Semiconductor Components Industries, LLC, 2000
March, 2000 – Rev. 2
1 Publication Order Number:
MC74HC4060A/D
MC74HC4060A
14-Stage Binary Ripple
Counter With Oscillator
High–Performance Silicon–Gate CMOS
The MC74C4060A is identical in pinout to the standard CMOS
MC14060B. The device inputs are compatible with standard CMOS
outputs; with pullup resistors, they are compatible with LSTTL
outputs.
This device consists of 14 master–slave flip–flops and an oscillator
with a frequency that is controlled either by a crystal or by an RC
circuit connected externally. The output of each flip–flop feeds the
next and the frequency at each output is half of that of the preceding
one. The state of the counter advances on the negative–going edge of
the Osc In. The active–high Reset is asynchronous and disables the
oscillator to allow very low power consumption during stand–by
operation.
State changes of the Q outputs do not occur simultaneously because
of internal ripple delays. Therefore, decoded output signals are subject
to decoding spikes and may have to be gated with Osc Out 2 of the
HC4060A.
• Output Drive Capability: 10 LSTTL Loads
• Outputs Directly Interface to CMOS, NMOS, and TTL
• Operating Voltage Range: 2 to 6 V
• Low Input Current: 1 µA
• High Noise Immunity Characteristic of CMOS Devices
• In Compliance With JEDEC Standard No. 7A Requirements
• Chip Complexity: 390 FETs or 97.5 Equivalent Gates
1516 14 13 12 11 10
21 34567
V
CC
9
8
Q10 Q8 Q9 Reset Osc In
Osc
Out 1
Osc
Out 2
Q12 Q13 Q14 Q6 Q5 Q7 Q4
GND
Pinout: 16–Lead Plastic Package (Top View)
FUNCTION TABLE
Clock Reset Output State
X
L
L
H
No Charge
Advance to Next State
All Outputs Are Low
SO–16
D SUFFIX
CASE 751B
http://onsemi.com
TSSOP–16
DT SUFFIX
CASE 948F
1
16
PDIP–16
N SUFFIX
CASE 648
1
16
1
16
MARKING
DIAGRAMS
1
16
MC74HC4060AN
AWLYYWW
1
16
HC4060A
AWLYWW
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
HC40
60A
ALYW
1
16
Device Package Shipping
ORDERING INFORMATION
MC74HC4060AN PDIP–16 2000 / Box
MC74HC4060AD SOIC–16
48 / Rail
MC74HC4060ADR2 SOIC–16 2500 / Reel
MC74HC4060ADT TSSOP–16 96 / Rail
MC74HC4060ADTR2 TSSOP–16
2500 / Reel
LOGIC DIAGRAM
Q4
7
Q5
5
Q6
4
Q7
6
Q8
14
Q9
13
Q10
15
Q12
1
Q13
2
Q14
3
Osc In
11
Reset
12
Pin 16 = V
CC
Pin 8 = GND
Osc Out 1 Osc Out 2
910
MC74HC4060A
http://onsemi.com
2
DC Supply Voltage (Referenced to GND)
DC Input Voltage (Referenced to GND)
DC Output Voltage (Referenced to GND)
DC Input Current, per Pin
DC Output Current, per Pin
DC Supply Current, VCC and GND Pins
Power Dissipation in Still Air, Plastic DIP†
SOIC Package†
TSSOP Package†
Storage Temperature Range
Lead Temperature, 1 mm from Case for 10 Seconds
Plastic DIP, SOIC or TSSOP Package
_
C
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C
SOIC Package: – 7 mW/_C from 65_ to 125_C
TSSOP Package: – 6.1 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
Operating Temperature Range, All Package Types
Input Rise/Fall Time VCC = 2.0 V
(Figure 1) VCC = 4.5 V
VCC = 6.0 V
ns
*The oscillator is guaranteed to function at 2.5 V minimum. However, parametrics are tested
at 2.0 V by driving Pin 11 with an external clock source.
DC CHARACTERISTICS (Voltages Referenced to GND)
V
Guaranteed Limit
Symbol Parameter Condition
V
–55 to 25°C ≤85°C ≤125°C
Unit
V
IH
Minimum High–Level Input
Voltage
V
out
= 0.1V or VCC –0.1V
|I
out
| ≤ 20µA
2.0
3.0
4.5
6.0
1.50
2.10
3.15
4.20
1.50
2.10
3.15
4.20
1.50
2.10
3.15
4.20
V
V
IL
Maximum Low–Level Input
Voltage
V
out
= 0.1V or VCC – 0.1V
|I
out
| ≤ 20µA
2.0
3.0
4.5
6.0
0.50
0.90
1.35
1.80
0.50
0.90
1.35
1.80
0.50
0.90
1.35
1.80
V
V
OH
Minimum High–Level Output
Voltage (Q4–Q10, Q12–Q14)
Vin = VIH or V
IL
|I
out
| ≤ 20µA
2.0
4.5
6.0
1.9
4.4
5.9
1.9
4.4
5.9
1.9
4.4
5.9
V
Vin =VIH or V
IL
|I
out
| ≤ 2.4mA
|I
out
| ≤ 4.0mA
|I
out
| ≤ 5.2mA
3.0
4.5
6.0
2.48
3.98
5.48
2.34
3.84
5.34
2.20
3.70
5.20
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
V
out
should be constrained to the
range GND v (Vin or V
out
) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
MC74HC4060A
http://onsemi.com
3
DC CHARACTERISTICS (Voltages Referenced to GND)
Symbol Unit
Guaranteed Limit
V
CC
V
ConditionParameterSymbol Unit≤125°C≤85°C–55 to 25°C
V
CC
V
ConditionParameter
V
OL
Maximum Low–Level Output
Voltage (Q4–Q10, Q12–Q14)
Vin = VIH or V
IL
|I
out
| ≤ 20µA
2.0
4.5
6.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
V
Vin = VIH or V
IL|Iout
| ≤ 2.4mA
|I
out
| ≤ 4.0mA
|I
out
| ≤ 5.2mA
3.0
4.5
6.0
0.26
0.26
0.26
0.33
0.33
0.33
0.40
0.40
0.40
V
OH
Minimum High–Level Output
Voltage (Osc Out 1, Osc Out 2)
Vin = VCC or GND
|I
out
| ≤ 20µA
2.0
4.5
6.0
1.9
4.4
5.9
1.9
4.4
5.9
1.9
4.4
5.9
V
Vin =VCC or GND |I
out
| ≤ 0.7mA
|I
out
| ≤ 1.0mA
|I
out
| ≤ 1.3mA
3.0
4.5
6.0
2.48
3.98
5.48
2.34
3.84
5.34
2.20
3.70
5.20
V
OL
Maximum Low–Level Output
Voltage (Osc Out 1, Osc Out 2)
Vin = VCC or GND
|I
out
| ≤ 20µA
2.0
4.5
6.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
V
Vin =VCC or GND |I
out
| ≤ 0.7mA
|I
out
| ≤ 1.0mA
|I
out
| ≤ 1.3mA
3.0
4.5
6.0
0.26
0.26
0.26
0.33
0.33
0.33
0.40
0.40
0.40
I
in
Maximum Input Leakage Current Vin = VCC or GND 6.0 ±0.1 ±1.0 ±1.0 µA
I
CC
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
I
out
= 0µA
6.0 4 40 160 µA
NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book
(DL129/D).
AC CHARACTERISTICS (C
L
= 50 pF, Input tr = tf = 6 ns)
V
Guaranteed Limit
Symbol Parameter
V
–55 to 25°C ≤85°C ≤125°C
Unit
f
max
Maximum Clock Frequency (50% Duty Cycle)
(Figures 1 and 4)
2.0
3.0
4.5
6.0
6.0
10
30
50
9.0
14
28
45
8.0
12
25
40
MHz
t
PLH
,
t
PHL
Maximum Propagation Delay, Osc In to Q4*
(Figures 1 and 4)
2.0
3.0
4.5
6.0
300
180
60
51
375
200
75
64
450
250
90
75
ns
t
PLH
,
t
PHL
Maximum Propagation Delay, Osc In to Q14*
(Figures 1 and 4)
2.0
3.0
4.5
6.0
500
350
250
200
750
450
275
220
1000
600
300
250
ns
t
PHL
Maximum Propagation Delay, Reset to Any Q
(Figures 2 and 4)
2.0
3.0
4.5
6.0
195
75
39
33
245
100
49
42
300
125
61
53
ns
t
PLH
,
t
PHL
Maximum Propagation Delay, Qn to Qn+1
(Figures 3 and 4)
2.0
3.0
4.5
6.0
75
60
15
13
95
75
19
16
125
95
24
20
ns
MC74HC4060A
http://onsemi.com
4
AC CHARACTERISTICS (C
L
= 50 pF, Input tr = tf = 6 ns) – continued
V
Guaranteed Limit
Symbol Parameter
V
–55 to 25°C ≤85°C ≤125°C
Unit
t
TLH
,
t
THL
Maximum Output Transition Time, Any Output
(Figures 1 and 4)
2.0
3.0
4.5
6.0
75
27
15
13
95
32
19
16
110
36
22
19
ns
C
in
Maximum Input Capacitance 10 10 10 pF
NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the ON
Semiconductor High–Speed CMOS Data Book (DL129/D).
* For TA = 25°C and CL = 50 pF , typical propagation delay from Clock to other Q outputs may be calculated with the following equations:
VCC = 2.0 V: tP = [93.7 + 59.3 (n–1)] ns VCC = 4.5 V: tP = [30.25 + 14.6 (n–1)] ns
VCC = 3.0 V: tP = [61.5+ 34.4 (n–1)] ns VCC = 6.0 V: tP = [24.4 + 12 (n–1)] ns
Typical @ 25°C, VCC = 5.0 V
C
PD
Power Dissipation Capacitance (Per Package)*
35
pF
*Used to determine the no–load dynamic power consumption: PD = CPD V
CC
2
f + ICC VCC. For load considerations, see Chapter 2 of the
ON Semiconductor High–Speed CMOS Data Book (DL129/D).
TIMING REQUIREMENTS (Input t
r
= tf = 6 ns)
V
Guaranteed Limit
Symbol Parameter
V
–55 to 25°C ≤85°C ≤125°C
Unit
t
rec
Minimum Recovery Time, Reset Inactive to Clock
(Figure 2)
2.0
3.0
4.5
6.0
100
75
20
17
125
100
25
21
150
120
30
25
ns
t
w
Minimum Pulse Width, Clock
(Figure 1)
2.0
3.0
4.5
6.0
75
27
15
13
95
32
19
16
110
36
23
19
ns
t
w
Minimum Pulse Width, Reset
(Figure 2)
2.0
3.0
4.5
6.0
75
27
15
13
95
32
19
16
110
36
23
19
ns
tr, t
f
Maximum Input Rise and Fall Times
(Figure 1)
2.0
3.0
4.5
6.0
1000
800
500
400
1000
800
500
400
1000
800
500
400
ns
NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book
(DL129/D).