MM54HC27/MM74HC27
Triple 3-Input NOR Gate
MM54HC27/MM74HC27 Triple 3-Input NOR Gate
January 1988
General Description
These NOR gates utilize advanced silicon-gate CMOS technology, to achieve operating speeds similar to LS-TTL gates
with the low power consumption of standard CMOS integrated circuits. All gates have buffered outputs, providing
high noise immunity and the ability to drive 10 LS-TTL loads.
The 54HC/74HC logic family is functionally as well as pinout compatible with the standard 54LS/74LS logic family.
All inputs are protected from damage due to static discharge by internal diode clamps to V
and ground.
CC
Connection and Logic Diagrams
Dual-In-Line Package
Top View
Order Number MM54HC27 or MM74HC27
Features
Y
Typical propagation delay: 8 ns
Y
Wide operating supply voltage range: 2 –6V
Y
Low input current:k1 mA
Y
Low quiescent supply current: 20 mA maximum
(74HC Series)
Y
Fanout of 10 LS-TTL Loads
TL/F/5300– 1
TL/F/5300– 2
C
1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.
TL/F/5300
Absolute Maximum Ratings (Notes1&2)
Operating Conditions
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Supply Voltage (V
CC
)
DC Input Voltage (VIN)
DC Output Voltage (V
OUT
)
Clamp Diode Current (IIK,IOK)
DC Output Current, per pin (I
OUT
)
DC VCCor GND Current, per pin (ICC)
Storage Temperature Range (T
STG
b
b
)
b
0.5 toa7.0V
1.5 to V
CC
0.5 to V
CC
g
g
b
g
65§Ctoa150§C
a
1.5V
a
0.5V
20 mA
25 mA
50 mA
Power Dissipation (PD)
(Note 3) 600 mW
Supply Voltage (V
)26V
CC
DC Input or Output Voltage 0 V
(V
IN,VOUT
)
Operating Temp. Range (T
MM74HC
MM54HC
Input Rise or Fall Times
e
2.0V(tr,tf) 1000 ns
V
CC
e
V
4.5V 500 ns
CC
e
V
6.0V 400 ns
CC
S.O. Package only 500 mW
Lead Temperature (T
(Soldering 10 seconds) 260
)
L
C
§
DC Electrical Characteristics (Note 4)
Symbol Parameter Conditions V
CC
A
e
T
25§C
Typ Guaranteed Limits
V
IH
Minimum High Level 2.0V 1.5 1.5 1.5 V
Input Voltage 4.5V 3.15 3.15 3.15 V
6.0V 4.2 4.2 4.2 V
V
IL
Maximum Low Level 2.0V 0.5 0.5 0.5 V
Input Voltage** 4.5V 1.35 1.35 1.35 V
6.0V 1.8 1.8 1.8 V
V
OH
Minimum High Level V
Output Voltage
e
V
IN
IL
s
I
20 mA 2.0V 2.0 1.9 1.9 1.9 V
l
l
OUT
4.5V 4.5 4.4 4.4 4.4 V
6.0V 6.0 5.9 5.9 5.9 V
e
V
V
IN
IL
s
I
4.0 mA 4.5V 4.2 3.98 3.84 3.7 V
l
l
OUT
s
I
5.2 mA 6.0V 5.7 5.48 5.34 5.2 V
l
l
OUT
V
OL
Maximum Low Level V
Output Voltage
e
VIHor V
l
I
IN
OUT
IL
s
20 mA 2.0V 0 0.1 0.1 0.1 V
l
4.5V 0 0.1 0.1 0.1 V
6.0V 0 0.1 0.1 0.1 V
e
V
VIHor V
IN
I
l
OUT
I
l
OUT
I
IN
I
CC
Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.
Note 2: Unless otherwise specified all voltages are referenced to ground.
Note 3: Power Dissipation temperature derating Ð plastic ‘‘N’’ package:
Note 4: For a power supply of 5V
with this supply. Worst case V
I
**V
Maximum Input V
Current
Maximum Quiescent V
Supply Current I
g
and VILoccur at V
) occur for CMOS at the higher voltage and so the 6.0V values should be used.
OZ
limits are currently tested at 20% of VCC. The above VILspecification (30% of VCC) will be implemented no later than Q1, CY’89.
IL
IH
e
IN
e
IN
OUT
10% the worst case output voltages (VOH, and VOL) occur for HC at 4.5V. Thus the 4.5V values should be used when designing
IL
s
4.0 mA 4.5V 0.2 0.26 0.33 0.4 V
l
s
5.2 mA 6.0V 0.2 0.26 0.33 0.4 V
l
VCCor GND 6.0V
g
0.1
VCCor GND 6.0V 2.0 20 40 mA
e
0 mA
b
12 mW/§C from 65§Cto85§C; ceramic ‘‘J’’ package:b12 mW/§C from 100§Cto125§C.
e
5.5V and 4.5V respectively. (The VIHvalue at 5.5V is 3.85V.) The worst case leakage current (IIN,ICC, and
CC
74HC 54HC
eb
T
40 to 85§CT
A
g
1.0
Min Max Units
)
A
b
b
40
55
eb
A
55 to 125§C
g
a
a
1.0 mA
CC
85
125
V
C
§
C
§
Units
2