT
FIGURE 2-5. CPTR Register Format
STRT Coefficient’s Vector Index. At the beginning of the
DSP operation, STRT points to the first coefficient in the coefficient vector. Section 2.1.6.
LNGT Coefficient’s Vector Length. This field specifies the
number of coefficients in the coefficient vector.
STRT and LNGT must be in the ranges 0 to 95 and 1 to 96 respectively. The relation LNGT
a
STRTk97 must also be satisfied. Specifying values violating any of these conditions will cause unpredictable results.
CTL Control Register. This register controls the modes of operation of the DSP Module. The format of CTL is shown in
Figure 2-6
. The reserved bits should be set to 0. See Sec-
tion 3.4 for more details.
76543210
OPC DS RES OPM
FIGURE 2-6. CTL Register Format
OPM Opcode Modifier. This field is used to further qualify
the operation specified by OPC. See Section 3.4.3 for details.
DS Data Buffer Size. Specifies the number of complex
variables (4 bytes each) in the data buffer in main memory.
DS
e
00x8 Complex Variables
DS
e
01x16 Complex Variables
DS
e
10x32 Complex Variables
DS
e
11x64 Complex Variables
9
2.0 Architectural Description (Continued)
OPC Operation Code. Specifies the vector operation to be
performed.
OPC
e
00xVCMAD Vector Complex Multiply Add
OPC
e
01xVCMUL Vector Complex Multiply
OPCe10xVCMAC Vector Complex Multiply
Accumulate
OPC
e
11xVCMAG Vector Complex Magnitude
STÐStatus Register. ST is a read-only register that holds the status of the last vector operation. The format of the ST register is shown in
Figure 2.7
.
70
OVF
XXXXX
OP1 OP0
FIGURE 2-7. ST Register Format
OP0 Overflow occurred on calculation of A0.
OP1 Overflow occurred on calculation of A1.
OVF Overflow indication.
The ST register is cleared to 0 in the following cases.
Ð the user writes directly to either A0 or A1, Ð the user writes to the CTL register, Ð upon reset.
2.1.6 RAM Array
The on-chip RAM array provides 384 bytes of storage that is used to store up to 96 32-bit complex numbers. These num­bers represent the coefficients C[0]–C[95]used by the DSP Module.
During a vector operation, the DSP Module accesses these coefficients sequentially starting with the coefficient indexed by the STRT field in the CPTR register.
The RAM array is not limited to coefficient storage only. It can be used as a fast, zero wait-state on-chip memory for instructions and data storage.
RAM array accesses must be word or double-word aligned. Failing to do so may cause unpredictable results.
Figure 2-8
shows the RAM array address map.
Complex Coefficient
Coefficients Addresses
31 0
C[0
]
FFFFD000
## ## ##
C
[
95
]
FFFFD17C
FIGURE 2-8. On-Chip RAM Array Address Map
2.2 MEMORY ORGANIZATION
The main memory of the NS32FX16 is a uniform linear ad­dress space. Memory locations are numbered sequentially starting at zero and ending at 2
24
b
1. The number specify­ing a memory location is called an address. The contents of each memory location is a byte consisting of eight bits. Un-
less otherwise noted, diagrams in this document show data stored in memory with the lowest address on the right and the highest address on the left. Also, when data is shown vertically, the lowest address is at the top of a diagram and the highest address at the bottom of the diagram. When bits are numbered in a diagram, the least significant bit is given the number zero, and is shown at the right of the diagram. Bits are numbered in increasing significance and toward the left.
70
A
Byte at Address A
Two contiguous bytes are called a word. Except where not­ed, the least significant byte of a word is stored at the lower address, and the most significant byte of the word is stored at the next higher address. In memory, the address of a word is the address of its least significant byte, and a word may start at any address.
15 8 7 0
Aa1A
MSB LSB
Word at Address A
Two contiguous words are called a double-word. Except where noted, the least significant word of a double-word is stored at the lowest address and the most significant word of the double-word is stored at the address two higher. In memory, the address of a double-word is the address of its least significant byte, and a double-word may start at any address.
31 24 23 16 15 8 7 0
Aa3A
a
2A
a
1A
MSB LSB
Double Word at Address A
Although memory is addressed as bytes, it is actually orga­nized as words. Therefore, words and double-words that are aligned to start at even addresses (multiples of two) are accessed more quickly than words and double-words that are not so aligned.
2.2.1 Address Mapping
The NS32FX16 supports the use of memory-mapped pe­ripheral devices and coprocessors. Such memory-mapped devices can be located at arbitrary locations within the 16­Mbyte address range available externally.
The address range from 01000000 (hex) to FF800000 (hex) is not available in the present implementation of the NS32FX16, and should not be used. The top 8-Mbyte block is reserved by National Semiconductor Corporation, and only a few locations within this block are presently used to access the on-chip RAM array and DSP Module control reg­isters.
Figure 2-9
shows the NS32FX16 address mapping.
10
2.0 Architectural Description (Continued)
Address (Hex)
00000000
Memory and I/O
00FFFE00
Interrupt Control
01000000
Address Not Available Off-Chip (Do Not Use)
FF800000
Reserved
FFFFD000
On-Chip RAM Array
FFFFD200
Reserved
FFFFD4XX DSP Module
Reserved
FFFFFFFF
FIGURE 2-9. NS32FX16 Address Mapping
2.3 MODULAR SOFTWARE SUPPORT
The NS32FX16 provides special support for software mod­ules and modular programs.
Each module in a NS32FX16 software environment consists of three components:
1. Program Code Segment.
This segment contains the module’s code and constant data.
2. Static Data Segment.
Used to store variables and data that may be accessed by all procedures within the module.
3. Link Table.
This component contains two types of entries: Absolute Addresses and Procedure Descriptors.
An Absolute Address is used in the external addressing mode, in conjunction with a displacement and the current MOD Register contents to compute the effective address of an external variable belonging to another module.
The Procedure Descriptor is used in the call external pro­cedure (CXP) instruction to compute the address of an external procedure.
Normally, the linker program specifies the locations of the three components. The Static Data and Link Table typically reside in RAM; the code component can be either in RAM or in ROM. The three components can be mapped into non­contiguous locations in memory, and each can be indepen­dently relocated. Since the Link Table contains the absolute addresses of external variables, the linker need not assign absolute memory addresses for these in the module itself; they may be assigned at load time.
To handle the transfer of control from one module to anoth­er, the NS32FX16 uses a module table in memory and two registers in the CPU.
The Module Table is located within the first 64 kbytes of memory. This table contains a Module Descriptor (also called a Module Table Entry) for each module in the ad­dress space of the program. A Module Descriptor has four 32-bit entries corresponding to each component of a mod­ule:
#
The Static Base entry contains the address of the begin­ning of the module’s static data segment.
#
The Link Table Base points to the beginning of the mod­ule’s Link Table.
#
The Program Base is the address of the beginning of the code and constant data for the module.
#
A fourth entry is currently unused but reserved.
The MOD Register in the CPU contains the address of the Module Descriptor for the currently executing module.
The Static Base Register (SB) contains a copy of the Static Base entry in the Module Descriptor of the currently execut­ing module, i.e., it points to the beginning of the current module’s static data area.
This register is implemented in the CPU for efficiency pur­poses. By having a copy of the static base entry or chip, the CPU can avoid reading it from memory each time a data item in the static data segment is accessed.
In an NS32FX16 software environment modules need not be linked together prior to loading. As modules are loaded, a linking loader simply updates the Module Table and fills the Link Table entries with the appropriate values. No modi­fication of a module’s code is required. Thus, modules may be stored in read-only memory and may be added to a sys­tem independently of each other, without regard to their in­dividual addressing.
Figure 2-10
shows a typical NS32FX16
run-time environment.
11
2.0 Architectural Description (Continued)
TL/EE/10818– 1
Note: Dashed lines indicate information copied to register during transfer of control between modules.
FIGURE 2-10. NS32FX16 Run-Time Environment
2.4 INSTRUCTION SET
2.4.1 General Instruction Format
Figure 2-11
shows the general format of a Series 32000 instruction. The Basic Instruction is one to three bytes long and contains the Opcode and up to two 5-bit General Ad­dressing Mode (‘‘Gen’’) fields. Following the Basic Instruc­tion field is a set of optional extensions, which may appear depending on the instruction and the addressing modes se­lected.
Index Bytes appear when either or both Gen fields specify Scaled Index. In this case, the Gen field specifies only the Scale Factor (1, 2, 4 or 8), and the Index Byte specifies which General Purpose Register to use as the index, and which addressing mode calculation to perform before index­ing.
Following Index Bytes come any displacements (addressing constants) or immediate values associated with the select­ed addressing modes. Each Disp/lmm field may contain
one of two displacements, or one immediate value. The size of a Displacement field is encoded within the top bits of that field, as shown in
Figure 2-13
, with the remaining bits inter­preted as a signed (two’s complement) value. The size of an immediate value is determined from the Opcode field. Both Displacement and Immediate fields are stored most-signifi­cant byte first. Note that this is different from the memory representation of data (Section 2.2).
Some instructions require additional ‘‘implied’’ immediates and/or displacements, apart from those associated with ad­dressing modes. Any such extensions appear at the end of the instruction, in the order that they appear within the list of operands in the instruction definition (Section 2.4.3).
TL/EE/10818– 3
FIGURE 2-12. Index Byte Format
TL/EE/10818– 2
FIGURE 2-11. General Instruction Format
12
2.0 Architectural Description (Continued)
2.4.2 Addressing Modes
The NS32FX16 CPU generally accesses an operand by cal­culating its Effective Address based on information avail­able when the operand is to be accessed. The method to be used in performing this calculation is specified by the pro­grammer as an ‘‘addressing mode.’’
Addressing modes in the NS32FX16 are designed to opti­mally support high-level language accesses to variables. In nearly all cases, a variable access requires only one ad­dressing mode, within the instruction that acts upon that variable. Extraneous data movement is therefore minimized.
NS32FX16 Addressing Modes fall into nine basic types:
Register: The operand is available in one of the eight Gen­eral Purpose Registers. In certain Slave Processor instruc­tions, an auxiliary set of eight registers may be referenced instead.
Register Relative: A General Purpose Register contains an address to which is added a displacement value from the instruction, yielding the Effective Address of the operand in memory.
Memory Space: Identical to Register Relative above, ex­cept that the register used is one of the dedicated registers PC, SP, SB or FP. These registers point to data areas gen­erally needed by high-level languages.
Memory Relative: A pointer variable is found within the memory space pointed to by the SP, SB or FP register. A displacement is added to that pointer to generate the Effec­tive Address of the operand.
Immediate: The operand is encoded within the instruction. This addressing mode is not allowed if the operand is to be written.
Absolute: The address of the operand is specified by a displacement field in the instruction.
External: A pointer value is read from a specified entry of the current Link Table. To this pointer value is added a dis­placement, yielding the Effective Address of the operand.
Top of Stack: The currently-selected Stack Pointer (SP0 or SP1) specifies the location of the operand. The operand is pushed or popped, depending on whether it is written or read.
Scaled Index: Although encoded as an addressing mode, Scaled Indexing is an option on any addressing mode ex­cept Immediate or another Scaled Index. It has the effect of calculating an Effective Address, then multiplying any Gen­eral Purpose Register by 1, 2, 4 or 8 and adding into the total, yielding the final Effective Address of the operand.
Table 2-1 is a brief summary of the addressing modes. For a complete description of their actions, see the Series 32000 Instruction Set Reference Manual.
In addition to the general modes, Register-Indirect with auto-increment/decrement and warps or pitch are available on several of the graphics instructions.
Byte Displacement: Range
b
64 toa63
Word Displacement: Range
b
8192 toa8191
Double Word Displacement:
Range (Entire Addressing Space)
TL/EE/10818– 4
FIGURE 2-13. Displacement Encodings
13
2.0 Architectural Description (Continued)
TABLE 2-1. NS32FX16 Addressing Modes
ENCODING MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS Register
00000 Register 0 R0 or F0 None: Operand is in the specified 00001 Register 1 R1 or F1 register. 00010 Register 2 R2 or F2 00011 Register 3 R3 or F3 00100 Register 4 R4 or F4 00101 Register 5 R5 or F5 00110 Register 6 R6 or F6 00111 Register 7 R6 or F7
Register Relative
01000 Register 0 relative disp(R0) Disp
a
Register. 01001 Register 1 relative disp(R1) 01010 Register 2 relative disp(R2) 01011 Register 3 relative disp(R3) 01100 Register 4 relative disp(R4) 01101 Register 5 relative disp(R5) 01110 Register 6 relative disp(R6) 01111 Register 7 relative disp(R7)
Memory Relative
10000 Frame memory relative disp2(disp1 (FP)) Disp2
a
Pointer; Pointer found at
10001 Stack memory relative disp2(disp1 (SP)) address Disp 1
a
Register. ‘‘SP’’
10010 Static memory relative disp2(disp1 (SB)) is either SP0 or SP1, as selected
in PSR.
Reserved
10011 (Reserved for Future Use)
Immediate
10100 Immediate value None: Operand is input from
instruction queue.
Absolute
10101 Absolute
@
disp Disp.
External
10110 External EXT (disp1)
a
disp2 Disp2aPointer; Pointer is found
at Link Table Entry number Disp1.
Top Of Stack
10111 Top of stack TOS Top of current stack, using either
User or Interrupt Stack Pointer, as selected in PSR. Automatic Push/Pop included.
Memory Space
11000 Frame memory disp(FP) Disp
a
Register; ‘‘SP’’ is either 11001 Stack memory disp(SP) SP0 or SP1, as selected in PSR. 11010 Static memory disp(SB) 11011 Program memory *
a
disp
Scaled Index
11100 Index, bytes mode[Rn:B
]
EA (mode)
a
Rn.
11101 Index, words mode[Rn:W
]
EA (mode)
a
2cRn.
11110 Index, double words mode[Rn:D
]
EA (mode)
a
4cRn.
11111 Index, quad words mode[Rn:Q
]
EA (mode)
a
8cRn. ‘‘Mode’’ and ‘‘n’’ are contained within the Index Byte. EA (mode) denotes the effective address generated using mode.
14
2.0 Architectural Description (Continued)
2.4.3 Instruction Set Summary
Table 2-2 presents a brief description of the NS32FX16 in­struction set. The Format column refers to the Instruction Format tables (Appendix A). The Instruction column gives the instruction as coded in assembly language, and the De­scription column provides a short description of the function provided by that instruction. Further details of the exact op­erations performed by each instruction may be found in the Series 32000 Instruction Set Reference Manual and the NS32CG16 Printer/Display Processor Programmer’s Refer­ence.
Notations:
i
e
Integer length suffix: BeByte
W
e
Word
D
e
Double Word
feFloating Point length suffix: FeStandard Floating
L
e
Long Floating
gen
e
General operand. Any addressing mode can be speci-
fied.
short
e
A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings).
imm
e
Implied immediate operand. An 8-bit value appended
after any addressing extensions.
disp
e
Displacement (addressing constant): 8, 16 or 32 bits.
All three lengths legal.
reg
e
Any General Purpose Register: R0 –R7.
aregeAny Processor Register: SP, SB, FP, INTBASE, MOD, PSR, US (bottom 8 PSR bits).
cond
e
Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).
TABLE 2-2. NS32FX16 Instruction Set Summary
MOVES
Format Operation Operands Description
4 MOVi gen,gen Move a value. 2 MOVQi short,gen Extend and move a signed 4-bit constant. 7 MOVMi gen,gen,disp Move multiple: disp bytes (1 to 16). 7 MOVZBW gen,gen Move with zero extension. 7 MOVZiD gen,gen Move with zero extension. 7 MOVXBW gen,gen Move with sign extension. 7 MOVXiD gen,gen Move with sign extension. 4 ADDR gen,gen Move effective address.
INTEGER ARITHMETIC
Format Operation Operands Description
4 ADDi gen,gen Add. 2 ADDQi short,gen Add signed 4-bit constant. 4 ADDCi gen,gen Add with carry. 4 SUBi gen,gen Subtract. 4 SUBCi gen,gen Subtract with carry (borrow). 6 NEGi gen,gen Negate (2’s complement). 6 ABSi gen,gen Take absolute value. 7 MULi gen,gen Multiply. 7 QUOi gen,gen Divide, rounding toward zero. 7 REMi gen,gen Remainder from QUO. 7 DIVi gen,gen Divide, rounding down. 7 MODi gen,gen Remainder from DIV (Modulus). 7 MEIi gen,gen Multiply to extended integer. 7 DEIi gen,gen Divide extended integer.
PACKED DECIMAL (BCD) ARITHMETIC
Format Operation Operands Description
6 ADDPi gen,gen Add packed. 6 SUBPi gen,gen Subtract packed.
15
2.0 Architectural Description (Continued)
TABLE 2-2. NS32FX16 Instruction Set Summary (Continued)
INTEGER COMPARISON
Format Operation Operands Description
4 CMPi gen,gen Compare. 2 CMPQi short,gen Compare to signed 4-bit constant. 7 CMPMi gen,gen,disp Compare multiple: disp bytes (1 to 16).
LOGICAL AND BOOLEAN
Format Operation Operands Description
4 ANDi gen,gen Logical AND. 4 ORi gen,gen Logical OR. 4 BICi gen,gen Clear selected bits. 4 XORi gen,gen Logical exclusive OR. 6 COMi gen,gen Complement all bits. 6 NOTi gen,gen Boolean complement: LSB only. 2 Scondi gen Save condition code (cond) as a Boolean variable of size i.
SHIFTS
Format Operation Operands Description
6 LSHi gen,gen Logical shift, left or right. 6 ASHi gen,gen Arithmetic shift, left or right. 6 ROTi gen,gen Rotate, left or right.
BIT FIELDS
Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in Pascal. ‘‘Extract’’ instructions read and align a bit field. ‘‘Insert’’ instructions write a bit field from an aligned source.
Format Operation Operands Description
8 EXTi reg,gen,gen,disp Extract bit field (array oriented). 8 INSi reg,gen,gen,disp Insert bit field (array oriented). 7 EXTSi gen,gen,imm,imm Extract bit field (short form). 7 INSSi gen,gen,imm,imm Insert bit field (short form). 8 CVTP reg,gen,gen Convert to bit field pointer.
ARRAYS
Format Operation Operands Description
8 CHECKi reg,gen,gen Index bounds check. 8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.
16
2.0 Architectural Description (Continued)
TABLE 2-2. NS32FX16 Instruction Set Summary (Continued)
STRINGS
String instructions assign specific functions to the General Purpose Registers:
R4 Ð Comparison Value
R3 Ð Translation Table Pointer
R2 Ð String 2 Pointer
R1 Ð String 1 Pointer
R0 Ð Limit Count
Options on all string instructions are:
B (Backward): Decrement string pointers after each
step rather than incrementing.
U (Until match): End instruction if String 1 entry matches
R4.
W (While match): End instruction if String 1 entry does not
match R4.
All string instructions end when R0 decrements to zero.
Format Operation Operands Description
5 MOVSi options Move string 1 to string 2.
MOVST options Move string, translating bytes.
5 CMPSi options Compare string 1 to string 2.
CMPST options Compare, translating string 1 bytes.
5 SKPSi options Skip over string 1 entries.
SKPST options Skip, translating bytes for until/while.
JUMPS AND LINKAGE
Format Operation Operands Description
3 JUMP gen Jump. 0 BR disp Branch (PC Relative). 0 Bcond disp Conditional branch. 3 CASEi gen Multiway branch. 2 ACBi short,gen,disp Add 4-bit constant and branch if non-zero. 3 JSR gen Jump to subroutine. 1 BSR disp Branch to subroutine. 1 CXP disp Call external procedure 3 CXPD gen Call external procedure using descriptor. 1 SVC Supervisor call. 1 FLAG Flag trap. 1 BPT Breakpoint trap. 1 ENTER
[
reg list], disp Save registers and allocate stack frame (Enter Procedure).
1 EXIT
[
reg list
]
Restore registers and reclaim stack frame (Exit Procedure). 1 RET disp Return from subroutine. 1 RXP disp Return from external procedure call. 1 RETT disp Return from trap. (Privileged) 1 RETI Return from interrupt. (Privileged)
CPU REGISTER MANIPULATION
Format Operation Operands Description
1 SAVE
[
reg list
]
Save general purpose registers. 1 RESTORE
[
reg list
]
Restore general purpose registers. 2 LPRi areg,gen Load dedicated register. (Privileged if PSR or INTBASE) 2 SPRi areg,gen Store dedicated register. (Privileged if PSR or INTBASE) 3 ADJSPi gen Adjust stack pointer. 3 BISPSRi gen Set selected bits in PSR. (Privileged if not Byte length) 3 BICPSRi gen Clear selected bits in PSR. (Privileged if not Byte length) 5 SETCFG
[
option list
]
Set configuration register. (Privileged)
17
2.0 Architectural Description (Continued)
TABLE 2-2. NS32FX16 Instruction Set Summary (Continued)
FLOATING POINT
Format Operation Operands Description
11 MOVf gen,gen Move a floating point value.
9 MOVLF gen,gen Move and shorten a long value to standard. 9 MOVFL gen,gen Move and lengthen a standard value to long. 9 MOVif gen,gen Convert any integer to standard or long floating. 9 ROUNDfi gen,gen Convert to integer by rounding. 9 TRUNCfi gen,gen Convert to integer by truncating, toward zero.
9 FLOORfi gen,gen Convert to largest integer less than or equal to value. 11 ADDf gen,gen Add. 11 SUBf gen,gen Subtract. 11 MULf gen,gen Multiply. 11 DIVf gen,gen Divide. 11 CMPf gen,gen Compare. 11 NEGf gen,gen Negate. 11 ABSf gen,gen Take absolute value.
9 LFSR gen Load FSR.
9 SFSR gen Store FSR.
12 POLYf gen,gen Polynomial Step. 12 DOTf gen,gen Dot Product. 12 SCALBf gen,gen Binary Scale. 12 LOGBf gen,gen Binary Log.
MISCELLANEOUS
Format Operation Operands Description
1 NOP No operation. 1 WAIT Wait for interrupt. 1 DIA Diagnose. Single-byte ‘‘Branch to Self’’ for hardware
breakpointing. Not for use in programming.
GRAPHICS
Format Operation Operands Description
5 BBOR options* Bit-aligned block transfer ‘OR’. 5 BBAND options Bit-aligned block transfer ‘AND’. 5 BBFOR Bit-aligned block transfer fast ‘OR’. 5 BBXOR options Bit-aligned block transfer ‘XOR’. 5 BBSTOD options Bit-aligned block source to destination. 5 BITWT Bit-aligned word transfer. 5 EXTBLT options External bit-aligned block transfer. 5 MOVMPi Move multiple pattern. 5 TBITS options Test bit string. 5 SBITS Set bit string. 5 SBITPS Set bit perpendicular string.
BITS
Format Operation Operands Description
4 TBITi gen,gen Test bit. 6 SBITi gen,gen Test and set bit. 6 SBITIi gen,gen Test and set bit, interlocked. 6 CBITi gen,gen Test and clear bit. 6 CBITIi gen,gen Test and clear bit, interlocked. 6 IBITi gen,gen Test and invert bit. 8 FFSi gen,gen Find first set bit.
*Note: Options are controlled by fields of the instruction, PSR status bits, or dedicated register values.
18
2.0 Architectural Description (Continued)
2.5 GRAPHICS SUPPORT
The following sections provide a brief description of the NS32FX16 graphics support capabilities. Basic discussions on frame buffer addressing and BITBLT operations are also provided. More detailed information on the NS32FX16 graphics support instructions can be found in the NS32CG16 Printer/Display Processor Programmer’s Refer­ence.
2.5.1 Frame Buffer Addressing
There are two basic addressing schemes for referencing pixels within the frame buffer: Linear and Cartesian (or x-y). Linear addressing associates a single number to each pixel representing the physical address of the corresponding bit in memory. Cartesian addressing associates two numbers to each pixel representing the x and y coordinates of the pixel relative to a point in the Cartesian space taken as the origin. The Cartesian space is generally defined as having the origin in the upper left. A movement to the right increas­es the x coordinate; a movement downward increases the y coordinate.
The correspondence between the location of a pixel in the Cartesian space and the physical (BIT) address in memory is shown in
Figure 2-14
. The origin of the Cartesian space
(x
e
0, ye0) corresponds to the bit address ‘ORG’. Incre­menting the x coordinate increments the bit address by one. Incrementing the y coordinate increments the bit address by an amount representing the warp (or pitch) of the Cartesian space. Thus, the linear address of a pixel at location (x, y) in the Cartesian space can be found by the following expres­sion.
ADDR
e
ORGay * WARPax
Warp is the distance (in bits) in the physical memory space between two vertically adjacent bits in the Cartesian space.
Example 1 below shows two NS32FX16 instruction se­quences to set a single pixel given the x and y coordinates. Example 2 shows how to create a fat pixel by setting four adjacent bits in the Cartesian space.
Example 1: Set pixel at location (x, y)
Setup: R0 x coordinate
R1 y coordinate
Instruction Sequence 1:
MULD WARP, R1 ; Y*WARP
ADDD R0, R1 ; 0 X 4 BIT OFFSET
SBITD R1, ORG ; SET PIXEL
Instruction Sequence 2:
INDEXD R1, (WARP-1), R0 ; Y*WARP 0 X
SBITD R1, ORG ; SET PIXEL
Example 2: Create fat pixel by setting bits at locations
(x, y), (x
a
1, y), (x, ya1) and (xa1, ya1).
Setup: R0 x coordinate
R1 y coordinate
Instruction Sequence:
INDEXD R1, (WARP-1), R0 ; BIT ADDRESS
SBITD 41, ORG ; SET FIRST PIXEL
ADDQD 1, R1 ; (X01, Y)
SBITD R1, ORG ; SECOND PIXEL
ADDD (WARP-1), R1 ; (X, Y01)
SBITD R1, ORG ; THIRD PIXEL
ADDQD 1, R1 ; (X01, Y01)
SBITD R1, ORG ; LAST PIXEL
TL/EE/10818– 5
FIGURE 2-14. Correspondence between
Linear and Cartesian Addressing
2.5.2 BITBLT Fundamentals
BITBLT, BIT-aligned BLock Transfer, is a general operator that provides a mechanism to move an arbitrary size rectan­gle of an image from one part of the frame buffer to another. During the data transfer process a bitwise logical operation can be performed between the source and the destination data. BITBLT is also called RasterOp: operations on rasters. It defines two rectangular areas, source and destination, and performs a logical operation (e.g., AND, OR, XOR) be­tween these two areas and stores the result back to the destination. It can be expressed in simple notation as:
Source op Destination
x
Destination
op: AND, OR, XOR, etc.
19
2.0 Architectural Description (Continued)
2.5.2.1 Frame Buffer Architecture
There are two basic types of frame buffer architectures: plane-oriented or pixel-oriented. BITBLT takes advantage of the plane-oriented frame buffer architecture’s attribute of multiple, adjacent pixels-per-word, facilitating the movement of large blocks of data. The source and destination starting addresses are expressed as pixel addresses. The width and height of the block to be moved are expressed in terms of pixels and scan lines. The source block may start and end at any bit position of any word, and the same applies for the destination block.
2.5.2.2 Bit Alignment
Before a logical operation can be performed between the source and the destination data, the source data must first be bit aligned to the destination data. In
Figure 2-15
, the source data needs to be shifted three bits to the right in order to align the first pixel (i.e., the pixel at the top left corner) in the source data block to the first pixel in the desti­nation data block.
2.5.2.3 Block Boundaries and Destination Masks
Each BITBLT destination scan line may start and end at any bit position in any data word. The neighboring bits (bits shar­ing the same word address with any words in the destination data block, but not a part of the BITBLT rectangle) of the BITBLT destination scan line must remain unchanged after the BITBLT operation.
Due to the plane-oriented frame buffer architecture, all memory operations must be word-aligned. In order to pre­serve the neighboring bits surrounding the BITBLT destina­tion block, both a left mask and a right mask are needed for all the leftmost and all the rightmost data words of the desti­nation block. The left mask and the right mask both remain the same during a BITBLT operation.
The following example illustrates the bit alignment require­ments. In this example, the memory data path is 16 bits wide.
Figure 2-15
shows a 32 pixel by 32 scan line frame buffer which is organized as a long bit stream which wraps around every two words (32 bits). The origin (top left corner) of the frame buffer starts from the lowest word in memory (word address 00 (hex)).
Each word in the memory contains 16 bits, D0–D15. The least significant bit of a memory word, D0, is defined as the first displayed pixel in a word. In this example, BITBLT ad­dresses are expressed as pixel addresses relative to the origin of the frame buffer. The source block starting address is 021 (hex) (the second pixel in the third word). The desti­nation block starting address is 204 (hex) (the fifth pixel in the 33rd word). The block width is 13 (hex), and the height is 06 (hex) (corresponding to 6 scan lines). The shift value is 3.
TL/EE/10818– 6
FIGURE 2-15. 32-Pixel by 32-Scan Line Frame Buffer
20
2.0 Architectural Description (Continued)
TL/EE/10818– 7
(a)
TL/EE/10818– 8
(b)
FIGURE 2-16. Overlapping BITBLT Blocks
The left mask and the right mask are 0000,1111,1111,1111 and 1111,1111,0000,0000 respectively.
Note 1: Zeros in either the left mask or the right mask indicate the destination bits which will not be modified.
Note 2: The BB(function) and EXTBLT instructions use different set up parameters, and techniques.
2.5.2.2 BITBLT Directions
A BITBLT operation moves a rectangular block of data in a frame buffer. The operation itself can be considered as a subroutine with two nested loops. The loops are preceded by setup operations. In the outer loop the source and desti­nation starting addresses are calculated, and the test for completion is performed. In the inner loop the actual data movement for a single scan line takes place. The length of the inner loop is the number of (aligned) words spanned by each scan line. The length of the outer loop is equal to the height (number of scan lines) of the block to be moved. A skeleton of the subroutine representing the BITBLT opera­tion follows.
BITBLT: calculate BITBLT setup parameters;
(once per BITBLT operation).
such as
width, height
bit misalignment (shift number)
left, right masks
horizontal, vertical directions
etc
# #
OUTERLOOP: calculate source, dest addresses;
(once per scanline).
INNERLOOP: move data, (logical operation) and incre-
ment addresses; (once per word).
UNTIL done horizontally
UNTIL done vertically
RETURN (from BITBLT).
Note: In the NS32FX16 only the setup operations must be done by the
programmer. The inner and outer loops are automatically executed by the BITBLT instructions.
Each loop can be executed in one of two directions: the inner loop from left to right or right to left, the outer loop from top to bottom (down) or bottom to top (up).
The ability to move data starting from any corner of the BITBLT rectangle is necessary to avoid destroying the BITBLT source data as a result of destination writes when the source and destination are overlapped (i.e., when they share pixels). This situation is routinely encountered while panning or scrolling.
A determination of the correct execution directions of the BITBLT must be performed whenever the source and desti­nation rectangles overlap. Any overlap will result in the de­struction of source data (from a destination write) if the cor­rect vertical direction is not used. Horizontal BITBLT direc­tion is of concern only in certain cases of overlap, as will be explained below.
Figures 2-16(a)
and
(b)
illustrate two cases of overlap. Here, the BITBLT rectangles are three pixels wide by five scan lines high; they overlap by a single pixel in
(a)
and a single
column of pixels in
(b)
. For purposes of illustration, the BITBLT is assumed to be carried out pixel-by-pixel. This convention does not affect the conclusions.
In
Figure 2-16(a)
, if the BITBLT is performed in the UP direc­tion (bottom-to-top) one of the transfers of the bottom scan line of the source will write to the circled pixel of the destina­tion. Due to the overlap, this pixel is also part of the upper­most scan line of the source rectangle. Thus, data needed later is destroyed. Therefore, this BITBLT must be per­formed in the DOWN direction. Another example of this oc-
21
2.0 Architectural Description (Continued)
curs any time the screen is moved in a purely vertical direc­tion, as in scrolling text. It should be noted that, in both of these cases, the choice of horizontal BITBLT direction may be made arbitrarily.
Figure 2-16(b)
demonstrates a case in which the horizontal BITBLT direction may not be chosen arbitrarily. This is an instance of purely horizontal movement of data (panning). Because the movement from source to destination involves data within the same scan line, the incorrect direction of movement will overwrite data which will be needed later. In this example, the correct direction is from right to left.
2.5.2.5 BITBLT Variations
The ‘‘classical’’ definition of BITBLT, as described in ‘‘Smalltalk-80 The Language and its Implementation’’, by Adele Goldberg and David Robson, provides for three oper­ands: source, destination and mask/texture. This third oper­and is commonly used in monochrome systems to incorpo­rate a stipple pattern into an area. These stipple patterns provide the appearance of multiple shades of gray in single­bit-per-pixel systems, in a manner similar to the ‘‘halftone’’ process used in printing.
Texture op1 Source op2 Destination
x
Destination
While the NS32FX16 and the external BPU (if used) are essentially two-operand devices, three-operand BITBLT op­erations can be implemented quite flexibly and efficiently by performing the two operations serially.
2.5.3 GRAPHICS SUPPORT INSTRUCTIONS
The NS32FX16 provides eleven instructions for supporting graphics oriented applications. These instructions are divid­ed into three groups according to the operations they per­form. General descriptions for each of them and the related formats are provided in the following sections.
2.5.3.1 BITBLT (BIT-aligned BLock Transfer)
This group includes seven instructions. They are used to move characters and objects into the frame buffer which will be printed or displayed. One of the instructions works in conjunction with an external BITBLT Processing Unit (BPU) to maximize performance. The other six are executed by the NS32FX16.
BIT-aligned BLock Transfer
Syntax: BB(function) Options
Setup: R0 base address, source data
R1 base address, destination data R2 shift value R3 height (in lines) R4 first mask R5 second mask R6 source warp (adjusted) R7 destination warp (adjusted) 0(SP) width (in words)
Function: AND, OR, XOR, FOR, STOD
Options: IA Increasing Address (default option).
When IA is selected, scan lines are transferred in the increasing BIT/BYTE order.
DA Decreasing Address.
S True Source (default option).
b
S Inverted Source.
These five instructions perform standard BITBLT operations between source and destination blocks. The operations available include the following:
BBAND: src AND dst
b
src AND dst
BBOR: src OR dst
b
src OR dst
BBXOR: src XOR dst
b
src XOR dst
BBFOR: src OR dst BBSTOD: src TO dst
b
src TO dst
‘src’ and ‘
b
src’ stand for ‘True Source’ and ‘Inverted
Source’ respectively; ‘dst’ stands for ‘Destination’.
Note 1: For speed reasons, the BB instructions require the masks to be
specified with respect to the source block. In
Figure 2-15
masking
was defined relative to the destination block.
Note 2: The options
b
S and DA are not available for the BBFOR instruc-
tion.
Note 3: BBFOR performs the same operation as BBOR with IA and S op-
tions.
Note 4: IA and DA are mutually exclusive and so are S and
b
S.
Note 5: The width is defined as the number of words of source data to read.
Note 6: An odd number of bytes can be specified for the source warp.
However, word alignment of source scan lines will result in faster execution.
The horizontal and vertical directions of the BITBLT opera­tions performed by the above instructions, with the excep­tion of BBFOR, are both programmable. The horizontal di­rection is controlled by the IA and DA options. The vertical direction is controlled by the sign of the source and destina­tion warps.
Figure 2-17
and Table 2-3 show the format of the BB instructions and the encodings for the ‘op’ and ‘i’ fields.
23 16 15 8 7 0
000 000 D X S 0 op i 00001110
#
D is set when the DA option is selected
#
S is set when thebS option is selected
#
X is set for BBAND, and it is clear for all other BB instructions
FIGURE 2-17. BB Instructions Format
TABLE 2-3. ‘op’ and ‘i’ Field Encodings
Instruction Options ‘op’ Field ‘i’ Field
BBAND Yes 1010 11
BBOR Yes 0110 01
BBXOR Yes 1110 01
BBFOR No 1100 01
BBSTOD Yes 0100 01
BIT-aligned Word Transfer
Syntax: BITWT
Setup: R0 Base address, source word
R1 Base address, destination double word R2 Shift value
The BITWT instruction performs a fast logical OR operation between a source word and a destination double word, stores the result into the destination double word and incre­ments registers R0 and R1 by two. Before performing the OR operation, the source word is shifted left (i.e., in the direction of increasing bit numbers) by the value in register R2.
22
2.0 Architectural Description (Continued)
This instruction can be used within the inner loop of a block OR operation. Its use assumes that the source data is ‘clean’ and does not need masking. The BITWT format is shown in
Figure 2-18
.
23 16 15 8 7 0
0000000000100001 0 000 1110
FIGURE 2-18. BITWT Instruction Format
External BITBLT
Syntax: EXTBLT
Setup: R0 base addresses, source data
R1 base address, destination data R2 width (in bytes) R3 height (in lines) R4 horizontal increment/decrement R5 temporary register (current width) R6 source warp (adjusted) R7 destination warp (adjusted)
Note 1: R0 and R1 are updated after execution to point to the last source
and destination addresses plus related warps. R2, R3 and R5 will be modified. R4, R6, and R7 are returned unchanged.
Note 2: Source and destination pointers should point to word-aligned oper-
ands to maximize speed and minimize external interface logic.
This instruction performs an entire BITBLT operation in con­junction with an external BITBLT Processing Unit (BPU). The external BPU Control Register should be loaded by the software before the instruction is executed (refer to the DP8510 or DP8511 data sheets for more information on the BPU). The NS32FX16 generates a series of source read, destination read and destination write bus cycles until the entire data block has been transferred. The BITBLT opera­tion can be performed in either horizontal direction. As con­trolled by the sign of the contents of register R4.
Depending on the relative alignment of the source and des­tination blocks, an extra source read may be required at the beginning of each scan line, to load the pipeline register in the external BPU. The L bit in the PSR register determines whether the extra source read is performed. If L is 1, no extra read is performed. The instructions CMPQB 2,1 or CMPQB 1,2 could be executed to provide the right setting for the L bit just before executing EXTBLT.
Figure 2-19
shows the EXTBLT format. The bus activity for a simple BITBLT operation is shown in
Figure 2-24.
23 15 8 7 0
000000000001011100001110
FIGURE 2-19. EXTBLT Instruction Format
2.5.3.2 Pattern Fill
Only one instruction is in this group. It is usually used for clearing RAM and drawing patterns and lines.
Move Multiple Pattern
Syntax: MOVMPi
Setup: R0 base address of the destination
R1 pointer increment (in bytes) R2 number of pattern moves R3 source pattern
Note: R1 and R3 are not modified by the instruction. R2 will always be
returned as zero. R0 is modified to reflect the last address into which a pattern was written.
This instruction stores the pattern in register R3 into the destination area whose address is in register R0. The pat­tern count is specified in register R2. After each store oper­ation the destination address is changed by the contents of register R1. This allows the pattern to be stored in rows, in columns, and in any direction, depending on the value and sign of R1. The MOVMPi instruction format is shown in
Fig-
ure 2-20
.
23 15 8 7 0
00000000000111 i 00001110
FIGURE 2-20. MOVMPi Instruction Format
2.5.3.3 Data Compression, Expansion and Magnify
The three instructions in this group can be used to com­press data and restore data from compression. A com­pressed character set may require from 30% to 50% less memory space for its storage.
The compression ratio possible can be 50:1 or higher de­pending on the data and algorithm used. TBITS can also be used to find boundaries of an object. As a character is need­ed, the data is expanded and stored in a RAM buffer. The expand instructions (SBITS, SBITPS) can also function as line drawing instructions.
Test Bit String
Syntax: TBITS option
Setup: R0 base address, source (byte address)
R1 starting source bit offset R2 destination run length limited code R3 maximum value run length limit R4 maximum source bit offset
Option: 1 count set bits until a clear bit is found
0 count clear bits until a set bit is found
Note: R0, R3 and R4 are not modified by the instruction execution. R1
reflects the new bit offset. R2 holds the result.
This instruction starts at the base address, adds a bit offset, and tests the bit for clear if ‘‘option’’
e
0 (and for set if
‘‘option’’
e
1). If clear (or set), the instruction increments to the next higher bit and tests for clear (or set). This testing for clear proceeds through memory until a set bit is found or until the maximum source bit offset or maximum run length value is reached. The total number of clear bits is stored in the destination as a run length value.
When TBITS finds a set bit and terminates, the bit offset is adjusted to reflect the current bit address. Offset is then ready for the next TBITS instruction with ‘‘option’’
e
0. After the instruction is executed, the F flag is set to the value of the bit previous to the bit currently being pointed to (i.e., the value of the bit on which the instruction completed execu­tion). In the case of a starting bit offset exceeding the maxi­mum bit offset (R1
t
R4), the F flag is set if the option was 1 and clear if the option was 0. The L flag is set when the desired bit is found, or if the run length equalled the maxi­mum run length value and the bit was not found. It is cleared otherwise.
Figure 2-21
shows the TBITS instruction format.
23 15 8 7 0
00000000S010011100001110
#
S is set for ‘TBITS 1’ and clear for ‘TBITS 0’.
FIGURE 2-21. TBITS Instruction Format
23
2.0 Architectural Description (Continued)
Set Bit String
Syntax: SBITS
Setup: R0 base address of the destination
R1 starting bit offset (signed) R2 number of bits to set (unsigned) R3 address of string look-up table
Note: When the instruction terminates, the registers are returned un-
changed.
SBITS sets a number of contiguous bits in memory to 1, and is typically used for data expansion operations. The instruc­tion draws the number of ones specified by the value in R2, starting at the bit address provided by registers R0 and R1. In order to maximize speed and allow drawing of patterned lines, an external 1k byte lookup table is used. The lookup table is specified in the NS32CG16 Printer/Display Proces­sor Programmer’s Reference Supplement.
When SBITS begins executing, it compares the value in R2 with 25. If the value in R2 is less than or equal to 25, the F flag is cleared and the appropriate number of bits are set in memory. If R2 is greater than 25, the F flag is set and no other action is performed. This allows the software to use a faster algorithm to set longer strings of bits.
Figure 2-22
shows the SBITS instruction format.
23 15 8 7 0
000000000011011100001110
FIGURE 2-22. SBITS Instruction Format
Set BIT Perpendicular String
Syntax: SBITPS
Setup: R0 base address, destination (byte address)
R1 starting bit offset R2 number of bits to set R3 destination warp (signed value, in bits)
Note: When the instruction terminates, the R0 and R3 registers are re-
turned unchanged. R1 becomes the final bit offset. R2 is zero.
The SBITPS can be used to set a string of bits in any direc­tion. This allows a font to be expanded with a 90 or 270 degree rotation, as may be required in a printer application. SBITPS sets a string of bits starting at the bit address speci­fied in registers R0 and R1. The number of bits in the string is specified in R2. After the first bit is set, the destination warp is added to the bit address and the next bit is set. The process is repeated until all the bits have been set. A nega­tive raster warp offset value leads to a 90 degree rotation. A positive raster warp value leads to a 270 degree rotation. If the R3 value is
e
(space warpa1orb1), then the result is
a 45 degree line. If the R3 value is
a
1orb1, a horizontal
line results.
SBITS and SBITPS allow expansion on any 90 degree an­gle, giving portrait, landscape and mirror images from one font.
Figure 2-23
shows the SBITPS instruction format.
23 15 8 7 0
000000000010111100001110
FIGURE 2-23. SBITPS Instruction Format
TL/EE/10818– 9
FIGURE 2-24. Bus Activity for a Simple BITBLT Operation
Note 1: This example is for a block 4 words wide and 1 line high. Note 2: The sequence is common with all logical operations of the DP8510/DP8511 BPU. Note 3: Mask values, shift values and number of bit planes do not affect the performance. Note 4: Zero wait states are assumed throughout the BITBLT operation. Note 5: The extra read is performed when the BPU pipeline register needs to be preloaded.
24
2.0 Architectural Description (Continued)
2.5.3.3.1 Magnifying Compressed Data
Restoring data is just one application of the SBITS and SBITPS instructions. Multiplying the ‘‘length’’ operand used by the SBITS and SBITPS instructions causes the resulting pattern to be wider, or a multiple of ‘‘length’’.
As the pattern of data is expanded, it can be magnified by 2x, 3x, 4x, . . . , 10x and so on. This creates several sizes of the same style of character, or changes the size of a logo. A magnify in both dimensions X and Y can be accomplished by drawing a single line, then using the MOVS (Move String) or the BB instructions to duplicate the line, maintaining an equal aspect ratio.
More information on this subject is provided in the NS32CG16 Printer/Display Processor Programmer’s Refer­ence Supplement.
3.0 Functional Description
This chapter provides details on the functional characteris­tics of the NS32FX16 microprocessor.
The chapter is divided into five main sections:
Instruction Execution, Exception Processing, Debugging, DSP Module and System Interface.
3.1 INSTRUCTION EXECUTION
To execute an instruction, the NS32FX16 performs the fol­lowing operations:
#
Fetch the Instruction
#
Read Source Operands, if Any (1)
#
Calculate Results
#
Write Result Operands, if Any
#
Modify Flags, if Necessary
#
Update the Program Counter
Under most circumstances, the CPU can be conceived to execute instructions by completing the operations above in strict sequence for one instruction and then beginning the sequence of operations for the next instruction. However, due to the internal instruction pipelining, as well as the oc­currence of exceptions, the sequence of operations per­formed during the execution of an instruction may be al­tered. Furthermore, exceptions also break the sequentiality of the instructions executed by the CPU.
Note 1: In this and following sections, memory locations read by the CPU to
calculate effective addresses for Memory-Relative and External ad­dressing modes are considered like source operands, even if the effective address is being calculated for an operand with access class of write.
3.1.1 Operating States
The CPU has four operating states regarding the execution of instructions and the processing of exceptions: Reset, Ex­ecuting Instructions, Processing An Exception and Waiting­For-An-Interrupt. The various states and transitions be­tween them are shown in
Figure 3-1
.
Whenever the RSTI signal is asserted, the CPU enters the reset state. The CPU remains in the reset state until the RSTI
signal is driven inactive, at which time it enters the Executing-Instructions state. In the Reset state the contents of certain registers are initialized. Refer to Section 3.5.4 for details.
TL/EE/10818– 10
FIGURE 3-1. Operating States
In the Executing-Instructions state, the CPU executes in­structions. It will exit this state when an exception is recog­nized or a WAIT instruction is encountered. At which time it enters the Processing-An-Exception state or the Waiting­For-An-Interrupt state respectively.
While in the Processing-An-Exception state, the CPU saves the PC, PSR and MOD register contents on the stack and reads the new PC and module linkage information to begin execution of the exception service procedure.
Following the completion of all data references required to process an exception, the CPU enters the Executing-In­structions state.
In the Waiting-For-An-Interrupt state, the CPU is idle. A spe­cial status identifying this state is presented on the system interface (Section 3.5). When an interrupt is detected, the CPU enters the Processing-An-Exception State.
3.1.2 Instruction Endings
The NS32FX16 checks for exceptions at various points while executing instructions. Certain exceptions, like inter­rupts, are in most cases recognized between instructions. Other exceptions, like Divide-By-Zero Trap, are recognized during execution of an instruction. When an exception is recognized during execution of an instruction, the instruction ends in one of four possible ways: completed, suspended, terminated, or partially completed. Each type of exception causes a particular ending, as specified in Section 3.2.
25
3.0 Functional Description (Continued)
3.1.2.1 Completed Instructions
When an exception is recognized after an instruction is completed, the CPU has performed all of the operations for that instruction and for all other instructions executed since the last exception occurred. Result operands have been written, flags have been modified, and the PC saved on the Interrupt Stack contains the address of the next instruction to execute. The exception service procedure can, at its con­clusion, execute the RETT instruction (or the RETI instruc­tion for maskable interrupts), and the CPU will begin execut­ing the instruction following the completed instruction.
3.1.2.2 Suspended Instructions
An instruction is suspended when one of several trap condi­tions is detected during execution of the instruction. A sus­pended instruction has not been completed, but all other instructions executed since the last exception occurred have been completed. Result operands and flags due to be affected by the instruction may have been modified, but only modifications that allow the instruction to be executed again and completed can occur. For certain exceptions (Trap (UND)) the CPU clears the P-flag in the PSR before saving the copy that is pushed on the Interrupt Stack. The PC saved on the Interrupt Stack contains the address of the suspended instruction.
To complete a suspended instruction, the exception service procedure takes either of two actions:
1. The service procedure can simulate the suspended in­struction’s execution. After calculating and writing the in­struction’s results, the flags in the PSR copy saved on the Interrupt Stack should be modified, and the PC saved on the Interrupt Stack should be updated to point to the next instruction to execute. The service procedure can then execute the RETT instruction, and the CPU begins exe­cuting the instruction following the suspended instruction. This is the action taken when floating-point instructions are simulated by software in systems without a hardware floating-point unit.
2. The suspended instruction can be executed again after the service procedure has eliminated the trap condition that caused the instruction to be suspended. The service procedure should execute the RETT instruction at its con­clusion; then the CPU begins executing the suspended instruction again. This is the action taken by a debugger when it encounters a BPT instruction that was temporarily placed in another instruction’s location in order to set a breakpoint.
Note 1: It may be necessary for the exception service procedure to alter the
P-flag in the PSR copy saved on the Interrupt Stack: If the exception service procedure simulates the suspended instruction and the P­flag was cleared by the CPU before saving the PSR copy, then the saved T-flag must be copied to the saved P-flag (like the floating­point instruction simulation described above). Or if the exception service procedure executes the suspended instruction again and the P-flag was not cleared by the CPU before saving the PSR copy, then the saved P-flag must be cleared (like the breakpoint trap de­scribed above). Otherwise, no alteration to the saved P-flag is nec­essary.
3.1.2.3 Terminated Instructions
An instruction being executed is terminated when reset oc­curs. Any result operands and flags due to be affected by the instruction are undefined, as is the contents of the PC.
3.1.2.4 Partially Completed Instructions
When an interrupt condition is recognized during execution of a string instruction, the instruction is said to be partially completed. A partially completed instruction has not com­pleted, but all other instructions executed since the last ex­ception occurred have been completed. Result operands and flags due to be affected by the instruction may have been modified, but the values stored in the string pointers and other general-purpose registers used during the instruc­tion’s execution allow the instruction to be executed again and completed.
The CPU clears the P-flag in the PSR before saving the copy that is pushed on the Interrupt Stack. The PC saved on the Interrupt Stack contains the address of the partially completed instruction. The exception service procedure can, at its conclusion, simply execute the RETT instruction (or the RETI instruction for maskable interrupts), and the CPU will resume executing the partially completed instruc­tion.
3.1.3 Slave Processor Instructions
The NS32FX16 supports only one group of instructions, the floating-point instruction set, as being executable by a slave processor. The floating-point instruction set is validated by the F-bit in the CFG register.
If a floating-point instruction is encountered and the F-bit in the CFG register is not set, a Trap (UND) will result, without any slave processor communication attempted by the CPU. This allows software emulation in case an external floating­point unit (FPU) is not used.
3.1.3.1 Slave Processor Protocol
Slave Processor instructions have a three-byte Basic In­struction field, consisting of an ID Byte followed by an Oper­ation Word. The ID Byte has three functions:
1. It identifies the instruction as being a Slave Processor instruction.
2. It specifies which Slave Processor will execute it.
3. It determines the format of the following Operation Word of the instruction.
Upon receiving a Slave Processor instruction, the CPU initi­ates the sequence outlined in
Figure 3-2
. While applying Status Code 1111 (Broadcast ID, Section 3.5.5.1), the CPU transfers the ID Byte on the least-significant half of the Data Bus (AD0 – AD7). All Slave Processors input this byte and decode it. The Slave Processor selected by the ID Byte is activated, and from this point the CPU is communicating only with it. If any other slave protocol was in progress (e.g., an aborted Slave instruction), this transfer cancels it.
26
3.0 Functional Description (Continued)
The CPU next sends the Operation Word while applying Status Code 1101 (Transfer Slave Operand, Section
3.5.5.1). Upon receiving it, the Slave Processor decodes it, and at this point both the CPU and the Slave Processor are aware of the number of operands to be transferred and their sizes. The Operation Word is swapped on the Data Bus; that is, bits 0 –7 appear on pins AD8–AD15 and bits 8–15 appear on pins AD0 –AD7.
Using the Address Mode fields within the Operation Word, the CPU starts fetching operands and issuing them to the Slave Processor. To do so, it references any Addressing Mode extensions which may be appended to the Slave Processor instruction. Since the CPU is solely responsible for memory accesses, these extensions are not sent to the Slave Processor. The Status Code applied is 1101 (Transfer Slave Processor Operand, Section 3.5.5.1).
After the CPU has issued the last operand, the Slave Proc­essor starts the actual execution of the instruction. Upon completion, it will signal the CPU by pulsing SPC
low.
While the Slave Processor is executing the instruction, the CPU is free to prefetch instructions into its queue. If it fills the queue before the Slave Processor finishes, the CPU will wait, applying Status Code 0011 (Waiting for Slave).
Upon receiving the pulse on SPC
, the CPU uses SPC to read a Status Word from the Slave Processor, applying Status Code 1110 (Read Slave Status). This word has the format shown in
Figure 3-3
. If the Q-bit (‘‘Quit’’, Bit 0) is set, this indicates that an error was detected by the Slave Proc­essor. The CPU will not continue the protocol, but will imme-
Status Combinations: Send ID (ID): Code 1111 Xfer Operand (OP): Code 1101 Read Status (ST): Code 1110
Step Status Action
1 ID CPU Sends ID Byte 2 OP CPU Sends Operation Word 3 OP CPU Sends Required Operands 4 Ð Slave Starts Execution.
CPU Pre-Fetches.
5 Ð Slave Pulses SPC
Low
6 ST CPU Reads Status Word.
(Trap? Alter Flags?)
7 OP CPU Reads Results (If Any).
FIGURE 3-2. Slave Processor Protocol
diately trap through the Slave vector in the Interrupt Table. Certain Slave Processor instructions cause CPU PSR bits to be loaded from the Status Word.
The last step in the protocol is for the CPU to read a result, if any, and transfer it to the destination. The Read cycles from the Slave Processor are performed by the CPU while applying Status Code 1101 (Transfer Slave Operand).
3.1.3.2 Floating-Point Instructions
Table 3-1 gives the protocols followed for each Floating­Point instruction. The instructions are referenced by their mnemonics. For the bit encodings of each instruction, see Appendix A.
TABLE 3-1. Floating-Point Instruction Protocols
Mnemonic
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits
Class Class Issued Issued Type and Dest. Affected
ADDf read.f rmw.f f f f to Op.2 none SUBf read.f rmw.f f f f to Op.2 none MULf read.f rmw.f f f f to Op.2 none DIVf read.f rmw.f f f f to Op.2 none
MOVf read.f write.f f N/A f to Op.2 none ABSf read.f write.f f N/A f to Op.2 none NEGf read.f write.f f N/A f to Op.2 none
CMPf read.f read.f f f N/A N,Z,L
FLOORfi read.f write.i f N/A i to Op.2 none TRUNCfi read.f write.i f N/A i to Op.2 none ROUNDfi read.f write.i f N/A i to Op.2 none
MOVFL read.F write.L F N/A L to Op.2 none MOVLF read.L write.F L N/A F to Op.2 none
MOVif read.i write.f i N/A f to Op.2 none
LFSR read.D N/A D N/A N/A none SFSR N/A write.D N/A N/A D to Op. 2 none
POLYf read.f read.f f f f to F0 none DOTf read.f read.f f f f to F0 none SCALBf read.f rmw.f f f f to Op. 2 none LOGBf read.f write.f f N/A f to Op. 2 none
Notes:
D
e
Double Word
i
e
Integer size (B, W, D) specified in mnemonic.
f
e
Floating-Point type (F, L) specified in mnemonic.
N/A
e
Not Applicable to this instruction.
27
Loading...
+ 61 hidden pages