MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
32K x 36 Bit Pipelined BurstRAM
Synchronous Fast Static RAM
The MCM69P536C is a 1M–bit synchronous fast static RAM designed to provide a burstable, high performance, secondary cache for the 68K Family,
PowerPC, 486, i960, and Pentium microprocessors. It is organized as 32K
words of 36 bits each. This device integrates input registers, an output register,
a 2–bit address counter, and high speed SRAM onto a single monolithic circuit
for reduced parts count in cache data RAM applications. Synchronous design
allows precise cycle control with the use of an external clock (K). BiCMOS circuitry reduces the overall power consumption of the integrated functions for
greater reliability .
Addresses (SA), data inputs (DQx), and all control signals except output
enable (G
positive–edge–triggered noninverting registers.
Bursts can be initiated with either ADSP
addresses can be generated internally by the MCM69P536C (burst sequence
operates in linear or interleaved mode dependent upon the state of LBO
controlled by the burst address advance (ADV
Write cycles are internally self–timed and are initiated by the rising edge of the
clock (K) input. This feature eliminates complex off–chip write pulse generation
and provides increased timing flexibility for incoming signals.
Synchronous byte write (SBx
synchronous write enable SW
bytes or to all bytes. The four bytes are designated as “a”, “b”, “c”, and “d”. SBa
controls DQa, SBb controls DQb, etc. Individual bytes are written if the selected
byte writes SBx
asserted or if all SBx
For read cycles, pipelined SRAMs output data is temporarily stored by an
edge–triggered output register and then released to the output buffers at the next
rising edge of clock (K).
The MCM69P536C operates from a 3.3 V power supply and all inputs and
outputs are L VTTL compatible.
• MCM69P536C–4 = 4 ns Access / 7.5 ns Cycle
• Single 3.3 V + 10%, – 5% Power Supply
• ADSP, ADSC, and ADV Burst Control Pins
• Selectable Burst Sequencing Order (Linear/Interleaved)
• Internally Self–Timed Write Cycle
• Byte Write and Global Write Control
• 5 V Tolerant on all Pins (Inputs and I/Os)
• 100–Pin TQFP Package
) and Linear Burst Order (LBO) are clock (K) controlled through
or ADSC input pins. Subsequent burst
) and
) input pin.
), synchronous global write (SGW), and
are provided to allow writes to either individual
are asserted with SW. All bytes are written if either SGW is
and SW are asserted.
MCM69P536C–4.5 = 4.5 ns Access / 8 ns Cycle
MCM69P536C–5 = 5 ns Access / 10 ns Cycle
MCM69P536C–6 = 6 ns Access / 12 ns Cycle
MCM69P536C–7 = 7 ns Access / 13.3 ns Cycle
Order this document
by MCM69P536C/D
MCM69P536C
TQ PACKAGE
TQFP
CASE 983A–01
The PowerPC name is a trademark of IBM Corp., used under license therefrom.
i960 and Pentium are trademarks of Intel Corp.
REV 3
2/9/98
Motorola, Inc. 1998
MOTOROLA FAST SRAM
MCM69P536C
1
PIN DESCRIPTIONS
Pin Locations Symbol Type Description
85 ADSC Input Synchronous Address Status Controller: Initiates READ, WRITE, or
84 ADSP Input Synchronous Address Status Processor: Initiates READ, WRITE, or
83 ADV Input Synchronous Address Advance: Increments address count in
(a) 51, 52, 53, 56, 57, 58, 59, 62, 63
(b) 68, 69, 72, 73, 74, 75, 78, 79, 80
(c) 1, 2, 3, 6, 7, 8, 9, 12, 13
(d) 18, 19, 22, 23, 24, 25, 28, 29, 30
86 G Input Asynchronous Output Enable Input:
89 K Input Clock: This signal registers the address, data in, and all control signals
31 LBO Input Linear Burst Order Input: This pin must remain in steady state (this
32, 33, 34, 35, 44, 45, 46,
47, 48, 81, 82, 99, 100
36, 37 SA1,SA0 Input Synchronous Address Inputs: These pins must be wired to the two
93, 94, 95, 96
(a) (b) (c) (d)
98 SE1 Input Synchronous Chip Enable: Active low to enable chip.
97 SE2 Input Synchronous Chip Enable: Active high for depth expansion.
92 SE3 Input Synchronous Chip Enable: Active low for depth expansion.
88 SGW Input Synchronous Global Write: This signal writes all bytes regardless of the
87 SW Input Synchronous Write: This signal writes only those bytes that have been
4, 11, 15, 20, 27, 41, 54,
61, 65, 70, 77, 91
5, 10, 17, 21, 26, 40, 55,
60, 67, 71, 76, 90
64 NC Input No Connection: There is no connection to the chip. For compatibility
14, 16, 38, 39, 42, 43, 49, 50, 66 NC — No Connection: There is no connection to the chip.
DQx I/O Synchronous Data I/O: “x” refers to the byte being read or written
SA Input Synchronous Address Inputs: These inputs are registered and must
SBx Input Synchronous Byte Write Inputs: “x” refers to the byte being written (byte
V
DD
V
SS
Supply Power Supply: 3.3 V + 10%, – 5%.
Supply Ground.
chip deselect cycle.
chip deselect cycle (exception — chip deselect does not occur when
ADSP
is asserted and SE1 is high).
accordance with counter type selected (linear/interleaved).
(byte a, b, c, d).
Low — enables output buffers (DQx pins).
High — DQx pins are high impedance.
except G
signal not registered or latched). It must be tied high or low.
Low — linear burst counter (68K/PowerPC).
High — interleaved burst counter (486/i960/Pentium).
meet setup and hold times.
LSBs of the address bus for proper burst operation. These inputs are
registered and must meet setup and hold times.
a, b, c, d). SGW
Negated high–blocks ADSP
status of the SBx
being used, tie this pin high.
selected using the byte write SBx
are being used, tie this pin low.
reasons, it is recommended that this pin be tied low for system designs
that do not have a sleep mode associated with the cache/memory
controller. Other vendors’ RAMs may have implemented the Sleep
Mode (ZZ) feature.
and LBO.
overrides SBx.
or deselects chip when ADSC is asserted.
and SW signals. If only byte write signals SBx are
pins. If only byte write signals SBx
MCM69P536C
4
MOTOROLA FAST SRAM