Motorola MHPM7B30A60B Datasheet


SEMICONDUCTOR TECHNICAL DATA
Order this document
by MHPM7B30A60B/D

  
Integrated Power Stage for 3.0 hp Motor Drives
This module integrates a 3–phase input rectifier bridge, 3–phase output inverter and brake transistor/diode in a single convenient package. The output inverter utilizes advanced insulated gate bipolar transistors (IGBT) matched with free–wheeling diodes to give optimal dynamic performance. It has been configured for use as a three–phase motor drive module or for many other power switching applications. The top connector pins have been designed for easy interfacing to the user’s control board.
Short Circuit Rated 10 µs @ 25°C
Pin-to-Baseplate Isolation Exceeds 2500 V ac (rms)
Convenient Package Outline
UL
Access to Positive and Negative DC Bus
Recognized and Designed to Meet VDE
Motorola Preferred Device
30 AMP, 600 VOLT
HYBRID POWER MODULE
PLASTIC PACKAGE
CASE 440A–01, Style 1
MAXIMUM DEVICE RATINGS (TJ = 25°C unless otherwise noted)
Rating Symbol Value Unit
INPUT RECTIFIER BRIDGE
Repetitive Peak Reverse Voltage V Average Output Rectified Current (1) I Peak Non-repetitive Surge Current I
OUTPUT INVERTER
IGBT Reverse Voltage V Gate-Emitter Voltage V Continuous IGBT Collector Current I Peak IGBT Collector Current – (PW = 1.0 ms) (2) I Continuous Free-Wheeling Diode Current I Peak Free-Wheeling Diode Current – (PW = 1.0 ms) (2) I IGBT Power Dissipation P Free-Wheeling Diode Power Dissipation P IGBT Junction Temperature Range T Free-Wheeling Diode Junction Temperature Range T
(1) 1 cycle = 50 or 60 Hz (2) 1 ms = 1.0% duty cycle
Preferred devices are Motorola recommended choices for future use and best overall value.
RRM
O
FSM
CES
GES
C
C(pk)
F
F(pk)
D D
J J
600 V
30 A
360 A
600 V
± 20 V
30 A 60 A 30 A 60 A 85 W
40 W – 40 to +125 °C – 40 to +125 °C
Motorola, Inc. 1995
MOTOROLA
MHPM7B30A60B
1
MAXIMUM DEVICE RATINGS (continued) (TJ = 25°C unless otherwise noted)
Rating Symbol Value Unit
BRAKE CIRCUIT
IGBT Reverse Voltage V Gate-Emitter Voltage V Continuous IGBT Collector Current I Peak IGBT Collector Current (PW = 1.0 ms) (2) I IGBT Power Dissipation PD 85 W Diode Reverse Voltage V Continuous Output Diode Current I Peak Output Diode Current (PW = 1.0 ms) (2) I
TOTAL MODULE
Isolation Voltage – (47–63 Hz, 1.0 Minute Duration) V Ambient Operating Temperature Range T Operating Case Temperature Range T Storage Temperature Range T Mounting Torque 6.0 lb–in
CES
GES
C
C(pk)
RRM
F
F(pk)
ISO
A C
stg
600 V
± 20 V
30 A
60 A
600 V
30 A
60 A
2500 VAC – 40 to + 85 °C – 40 to + 90 °C
– 40 to +150 °C
ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
INPUT RECTIFIER BRIDGE
Reverse Leakage Current (V Forward Voltage (IF = 30 A) V Thermal Resistance (Each Die) R
OUTPUT INVERTER
Gate-Emitter Leakage Current (VCE = 0 V, VGE = ± 20 V) I Collector-Emitter Leakage Current (VCE = 600 V, VGE = 0 V)
Gate-Emitter Threshold Voltage (VCE = VGE, IC = 1.0 mA) V Collector-Emitter Breakdown Voltage (IC = 10 mA, VGE = 0) V Collector-Emitter Saturation Voltage (IC = 30 A, VGE = 15 V) V Input Capacitance (VGE = 0 V, VCE = 10 V, f = 1.0 MHz) Cies 6600 pF Input Gate Charge (VCE = 300 V, IC = 30 A, VGE = 15 V) Q Fall Time – Inductive Load
(VCE = 300 V, IC = 30 A, VGE = 15 V, RG = 150 )
Turn-On Energy
(VCE = 300 V, IC = 30 A, VGE = 15 V, RG = 150 )
Turn-Off Energy
(VCE = 300 V, IC = 30 A, VGE = 15 V, RG = 150 ) Diode Forward Voltage (IF = 30 A, VGE = 0 V) V Diode Reverse Recovery Time
(IF = 30 A, V = 300 V, dI/dt = 100 A/µs) Diode Stored Charge (IF = 30 A, V = 300 V, di/dt = 100 A/µs) Q Thermal Resistance – IGBT (Each Die) R Thermal Resistance – Free-Wheeling Diode (Each Die) R
(2) 1.0 ms = 1.0% duty cycle
= 600 V) I
RRM
TJ = 25°C TJ = 125°C
R
F
θJC
GES
I
CES
GE(th)
(BR)CES
CE(SAT)
T
t
fi
E
(on)
E
(off)
F
t
rr
rr
θJC θJC
10 50 µA – 1.1 1.5 V – 2.7 °C/W
± 20 µA
– –
4.0 6.0 8.0 V
600 700 V
2.3 3.5 V
220 nC
300 500 ns – 2.5 mJ
2.5 mJ
1.35 2.2 V
150 200 ns – 750 900 nC – 1.2 °C/W – 2.7 °C/W
– –
100
2.0
mA
µA
MHPM7B30A60B
2
MOTOROLA
ELECTRICAL CHARACTERISTICS (continued) (TJ = 25°C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
BRAKE CIRCUIT
Gate-Emitter Leakage Current (VCE = 0 V, VGE = ± 20 V) I Collector-Emitter Leakage Current (VCE = 600 V, VGE = 0 V)
TJ = 25°C
TJ = 125°C Gate-Emitter Threshold Voltage (VCE = VGE, IC = 1.0 mA) V Collector-Emitter Breakdown Voltage (IC = 10 mA, VGE = 0) V Collector-Emitter Saturation Voltage (VGE = 15 V, IC = 30 A) V Input Capacitance (VGE = 0 V, VCE = 10 V, f = 1.0 MHz) Cies 6600 pF Input Gate Charge (VCE = 300 V, IC = 30 A, VGE = 15 V) Q Fall Time – Inductive Load
(VCE = 300 V, IC = 30 A, VGE = 15 V, RG = 150 )
Turn-On Energy
(VCE = 300 V, IC = 30 A, VGE = 15 V, RG = 150 )
Turn-Off Energy
(VCE = 300 V, IC = 30 A, VGE = 15 V, RG = 150 ) Diode Forward Voltage (IF = 30 A) V Diode Reverse Leakage Current I Thermal Resistance – IGBT R Thermal Resistance – Diode R
GES
I
CES
GE(th)
(BR)CES
CE(SAT)
T
t
fi
E
(on)
E
(off)
F
R
θJC θJC
± 20 µA
– –
4.0 6.0 8.0 V
600 700 V
2.3 3.5 V
220 nC
300 500 ns
2.5 mJ
2.5 mJ – 1.35 2.0 V – 50 µA – 1.2 °C/W – 2.7 °C/W
– –
100
2.0
mA
µA
MOTOROLA
MHPM7B30A60B
3
20 U
19 V
18 W
Output
3–Phase
IGBT/Diode
Bridge
Q1 Q3 Q5
17
P1 P2
D5D1
13
G5
D3
11
G3
9
G1
E5
E3
E1
12
10
8
D6D2
DEVICE INTEGRATION
G6
D4
G4
2
Q2 Q4 Q6
NC
G2
16 17 14
B
21
Brake
Diode
IGBT/
Input
Bridge
Rectifier
3–Phase
terminations but not
connected internally.
These pins are physical 3
4
5
NC
NC
NC
Q7
G7
15
S
23
T 22
R
24
Figure 1. Integrated Power Stage Schematic
N2N1
625
= PIN NUMBER IDENTIFICATION
MHPM7B30A60B
4
MOTOROLA
T ypical Characteristics
50
TJ = 25°C
45 40 35 30 25 20 15
, COLLECTOR CURRENT (A)
C
10
I
5 0
01 2 3 4 5
VGE = 18 V
15 V
VCE, COLLECTOR–EMITTER VOL TAGE (V)
Figure 2. Output Inverter Collector Current I
versus Collector–Emitter V oltage V
10
IC = 15 A
8
6
4
2
, COLLECTOR–EMITTER VOL TAGE (V)
CE
V
0
61012141618
30 A
60 A
8 25
VGE, GATE–EMITTER VOLTAGE (V)
9 V
12 V
C
CE
TJ = 25°C
50
TJ = 125°C
45 40 35 30 25 20 15
, COLLECTOR CURRENT (A)
C
10
I
5 0
01 2 345
VGE = 18 V
15 V
VCE, COLLECTOR–EMITTER VOL TAGE (V)
Figure 3. Output Inverter Collector Current I
versus Collector–Emitter V oltage V
1000
100
SWITCHING TIME (ns)
VCE = 300 V VGE = 15 V RG = 10
TJ = 25°C
10
0 5 10 15 20 35
IC, COLLECTOR CURRENT (A)
9 V
12 V
CE
30
t
(off)
t
d
t
f
C
Figure 4. Inverter Collector–Emitter V oltage V
versus Gate–Emitter V oltage V
1000
SWITCHING TIME (ns)
VCE = 300 V VGE = 15 V RG = 10
TJ = 125°C
100
0 5 10 15 20 35
IC, COLLECTOR CURRENT (A)
25
Figure 6. Inverter Switching Time td, tf, t
versus Collector Current I
CE
GE
10000
t
(off)
t
f
t
d
30
(off)
C
Figure 5. Inverter Switching Time td, tf, t
versus Collector Current I
VCE = 300 V VGE = 15 V IC = 30 A TJ = 25
°
C
1000
SWITCHING TIME (ns)
100
t
(off)
t
d
t
f
10 100 1000
RG, GATE RESISTANCE (Ω)
C
Figure 7. Inverter Switching Time td, tf, t
versus Gate Resistance R
G
(off)
(off)
MOTOROLA
MHPM7B30A60B
5
T ypical Characteristics
100000
VCE = 300 V VGE = 15 V IC = 30 A TJ = 125
°
10000
1000
SWITCHING TIME (ns)
100
10 100 1000
C
RG, GATE RESISTANCE (Ω)
t
(off)
t
d
t
f
Figure 8. Inverter Switching Time td, tf, t
versus Gate Resistance R
10000
VCE = 300 V VGE = 15 V IC = 30 A
1000
G
25°C
(off)
TJ = 125°C
150
VCE = 300 V VGE = 15 V
125
RG = 10
100
T
= 125°C
75
50
SWITCHING TIME (ns)
25
0
015 35
510 20
IC, COLLECTOR CURRENT (A)
J
25°C
25 30
Figure 9. Inverter Switching Time tr versus
10000
µ
1000
VCE = 300 V VGE = 15 V RG = 10
Collector Current I
T
J
C
= 125°C
25°C
100
SWITCHING TIME (ns)
10
10 100 1000
RG, GATE RESISTANCE (Ω)
Figure 10. Inverter Switching Time tr versus
Gate Resistance R
10000
VCE = 300 V VGE = 15 V
µ
SWITCHING ENERGY ( J)
IC = 30 A
1000
100
10 100 1000
RG, GATE RESISTANCE (Ω)
TJ = 125°C
G
25°C
100
SWITCHING ENERGY ( J)
10
015 35
510 20
IC, COLLECTOR CURRENT (A)
25 30
Figure 11. Inverter Switching Energy E
versus Collector Current I
450 400 350 300 250 200 150 100
, COLLECTOR–EMITTER VOL TAGE (V)
50
CE
V
0
20 40 120
0 60 240
10080
QG, GATE CHARGE (nC)
300 V
200 V
400 V
160140 220200180
(off)
C
18 16 14 12 10 8 6
, GATE–EMITTER VOLTAGE (V)
4
GE
V
2 0
Figure 12. Inverter Switching Energy E
MHPM7B30A60B
6
versus Gate Resistance R
(off)
G
Figure 13. Gate–to–Emitter V oltage versus
Gate Charge
MOTOROLA
T ypical Characteristics
100000
10000
1000
CAPACITANCE (pF)
100
10
0 20 200
40 60 80 100 120 140 160 180
VCE, COLLECTOR–EMITTER VOL TAGE (V)
C
C
oes
C
Figure 14. Output Inverter Capacitance versus
, FORWARD CURRENT (A)
F
I
Collector V oltage V
50 45 40 35 30 25
20 15 10
5 0
0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
TJ = 125°C
VF, FORWARD VOLTAGE (V)
CE
25°C
ies
res
50 45
40 35 30 25 20
, FORWARD CURRENT (A)
F
I
15 10
5 0
0
0.2
TJ = 125°C
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VF, FORWARD VOLTAGE (V)
Figure 15. Input Bridge Forward Current I
versus Forward V oltage V
1000
(A)
rr
(ns)
rr
100
REVERSE RECOVERY TIME t
PEAK REVERSE RECOVERY CURRENT I
t
rr
10
I
rr
1
510
015 35
IF, FORWARD CURRENT (A)
25°C
F
F
TJ = 125°C
25°C
TJ = 125°C
25°C
–di/dt = 100 A/µs
20 25 30
Figure 16. Output Inverter Forward Current I
versus Forward V oltage V
100
10
1
, COLLECTOR CURRENT (A)
C
I
+VGE = 15 V –VGE = 0 V RG = 150 TJ = 25°C
0.1 0 200 1000
400 600 800
VCE, COLLECTOR–EMITTER VOL TAGE (V)
F
Figure 18. Output Inverter Reversed Biased Safe
Operating Area
F
r(t), EFFECTIVE TRANSIENT THERMAL RESISTANCE
Figure 17. Output Inverter Reverse Recovery
trr, Irr versus Forward Current I
1
IGBT
0.1
(NORMALIZED)
0.01
0.001 0 10 100 1000
DIODE
t, TIME (ms)
F
Figure 19. Transient Thermal Resistance
MOTOROLA
MHPM7B30A60B
7
P ACKAGE DIMENSIONS
E
AB
AE AA
AFAC
AD
3 PL
A
W
2 PL
N
G
AH
2 PL
L
M
Y
4 PL
25 18
AG
P U
H
7 PL
J
25 PL
D
F
DETAIL Z
STYLE 1:
PIN 1. P1 PIN 6. N2 PIN 11. G3 PIN 16. G2 PIN 21. B
2. T– 7. P2 12. K5 17. G4 22. T
3. T+ 8. K1 13. G5 18. W 23. S
4. I+ 9. G1 14. G6 19. V 24. R
5. I– 10. K3 15. G7 20. U 25. N1
CASE 440A–01
ISSUE O
C
K
9 PL
Q
171
2 PL
B
S
R
V
DETAIL Z
X
4 PL
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. LEAD LOCATION DIMENSIONS (ie: M, G, AA...) ARE TO THE CENTER OF THE LEAD.
DIM MIN MAX MIN MAX
A 97.54 98.55 3.840 3.880 B 62.74 63.75 2.470 2.510 C 14.60 15.88 0.575 0.625 D 0.56 0.97 0.022 0.038 E 10.80 12.06 0.425 0.475 F 0.81 1.22 0.032 0.048 G 1.60 2.21 0.063 0.087 H 8.58 9.19 0.338 0.362
J 0.56 0.97 0.022 0.038 K 18.80 20.57 0.740 0.810 L 22.86 23.88 0.900 0.940 M 46.23 47.24 1.820 1.860 N 9.78 11.05 0.385 0.435 P 82.55 83.57 3.250 3.290 Q 4.01 4.62 0.158 0.182 R 26.42 27.43 1.040 1.080 S 12.06 12.95 0.475 0.515 T 4.32 5.33 0.170 0.210 U 86.36 87.38 3.400 3.440 V 14.22 15.24 0.560 0.600 W 7.62 8.13 0.300 0.320 X 6.55 7.16 0.258 0.282 Y 2.49 3.10 0.098 0.122
AA 2.24 2.84 0.088 0.112 AB 7.32 7.92 0.288 0.312 AC 4.78 5.38 0.188 0.212 AD 8.58 9.19 0.338 0.362
AE 6.05 6.65 0.238 0.262
AF 4.78 5.38 0.188 0.212 AG 69.34 70.36 2.730 2.770 AH ––– 5.08 ––– 0.200
T
INCHESMILLIMETERS
MHPM7B30A60B
8
MOTOROLA
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters can and do vary in different applications. All operating parameters, including “T ypicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Af firmative Action Employer.
MOTOROLA
MHPM7B30A60B
9
How to reach us: USA/EUROPE: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: RMFAX0@email.sps.mot.com –TOUCHTONE (602) 244–6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, INTERNET: http://Design–NET .com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
MHPM7B30A60B
10
CODELINE TO BE PLACED HERE
MHPM7B30A60B/D
MOTOROLA
*MHPM7B30A60B/D*
Loading...