SEMICONDUCTOR TECHNICAL DATA
1
REV 7
Motorola, Inc. 1996
10/96
High–Performance Silicon–Gate CMOS
The MC54/74HC573A is identical in pinout to the LS573. The devices are
compatible with standard CMOS outputs; with pullup resistors, they are
compatible with LSTTL outputs.
These latches appear transparent to data (i.e., the outputs change
asynchronously) when Latch Enable is high. When Latch Enable goes low,
data meeting the setup and hold time becomes latched.
The HC573A is identical in function to the HCT373A but has the data
inputs on the opposite side of the package from the outputs to facilitate PC
board layout.
The HC573A is the noninverting version of the HC563A.
• Output Drive Capability: 15 LSTTL Loads
• Outputs Directly Interface to CMOS, NMOS and TTL
• Operating Voltage Range: 2.0 to 6.0 V
• Low Input Current: 1.0 µA
• In Compliance with the Requirements Defined by JEDEC Standard
No. 7A
• Chip Complexity: 218 FETs or 54.5 Equivalent Gates
LOGIC DIAGRAM
DATA
INPUTS
D0
D1
D2
D3
D4
D5
D6
D7
LATCH ENABLE
OUTPUT ENABLE
11
1
9
8
7
6
5
4
3
219
18
17
16
15
14
13
12
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
PIN 20 = V
CC
PIN 10 = GND
NONINVERTING
OUTPUTS
Internal Gate Propagation Delay
Internal Gate Power Dissipation
pJ
*Equivalent to a two–input NAND gate.
PIN ASSIGNMENT
D4
D2
D1
D0
OUTPUT
ENABLE
GND
D7
D6
D5
D3 5
4
3
2
1
10
9
8
7
6
14
15
16
17
18
19
20
11
12
13
Q3
Q2
Q1
Q0
V
CC
LATCH
ENABLE
Q7
Q6
Q5
Q4
FUNCTION TABLE
Inputs Output
Output Latch
Enable Enable D Q
LHHH
LHLL
L L X No Change
HXXZ
X = Don’t Care
Z = High Impedance
DW SUFFIX
SOIC PACKAGE
CASE 751D–04
N SUFFIX
PLASTIC PACKAGE
CASE 738–03
ORDERING INFORMATION
MC54HCXXXAJ
MC74HCXXXAN
MC74HCXXXADW
MC74HCXXXADT
Ceramic
Plastic
SOIC
TSSOP
J SUFFIX
CERAMIC PACKAGE
CASE 732–03
1
20
1
20
1
20
DT SUFFIX
TSSOP PACKAGE
CASE 948E–02
1
20
MC54/74HC573A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
2
DC Supply Voltage (Referenced to GND)
DC Input Voltage (Referenced to GND)
DC Output Voltage (Referenced to GND)
DC Input Current, per Pin
DC Output Current, per Pin
DC Supply Current, VCC and GND Pins
Power Dissipation in Still Air, Plastic or Ceramic DIP†
SOIC Package†
TSSOP Package†
Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic DIP, TSSOP or SOIC Package)
(Ceramic DIP)
_
C
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: –10 mW/_C from 65_ to 125_C
Ceramic DIP: –10 mW/_C from 100_ to 125_C
SOIC Package: –7 mW/_C from 65_ to 125_C
TSSOP Package: –6.1 mW/°C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
Operating Temperature, All Package Types
Input Rise and Fall Time VCC = 2.0 V
(Figure 1) VCC = 4.5 V
VCC = 6.0 V
ns
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Minimum High–Level Input
Voltage
V
out
= 0.1 V or VCC – 0.1 V
|I
out
| v 20 µA
Maximum Low–Level Input
Voltage
V
out
= 0.1 V or VCC – 0.1 V
|I
out
| v 20 µA
Minimum High–Level Output
Voltage
Vin = VIH or V
IL
|I
out
| v 20 µA
Vin = VIH or VIL|I
out
| ≤ 2.4mA
|I
out
| v 6.0 mA
|I
out
| v 7.8 mA
NOTE:Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
V
out
should be constrained to the
range GND v (Vin or V
out
) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
MC54/74HC573A
High–Speed CMOS Logic Data
DL129 — Rev 6
3 MOTOROLA
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Maximum Low–Level Output
Voltage
V
out
= 0.1 V or VCC – 0.1 V
|I
out
| v 20 µA
Vin = VIH or VIL|I
out
| ≤ 2.4mA
|I
out
| v 6.0 mA
|I
out
| v 7.8 mA
Maximum Input Leakage Current
Maximum Three–State Leakage
Current
Output in High–Impedance State
Vin = VIL or V
IH
V
out
= VCC or GND
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
II
out
I = 0 µA
µA
NOTE:Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
AC ELECTRICAL CHARACTERISTICS (C
L
= 50 pF, Input tr = tf = 6.0 ns)
Maximum Propagation Delay, Input D to Q
(Figures 1 and 5)
Maximum Propagation Delay, Latch Enable to Q
(Figures 2 and 5)
Maximum Propagation Delay, Output Enable to Q
(Figures 3 and 6)
Maximum Propagation Delay, Output Enable to Q
(Figures 3 and 6)
Maximum Output Transition Time, Any Output
(Figures 1 and 5)
Maximum Input Capacitance
Maximum Three–State Output Capacitance (Output in High–Impedance State)
pF
NOTE:For propagation delays with loads other than 50 pF , and information on typical parametric values, see Chapter 2 of the Motorola High–
Speed CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
C
PD
Power Dissipation Capacitance (Per Enabled Output)*
23
pF
*Used to determine the no–load dynamic power consumption: PD = CPD V
CC
2
f + ICC VCC. For load considerations, see Chapter 2 of the
Motorola High–Speed CMOS Data Book (DL129/D).