MSD Pro-Billet Ready-to-Run
Chrysler V8 Distributor
PN 8388; 318, 340, 360, PN 8386; 383, 400
PN 8387; 426, 440
ONLINE PRODUCT REGISTRATION: Register your MSD product online and you’ll be entered
in our monthly 8.5mm Super Conductor Spark Plug Wire give-away! Registering your product
will help if there is ever a warranty issue with your product and helps the MSD R&D team create
new products that you ask for! Go to www.msdperformance.com/registration.
Important: Read these instructions before attempting the installation.
Parts Included:
1 - Pro-Billet Distributor
1 - Rotor, PN 8467
1 - Distributor Cap
1 - Advance Kit
1 - O-ring Seal
Note: The PN 8386 and PN 8387 distributors feature HEI style plug wire terminals. You may need to
change the terminals and boots of your wires. MSD offers a kit, PN 8848, that comes with nine
HEI style boots and terminals.
TIMING FUNCTIONS
Before continuing with the installation, here are a few definitions you should be aware of:
Initial Timing: This is the base timing (also referred to as idle timing) of the engine before the
centrifugal advance begins.
1 - Gray Tach Jumper
1 - Parts Bag
Replacement Cap
Distributor PN 8386, PN 8387 - PN 8431
Distributor PN 8388 - PN 8437 or PN 8433
:
Centrifugal Advance: The centrifugal (or mechanical) advance mechanism is made up of weights,
springs, advance cams, and an advance stop bushing. The amount and rate of advance that your
distributor is capable of is determined by the centrifugal timing. If you ever wish to lock out the
centrifugal advance, refer to the centrifugal advance section.
Total Timing: This is the total of the initial timing pl u s the centri f u g a l advance added tog e t h e r.
Example: 10° Initial + 25° centrifugal = 35° Total Timing (When checking Total timing, disconnect
anc cap the vacuum canister and plug the vacuum line).
Vacuum Advance: The vacuum advance will advance the timing up to 10° during partial throttle driving (with
15 lbs. of vacuum). The vacuum line should be routed to a ported vacuum outlet above the throttle plates.
RPM LIMIT AND TACHOMETER INFORMATION
Tach Signal: The Ready-to-Run Distributor features a Gray Tach Output wire which provides a clean signal
for most tachometers and even some aftermarket fuel injection systems. The signal output
is a 12 volt square wave, 20° duty cycle. This wire is also responsible for programming the
built-in rev limiter.
Rev Limiter: The Ready-to-Run Distributor has a built-in rev limit that can easily be adjusted from 2,000
rpm to over 10,000 rpm. The default is 10,000 rpm. To set the rev limiter, run the engine to half
the desired rpm then ground the Gray tach wire (a jumper is supplied) for approximately one
second. Every time the key is turned to the On position, the tach will display the programmed
rpm limit. See page 8 for the programming procedure.
M S D • W W W . M S D P E R F O R M A N C E . C O M • ( 9 1 5 ) 8 5 7 - 5 2 0 0 • F A X ( 9 1 5 ) 8 5 7 - 3 3 4 4
2 INSTALLATION INSTRUCTIONS
CHOOSING AN ADVANCE CURVE
The function of the advance curve is to match the ignition timing to the burning rate of the fuel and
speed (rpm) of the engine. Any factor that changes the burning rate of the fuel or the engine speed
can cause a need for an ignition timing change. Figure 1 shows some of the factors that will affect
engine timing.
FACTOR Advance Timing Retard Timing
For For
Cylinder Pressure Low High
Vacuum High Low
Energy of Ignition Low High
Fuel Octane High Low
Mixture (Air/Fuel) Rich Lean
Temperature Cool Hot
Combustion Chamber Shape Open Compact
Spark Plug Location Offset Center
Combustion Turbulence Low High
Load Light Heavy
Figure 1 Ignition Timing Factors.
As you can see from the chart, most factors will change throughout the range of the engine operation.
The timing mechanism of the distributor must make timing changes based on these factors.
Example: An engine has 11:1 compression, a high energy ignition and turns 5,500 rpm. With the
specifications given, you will have to retard the timing for the high compression, low rpm and high
energy ignition. By comparing the engine’s specifications against the chart, a usable timing guideline
can be found. Engines with a combination of items from both columns will require a timing that is
set in the mid range.
Obviously a full technical explanation of correct ignition timing would be very complicated. The best
way to arrive at a suitable ignition curve for your engine is to use the Ignition Timing Factors Chart
as a guide and compare it to the Advance Graphs in Figure 4 until a suitable curve is found. When
selecting your advance curve, use detonation (engine ping) as an indicator of too much advance,
and a decrease in power as an indicator of too little advance.
TIPS ON SELECTING AN ADVANCE CURVE
• Use as much initial advance as possible without encountering excessive starter load.
• Start the centrifugal advance just above the idle rpm.
• The starting point o f the centrifugal advance c urve is controlled by the installed length and
tension of the spring.
• How quickly the centrifugal advance (slope) comes in is controlled by the spring stiffness. The
stiffer the spring, the slower the advance curve.
• The amount of advance is controlled by the advance bushing. The bigger the bushing, the
smaller the amount of advance.
M S D • W W W . M S D P E R F O R M A N C E . C O M • ( 9 1 5 ) 8 5 7 - 5 2 0 0 • F A X ( 9 1 5 ) 8 5 7 - 3 3 4 4
INSTALLATION INSTRUCTIONS 3
CENTRIFUGAL ADVANCE CURVE
SELECTING THE ADVANCE SPRINGS
The rate, or how quick the advance comes in
is determined by the type of springs which are
installed on the distributor. The MSD distributors
are equip ped with two Heavy Silver springs
install ed. These will give you the slowest
advance curve possible. The parts kit contains
two additional sets of springs which can be used
to match the advance curve to your particular
application. Refer to the Spring Combination
Chart (Figure 3) for combinations tha t can be
achieved.
To change the springs, remove the cap and rotor
and use needlenose pliers to remove the springs.
Be sure the new springs seat in the groove on
the pin.
Timing Curve From Factory
Figure 2 The Factory Equipped Curve.
SPRING COMBINATION RATE OF ADVANCE FIGURE 4
2- Heavy Silver SLOWEST A
1- Heavy Silver B
1- Light Blue
1-Heavy Silver C
1-Light Silver
2- Light Blue D
1- Light Silver E
1- Light Blue
2- Light Silver FASTEST F
Figure 3 Spring Combination Chart.
Figure 4 Advance Curves.
M S D • W W W . M S D P E R F O R M A N C E . C O M • ( 9 1 5 ) 8 5 7 - 5 2 0 0 • F A X ( 9 1 5 ) 8 5 7 - 3 3 4 4