SEMICONDUCTOR TECHNICAL DATA
1
REV 7
Motorola, Inc. 1997
2/97
High–Performance Silicon–Gate CMOS
The MC54/74HC640A is identical in pinout to the LS640. The device
inputs are compatible with standard CMOS outputs; with pullup resistors,
they are compatible with LSTTL outputs.
The HC640A is a 3–state transceiver that is used for 2–way asynchronous
communication between data buses. The device has an active–low Output
Enable pin, which is used to place the I/O ports into high–impedance states.
The Direction control determines whether data flows from A to B or from B
to A.
• Output Drive Capability: 15 LSTTL Loads
• Outputs Directly Interface to CMOS, NMOS, and TTL
• Operating Voltage Range: 2 to 6 V
• Low Input Current: 1 µA
• High Noise Immunity Characteristic of CMOS Devices
• In Compliance with the Requirements Defined by JEDEC Standard
No. 7A
• Chip Complexity: 276 FETs or 69 Equivalent Gates
LOGIC DIAGRAM
A
DATA
PORT
A8
A7
A6
A5
A3
A4
A2
A1
9
8
7
6
5
4
3
2
DIRECTION
OUTPUT ENABLE
1
19
PIN 10 = GND
PIN 20 = V
CC
18
17
16
15
14
13
12
11
B1
B2
B3
B4
B5
B6
B7
B8
B
DATA
PORT
FUNCTION TABLE
Control Inputs
Output
Enable
Direction
Operation
L L Data Transmitted from Bus B
to Bus A (Inverted)
L H Data Transmitted from Bus A
to Bus B (Inverted)
H X Buses Isolated
(High–Impedance State)
X = don’t care
PIN ASSIGNMENT
A5
A3
A2
A1
DIRECTION
GND
A8
A7
A6
A4 5
4
3
2
1
10
9
8
7
6
14
15
16
17
18
19
20
11
12
13
B3
B2
B1
OUTPUT
ENABLE
V
CC
B8
B7
B6
B5
B4
DW SUFFIX
SOIC PACKAGE
CASE 751D–04
N SUFFIX
PLASTIC PACKAGE
CASE 738–03
ORDERING INFORMATION
MC54HCXXXAJ
MC74HCXXXAN
MC74HCXXXADW
Ceramic
Plastic
SOIC
J SUFFIX
CERAMIC PACKAGE
CASE 732–03
1
20
1
20
1
20
MC54/74HC640A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
2
DC Supply Voltage (Referenced to GND)
DC Input Voltage (Referenced to GND), Pin 1 or 19
DC I/O Voltage (Referenced to GND)
DC Input Current, per Pin
DC Supply Current, VCC and GND Pins
Power Dissipation in Still Air, Plastic or Ceramic DIP†
SOIC Package†
Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic DIP or SOIC Package)
(Ceramic DIP)
_
C
*Maximum Ratings are those values beyond which damage to the device may occur .
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C
Ceramic DIP: – 10 mW/_C from 100_ to 125_C
SOIC Package: – 7 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
Operating Temperature, All Package Types
Input Rise and Fall Time VCC = 2.0 V
(Figure 1) VCC = 4.5 V
VCC = 6.0 V
ns
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Minimum High–Level Input
Voltage
V
out
= VCC – 0.1 V
|I
out
| v 20 µA
Maximum Low–Level Input
Voltage
V
out
= 0.1 V
|I
out
| v 20 µA
Minimum High–Level Output
Voltage
Vin = V
IH
|I
out
| v 20 µA
Vin = V
IH
|I
out
| v 2.4 mA
|I
out
| v 6.0 mA
|I
out
| v 7.8 mA
Maximum Low–Level Output
Voltage
Vin = V
IL
|I
out
| v 20 µA
Vin = V
IL
|I
out
| v 2.4 mA
|I
out
| v 6.0 mA
|I
out
| v 7.8 mA
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
V
out
should be constrained to the
range GND v (Vin or V
out
) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
I/O pins must be connected to a
properly terminated line or bus.
MC54/74HC640A
High–Speed CMOS Logic Data
DL129 — Rev 6
3 MOTOROLA
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Maximum Input Leakage Current
Maximum Three–State Leakage
Current
Output in High–Impedance State
Vin = VIL or V
IH
V
out
= VCC or GND
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
I
out
= 0 µA
µA
NOTE:Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
AC ELECTRICAL CHARACTERISTICS (C
L
= 50 pF, Input tr = tf = 6 ns)
Maximum Propagation Delay, A to B, B to A
(Figures 1 and 3)
Maximum Propagation Delay, Direction or Output Enable to A or B
(Figures 2 and 4)
Maximum Propagation Delay, Output Enable to A or B
(Figures 2 and 4)
Maximum Output Transition Time, Any Output
(Figures 1 and 3)
Maximum Input Capacitance, Pin 1 or 19
Maximum Three–State I/O Capacitance
(Output in High–Impedance State)
pF
NOTE:For propagation delays with loads other than 50 pF , and information on typical parametric values, see Chapter 2 of the Motorola High–
Speed CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
C
PD
Power Dissipation Capacitance (Per Transceiver Channel)*
40
pF
*Used to determine the no–load dynamic power consumption: PD = CPD V
CC
2
f + ICC VCC. For load considerations, see Chapter 2 of the
Motorola High–Speed CMOS Data Book (DL129/D).