Motorola MCM72CB64SG80, MCM72CB64SG100, MCM72CB32SG66, MCM72CB64SG66, MCM72CB32SG80 Datasheet

...
MCM72CB32MCM72CB64
1
MOTOROLA FAST SRAM
256KB and 512KB BurstRAM Secondary Cache Module for Pentium
The MCM72CB32SG and MCM72CB64SG are designed to provide a burst­able, high performance, 256K/512K L2 cache for the Pentium microprocessor. The modules are configured as 32K x 72 and 64K x 72 bits in a 160 pin card edge memory module. The module uses four of Motorola’s MCM67C518 or MCM67C618 BiCMOS BurstRAMs.
Bursts can be initiated with either address status processor (ADSP
) or address
status controller (ADSC
). Subsequent burst addresses are generated internal to
the BurstRAM by the burst advance (ADV
) input pin.
Write cycles are internally self timed and are initiated by the rising edge of the clock (K) input. Eight write enables are provided for byte write control.
The cache family is designed to interface with popular Pentium cache control­lers with on board tag.
PD0 – PD2 are reserved for density and speed identification.
Pentium–style Burst Counter on Board
160 Pin Card Edge Module
Single 5 V ± 5% Power Supply
All Inputs and Outputs are TTL Compatible
Three State Outputs
Byte Parity
Byte Write Capability
Fast Module Clock Rates: 66 MHz, 80 MHz, 100 MHz
Decoupling Capacitors for each Fast Static RAM
High Quality Multi–Layer FR4 PWB With Separate Power and Ground Planes
I/Os are 3.3 V Compatible
Burndy Connector, Part Number: CELP2X80SC3Z48
BurstRAM is a trademark of Motorola. Pentium is a trademark of Intel Corp.
160–LEAD
CARD EDGE
CASE 1113–01
TOP VIEW
80
43
42
1
Order this document
by MCM72CB32/D
MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
MCM72CB32 MCM72CB64
REV 1 5/95
Motorola, Inc. 1995
PIN ASSIGNMENT
160–LEAD CARD EDGE MODULE
TOP VIEW
V
SS
DQ63 VCC5 DQ61 VCC5 DQ59 DQ57
V
SS
DQP7 DQ55 DQ53 DQ51
V
SS
DQ49 DQ47 DQ45 DQ43
V
SS
DQ41 DQP5 DQ39 DQ37 DQ35
V
SS
DQ33 DQ31 DQ29 DQ27 DQ25
V
SS
DQP3 DQ23 DQ21 VCC5 DQ19
V
SS
DQ17 VCC5 DQ15 DQ13
V
SS
DQ11
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
V
SS
DQ62 VCC3* DQ60 VCC3* DQ58 DQ56 V
SS
DQP6 DQ54 DQ52 DQ50 V
SS
DQ48 DQ46 DQ44 DQ42 V
SS
DQ40 DQP4 DQ38 DQ36 DQ34 V
SS
DQ32 DQ30 DQ28 DQ26 DQ24 V
SS
DQP2 DQ22 DQ20 VCC3* DQ18 V
SS
DQ16 VCC3* DQ14 DQ12 V
SS
DQ10
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
VCC5
DQ9 DQP1 VCC5
DQ7
DQ5
DQ3
DQ1
V
SS
A3B
A4B
A5B
A6B
A7
V
SS
A9 A11 A13 A15 A17
V
SS
*A19
PD1
K0 *K2
V
SS
WE7 WE5 WE3 WE1
V
SS
ADSC1
E1
ADV1
G1
VCC5
ADSP1
V
SS
VCC3* DQ8 DQP0 VCC3* DQ6 DQ4 DQ2 DQ0 V
SS
A3A A4A A5A A6A A8 V
SS
A10 A12 A14 A16 A18** V
SS
PD0 PD2 K1 K3* V
SS
WE6 WE4 WE2 WE0 V
SS
ADSC0 E0 ADV0 G0 VCC3* ADSP0 V
SS
PIN NAMES
A3 – A18 Address Inputs. . . . . . . . . . . . . . . . . . . . . .
K0, K1 Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
W0
– W7 Byte Write. . . . . . . . . . . . . . . . . . . . . . . . . .
E0
, E1 Module Enable. . . . . . . . . . . . . . . . . . . . . . . .
G0
, G1 Module Output Enable. . . . . . . . . . . . . . . . .
DQ0 – DQ63 Cache Data Input/Output. . . . . . . . . .
DQP0 – DQP7 Data Parity Input/Output. . . . . . . . .
ADSC0
, ADSC1 Controller Address Status. . . . . .
ADSP0
, ADSP1 Processor Address Status. . . . . .
ADV0
, ADV1 Burst Advance. . . . . . . . . . . . . . . . . . .
PD0 – PD2 Presence Detect. . . . . . . . . . . . . . . . . .
VCC5 + 5 V Power Supply. . . . . . . . . . . . . . . . . . . . .
V
SS
Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
* No Connect for MCM72CB32/MCM72CB64 ** No Connect for MCM72CB32
MCM72CB32MCM72CB64 2
MOTOROLA FAST SRAM
PD2 PD1 PD0
Cache
Size
Module
V
SS
V
SS
NC 256KB 72CB32SG
V
SS
V
SS
V
SS
512KB 72CB64SG
MCM72CB32MCM72CB64
3
MOTOROLA FAST SRAM
64K x 72 BurstRAM MEMORY MODULE BLOCK DIAGRAM
LW
MCM67C618
A4 – A15
ADV
K G E
DQ0 – DQ7
A7 – A18
E0
12
DQ8
UW
ADSP ADSC
DQ9 – DQ16
DQ17
ADV0
ADSP0 ADSC0
K0
G0
DQ0 – DQ7 DQP0
DQ8 – DQ15 DQP1
W0
W1
8
8
LW
MCM67C618
A4 – A15
ADV
K G
E
DQ0 – DQ7
DQ8
UW
ADSP ADSC
DQ9 – DQ16
DQ17
DQ16 – DQ23 DQP2
DQ24 – DQ31 DQP3
W2
W3
8
8
A0 – A3A3A – A6A
A0 – A3
LW
MCM67C618
A4 – A15
ADV
K G
E
DQ0 – DQ7
E1
DQ8
UW
ADSP ADSC
DQ9 – DQ16
DQ17
ADV1
ADSP1 ADSC1
K1
G1
DQ32 – DQ39 DQP4
DQ40 – DQ47 DQP5
W4
W5
8
8
LW
MCM67C618
A4 – A15
ADV
K G
E
DQ0 – DQ7
DQ8
UW
ADSP ADSC
DQ9 – DQ16
DQ17
DQ48 – DQ55 DQP6
DQ56 – DQ63 DQP7
W6
W7
8
8
A0 – A3A3B – A6B
A0 – A3
4
4
MCM72CB32MCM72CB64 4
MOTOROLA FAST SRAM
32K x 72 BurstRAM MEMORY MODULE BLOCK DIAGRAM
LW
MCM67C518
A4 – A14
ADV
K G E
DQ0 – DQ7
A7 – A17
E0
11
DQ8
UW
ADSP ADSC
DQ9 – DQ16
DQ17
ADV0
ADSP0
ADSC0
K0 G0
DQ0 – DQ7 DQP0
DQ8 – DQ15 DQP1
W0
W1
8
8
LW
MCM67C518
A4 – A14
ADV
K G
E
DQ0 – DQ7
DQ8
UW
ADSP ADSC
DQ9 – DQ16
DQ17
DQ16 – DQ23 DQP2
DQ24 – DQ31 DQP3
W2
W3
8
8
A0 – A3A3A – A6A
A0 – A3
LW
MCM67C518
A4 – A14
ADV
K G E
DQ0 – DQ7
E1
DQ8
UW
ADSP ADSC
DQ9 – DQ16
DQ17
ADV1
ADSP1
ADSC1
K1 G1
DQ32 – DQ39 DQP4
DQ40 – DQ47 DQP5
W4
W5
8
8
LW
MCM67C518
A4 – A14
ADV
K G
E
DQ0 – DQ7
DQ8
UW
ADSP ADSC
DQ9 – DQ16
DQ17
DQ48 – DQ55 DQP6
DQ56 – DQ63 DQP7
W6
W7
8
8
A0 – A3A3B – A6B
A0 – A3
4
A18 NC
4
MCM72CB32MCM72CB64
5
MOTOROLA FAST SRAM
MCM67C618 BLOCK DIAGRAM (See Note)
BINARY
COUNTER
DQ0 – DQ8
CLR
Q0
Q1
A0
A1
K
ADSC ADSP
A0 – A15
E
G
ADDRESS
REGISTER
WRITE
REGISTER
ENABLE
REGISTER
DATA–IN
REGISTERS
64K
×
18
MEMORY
ARRAY
ADV
BURST LOGIC
INTERNAL ADDRESS
A0
A1
16
9
18
16
2
A2 – A15
A1 – A0
DQ9 – DQ17
9
9 9
9 9
UW
LW
OUTPUT BUFFER
DATA–OUT
REGISTERS
NOTE: All registers are positive–edge triggered. The ADSC or ADSP signals control the duration of the burst and the start of the
next burst. When ADSP
is sampled low, any ongoing burst is interrupted and a read (independent of W and ADSC) is per-
formed using the new external address. Alternatively , an ADSP
–initiated two cycle WRITE can be performed by asserting
ADSP
and a valid address on the first cycle, then negating both ADSP and ADSC and asserting L W and/or UW with valid data on the second cycle (see Single Write Cycle in WRITE CYCLES timing diagram). When ADSC
is sampled low (and ADSP is sampled high), any ongoing burst is interrupted and a read or write (dependent
on W
) is performed using the new external address. Chip enable (E) is sampled only when a new base address is loaded.
After the first cycle of the burst, ADV
controls subsequent burst cycles. When ADV is sampled low, the internal address
is advanced prior to the operation. When ADV
is sampled high, the internal address is not advanced, thus inserting a wait state into the burst sequence accesses. Upon completion of a burst, the address will wrap around to its initial state. See BURST SEQUENCE TABLE. Write refers to either or both byte write enables (LW
, UW).
BURST SEQUENCE TABLE (See Note)
External Address A15 – A2 A1 A0 1st Burst Address A15 – A2 A1 A0 2nd Burst Address A15 – A2 A1 A0 3rd Burst Address A15 – A2 A1 A0
NOTE: The burst wraps around to its initial state upon completion.
Loading...
+ 9 hidden pages