DATA SHEET
BIPOLAR ANALOG INTEGRATED CIRCUIT
PC2795GV
µµµµ
GENERAL PURPOSE L-BAND DOWN CONVERTER
DESCRIPTION
µ
The
PC2795GV is Silicon monolithic IC designed for L-band down converter. This IC consists of double
balanced mixer, local osc illat o r , loc al osc illat ion buf fer amplifier , IF buffer am plif ier , and voltage regulator .
The package is 8-pin SSOP suitable for high-density surface mount .
FEATURES
• Wide band operation fRF = 0.95 to 2.15 GHz
• Supply voltage 5 V
• Low distortion IM
• Packaged in 8-pin SSOP suitable for high-density mounting
3
= 55 dBc
ORDERING INFORMATION
PART NUMBER PACKAGE PACKAGE STYLE
PC2795GV-E1 8-pin plastic SSOP (175 mil) Embossed tape 8 mm wide. 1 k/REEL
µ
Pin 1 indicates pull-out direction of tape
For evaluation sample order, please contact your local NEC office. ( Par t num ber f or sample order: µPC2795GV)
INTERNAL BL OCK DIAGRAM PIN CONFIGURATION (Top View)
87 65
1. RF input
2. GND
8
3. Vcc
4. IF out
7
5. OSC Base 2
6. OSC Collector 1
6
7. OSC Collector 2
8. OSC Base 1
MIX
OSC
Buffer
OSC
REG1 REG2
IF
Buffer
1
2
3
45
Document No. P11734EJ2V0DS00 (2nd edition)
Date Published June 1998 N CP(K)
Printed in Japan
4321
Caution: Electro- st atic sensitive devi ces
The information in this document is subject to change without notice.
1996©
PIN EXPLANATIONS
µµµµ
PC2795GV
Pin
NO.
Symbol
1 RF IN 2.1 RF signal input pin.
2 GND 0.0 Ground pin.
CC
3V
4 IF OUT 2.3 IF output pin.
Pin Volt
(V, TYP.)
Double balanced mixer with Tr.1
and Tr. 2.
5.0 Power supply pin.
This pin is assigned for the emitter
follower output with low impedance.
Explanation Equivalent Circuit
Vcc
IF
Lo Buffer
1
Vcc
4
5OSC
Base 2
6OSC
Collector 1
7OSC
Collector 2
8OSC
Base 1
2
2.8 Base pin of oscillator with balanced
amplifier.
Connected to LC resonator through
cuppling capacitor.
5.0 Collector pin of oscillator with
balanced amplifier.
Assemble LC resonator with 5 pin
through capacitor to oscillate with
active feedback loop. Loads should
be connected to this pin.
5.0 Collector pin of oscillator with
balanced amplifier.
Assemble LC resonator with 8 pin
through capacitor to oscillate with
active feedback loop. Loads should
be connected to this pin.
2.8 Base pin of oscillator with balanced
amplifier.
Connected to LC resonator through
cuppling capacitor.
8 6 7 5
µµµµ
PC2795GV
ABSOLUTE MAXIM UM RATINGS (TA = 25
C, unless otherwi se speci f ied)
°°°°
PARAMETER SYMBOL TEST CONDITION RATINGS UNIT
Supply Voltage V
Power Dissipation P
Operating Ambient Temperature T
Storage Temperature T
*1
Mounted on 50 × 50 × 1.6 mm double epoxy glass board.
CC
TA = 85 °C
D
A
stg
*1
6.0 V
250 mW
−40 to +85 °C
−55 to +150 °C
RECOMMENDED O PERATING RANGE
PARAMETER SYMBOL MIN. TYP. MAX. UNIT
Supply Voltage V
Operating Ambient Temperature T
ELECTRICAL CHARACTERISTICS ( TA = 25
PARAMETER SYMBOL MIN. TYP. MAX. UNIT TEST CONDITIONS
Circuit Current I
Lower Input Frequency fRF1 0.95 GH
Upper Input Frequency fRF22.15GH
Conversion Gain 1 CG1 8.0 11.0 14.0 dB fRF = 950 MHz, PRF = −30 dBm,
Conversion Gain 2 CG2 6.5 9.5 12.5 dB fRF = 2.15 GHz, PRF = −30 dBm,
Noise Figure 1 NF1 13.5 16.0 dB fRF = 950 MHz, fIF = 402 MHz,
Noise Figure 2 NF2 14.0 16.5 dB fRF = 2.15 GHz, fIF = 402 MHz,
Maximum Output Power 1 P
Maximum Output Power 2 P
CC
A
CC
O(sat)
1 2.0 5.0 dBm fRF = 950 MHz, PRF = 0 dBm,
O(sat)
2 0.0 3.5 dBm fRF = 2.15 GHz, PRF = 0 dBm,
4.5 5.0 5.5 V
−40 +25 +85 °C
C, VCC = 5 V; *1)
°°°°
25.5 35.0 48.0 mA no input signal
Z
Z
IF
f
= 402 MHz, P
IF
= 402 MHz, P
f
OSC
= −10 dBm
P
OSC
= −10 dBm
P
IF
= 402 MHz, P
f
IF
= 402 MHz, P
f
OSC
OSC
OSC
OSC
= −10dBm
= −10 dBm
= −10 dBm
= −10 dBm
*1
By measurement circuit.
STANDARD CHARACTERISTICS (T
PARAMETER SYMBOL MIN. TYP. MAX. UNIT TEST CONDITIONS
3rd Order Intermodulation
Distortion 1
3rd Order Intermodulation
Distortion 2
Oscillator Frequency f
*1
By measurement circuit.
IM31 55 dBc fRF = 950, 980 MHz, PRF = −25 dBm,
IM32 55 dBc fRF = 2.15, 2.18 GHz, PRF = −25 dBm,
osc
= 25
A
C, VCC = 5 V; *1)
°°°°
1.35 2.65 GH
OSC
= 1430 MHz, P
f
OSC
= 2.63 GHz, P
f
Z
OSC
= −10 dBm
OSC
= −10 dBm
3
TYPICAL CHARACTERISTICS
µµµµ
PC2795GV
16
14
12
10
A
= –40 ˚C
8
T
6
4
CG - Conversion Gain - dB
2
0
0.8 1.2 1.6
RF
- Input Frequency - GHz
f
20
18
16
14
12
10
8
6
NF - Noise Figure - dB
4
2
0
0.8
1.2 1.6
RF
- Input Frequency - GHz
f
fRF vs. CG
fRF vs. NF
A
= 85 ˚C
T
T
A
= 25 ˚C
A
= 85 ˚C
T
VCC = 5 V
IF
= 402 MH
f
PRF = –30 dBm
OSC
= –10 dBm
P
2.0
T
A
= –40 ˚C
A
= 25 ˚C
T
VCC = 5 V
IF
= 402 MH
f
P
OSC
= –10 dBm
2.0
2.4
16
fRF vs. CG
14
12
10
8
T
A
= –40 ˚C
A
= 25 ˚C
T
A
= 85 ˚C
T
6
4
Z
2
0
0.8 1.2 1.6
16
RF
- Input Frequency - GHz
f
fIF vs. CG
CG - Conversion Gain - dB
VCC = 5 V
IF
= 480 MH
f
PRF = –30 dBm
OSC
= –10 dBm
P
2.0
Z
2.4
14
12
10
A
= 25 ˚C
T
8
A
=–40 ˚C
6
4
CG - Conversion Gain - dB
Z
2.4
2
0
300 400 500
IF
- Intermediate Frequency - MHz
f
T
A
= 85 ˚C
T
VCC = 5 V
RF
= 2.15 GH
f
PRF = –30 dBm
OSC
= –10 dBm
P
600
Z
–10
–20
–30
–40
Pout - Output Power - dBm
–50
–40 –30 –20
4
P
OSC
vs. P
OUT
fRF = 950 MH
–10 10
OSC
- Oscillator Input Power - dBm
P
Z
fRF = 2.15 GH
VCC = 5 V
RF
= –30 dBm
P
IF
= 480 MH
f
TA = 25
˚C
0
VCC vs. I
50
40
Z
CC
T
A
= 25 ˚C
30
A
= 85 ˚C
20
- Circuit Current - mA
CC
I
10
Z
0
012
T
CC
- Supply Voltage - V
V
TA = –40 ˚C
4
356