Motorola MC14585BD, MC14585BCL, MC14585BCP Datasheet

MOTOROLA CMOS LOGIC DATA
1
MC14585B
  
The MC14585B 4–Bit Magnitude Comparator is constructed with comple­mentary MOS (CMOS) enhancement mode devices. The circuit has eight comparing inputs (A3, B3, A2, B2, A1, B1, A0, B0), three cascading inputs (A < B, A = B, and A > B), and three outputs (A < B, A = B, and A > B). This device compares two 4–bit words (A and B) and determines whether they are “less than”, “equal to”, or “greater than” by a high level on the appropriate output. For words greater than 4–bits, units can be cascaded by connecting outputs (A > B), (A < B), and (A = B) to the corresponding inputs of the next significant comparator. Inputs (A < B), (A = B), and (A > B) on the least significant (first) comparator are connected to a low, a high, and a low, respectively.
Applications i nclude logic in C PU’s, c orrection and/or detection of instrumentation conditions, comparator in testers, converters, and controls.
Diode Protection on All Inputs
Expandable
Applicable to Binary or 8421–BCD Code
Supply Voltage Range = 3.0 Vdc to 18 Vdc
Capable of Driving Two Low–power TTL Loads or One Low–power
Schottky TTL Load over the Rated Temperature Range
Can be Cascaded – See Fig. 3
MAXIMUM RATINGS* (Voltages Referenced to V
SS
)
Symbol
Parameter Value Unit
V
DD
DC Supply Voltage – 0.5 to + 18.0 V
Vin, V
out
Input or Output Voltage (DC or Transient) – 0.5 to VDD + 0.5 V
Iin, I
out
Input or Output Current (DC or Transient), per Pin
± 10 mA
P
D
Power Dissipation, per Package† 500 mW
T
stg
Storage Temperature – 65 to + 150
_
C
T
L
Lead Temperature (8–Second Soldering) 260
_
C
*Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating:
Plastic “P and D/DW” Packages: – 7.0 mW/_C From 65_C To 125_C Ceramic “L” Packages: – 12 mW/_C From 100_C To 125_C
TRUTH TABLE (x = Don’t Care)
Inputs
Comparing Cascading
Outputs
A3, B3 A2, B2 A1, B1 A0, B0 A < B A = B A > B A < B A = B A > B
A3 > B3 x x x x x x 0 0 1 A3 = B3 A2 > B2 x x x x x 0 0 1 A3 = B3 A2 = B2 A1 > B1 x x x x 0 0 1 A3 = B3 A2 = B2 A1 = B1 A0 > B0 x x x 0 0 1
A3 = B3 A2 = B2 A1 = B1 A0 = B0 0 0 x 0 0 1 A3 = B3 A2 = B2 A1 = B1 A0 = B0 0 1 x 0 1 0 A3 = B3 A2 = B2 A1 = B1 A0 = B0 1 0 x 1 0 0 A3 = B3 A2 = B2 A1 = B1 A0 = B0 1 1 x 1 1 0
A3 = B3 A2 = B2 A1 = B1 A0 < B0 x x x 1 0 0 A3 = B3 A2 = B2 A1 < B1 x x x x 1 0 0 A3 = B3 A2 < B2 x x x x x 1 0 0
A3 < B3 x x x x x x 1 0 0

SEMICONDUCTOR TECHNICAL DATA
Motorola, Inc. 1995
REV 3 1/94

L SUFFIX
CERAMIC
CASE 620
ORDERING INFORMATION
MC14XXXBCP Plastic MC14XXXBCL Ceramic MC14XXXBD SOIC
TA = – 55° to 125°C for all packages.
P SUFFIX
PLASTIC
CASE 648
D SUFFIX
SOIC
CASE 751B
BLOCK DIAGRAM
14
15
1
2
9
7
11
10
5
6
4
13
3
12
VDD = PIN 16
VSS = PIN 8
(A > B)
in
(A = B)
in
(A < B)
in
A0 B0 A1 B1 A2 B2 A3 B3
(A > B)
out
(A = B)
out
(A < B)
out
MOTOROLA CMOS LOGIC DATAMC14585B
2
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V
SS
)
V
– 55_C 25_C 125_C
Characteristic
Symbol
V
DD
Vdc
Min Max Min Typ # Max Min Max
Unit
Output Voltage “0” Level
Vin = VDD or 0
V
OL
5.0 10 15
— — —
0.05
0.05
0.05
— — —
0 0 0
0.05
0.05
0.05
— — —
0.05
0.05
0.05
Vdc
“1” Level
Vin = 0 or V
DD
V
OH
5.0 10 15
4.95
9.95
14.95
— — —
4.95
9.95
14.95
5.0 10 15
— — —
4.95
9.95
14.95
— — —
Vdc
Input Voltage “0” Level
(VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc)
V
IL
5.0 10 15
— — —
1.5
3.0
4.0
— — —
2.25
4.50
6.75
1.5
3.0
4.0
— — —
1.5
3.0
4.0
Vdc
“1” Level (VO = 0.5 or 4.5 Vdc) (VO = 1.0 or 9.0 Vdc) (VO = 1.5 or 13.5 Vdc)
V
IH
5.0 10 15
3.5
7.0 11
— — —
3.5
7.0 11
2.75
5.50
8.25
— — —
3.5
7.0 11
— — —
Vdc
Output Drive Current
(VOH = 2.5 Vdc) Source (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)
I
OH
5.0
5.0 10 15
– 3.0
– 0.64
– 1.6 – 4.2
— — — —
– 2.4
– 0.51
– 1.3 – 3.4
– 4.2 – 0.88 – 2.25
– 8.8
— — — —
– 1.7
– 0.36
– 0.9 – 2.4
— — — —
mAdc
(VOL = 0.4 Vdc) Sink (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)
I
OL
5.0 10 15
0.64
1.6
4.2
— — —
0.51
1.3
3.4
0.88
2.25
8.8
— — —
0.36
0.9
2.4
— — —
mAdc
Input Current I
in
15 ±0.1 ±0.00001 ±0.1 ±1.0 µAdc
Input Capacitance
(Vin = 0)
C
in
5.0 7.5 pF
Quiescent Current
(Per Package)
I
DD
5.0 10 15
— — —
5.0 10 20
— — —
0.005
0.010
0.015
5.0 10 20
— — —
150 300 600
µAdc
Total Supply Current**†
(Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching)
I
T
5.0 10 15
IT = (0.6 µA/kHz) f + I
DD
IT = (1.2 µA/kHz) f + I
DD
IT = (1.8 µA/kHz) f + I
DD
µAdc
#Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance. **The formulas given are for the typical characteristics only at 25_C. †To calculate total supply current at loads other than 50 pF:
IT(CL) = IT(50 pF) + (CL – 50) Vfk
where: IT is in µA (per package), CL in pF, V = (VDD – VSS) in volts, f in kHz is input frequency, and k = 0.001.
PIN ASSIGNMENT
13
14
15
16
9
10
11
125
4
3
2
1
8
7
6
(A
t
B)
out
(A
u
B)
out
B3
A3
V
DD
B1
A0
B0
(A
u
B)
in
(A = B)
out
A2
B2
V
SS
A1
(A = B)
in
(A
t
B)
in
Loading...
+ 4 hidden pages