Motorola MC14094BCP, MC14094BD, MC14094BCL Datasheet

MOTOROLA CMOS LOGIC DATA
1
MC14094B
     
The MC14094B combines an 8–stage shift register with a data latch for
each stage and a three–state output from each latch.
Data is shifted on the p ositive clock transition and is shifted from the seventh stage to two serial o utputs. The QS output data is f or use in high–speed c ascaded systems. The QS output data is shifted on the following negative clock transition for use in low–speed cascaded systems.
Data from each stage of the shift register is latched on the negative transition of the strobe input. Data propagates through the latch while strobe is high.
Outputs of the eight data latches are controlled by three–state buffers which are placed in the high–impedance state by a logic Low on Output Enable.
Three–State Outputs
Capable of Driving Two Low–Power TTL Loads or One Low–Power
Schottky TTL Load Over the Rated Temperature Range
Input Diode Protection
Data Latch
Dual Outputs for Data Out on Both Positive and Negative Clock
Transitions
Useful for Serial–to–Parallel Data Conversion
Pin–for–Pin Compatible with CD4094B
MAXIMUM RATINGS* (Voltages Referenced to V
SS
)
Symbol
Parameter
Value
Unit
V
DD
DC Supply Voltage
– 0.5 to + 18.0
V
Vin, V
out
Input or Output Voltage (DC or Transient)
– 0.5 to VDD + 0.5
V
Iin, I
out
Input or Output Current (DC or Transient), per Pin
± 10
mA
P
D
Power Dissipation, per Package†
500
mW
T
stg
Storage Temperature
– 65 to + 150
_
C
T
L
Lead Temperature (8–Second Soldering)
260
_
C
*Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating:
Plastic “P and D/DW” Packages: – 7.0 mW/_C From 65_C To 125_C Ceramic “L” Packages: – 12 mW/_C From 100_C To 125_C
Output
Parallel Outputs Serial Outputs
Clock
Output Enable
Strobe
Data
Q1 Q
N
QS* Q
S
0 X X Z Z Q7 No Chg. 0 X X Z Z No Chg. Q7 1 0 X No Chg. No Chg. Q7 No Chg. 1 1 0 0 QN–1 Q7 No Chg. 1 1 1 1 QN–1 Q7 No Chg. 1 1 1 No Chg. No Chg. No Chg. Q7
Z = High Impedance X = Don’t Care *At the positive clock edge, information in the 7th shift register stage is transferred to
Q8 and QS.

SEMICONDUCTOR TECHNICAL DATA
Motorola, Inc. 1995
REV 3 1/94

L SUFFIX
CERAMIC
CASE 620
ORDERING INFORMATION
MC14XXXBCP Plastic MC14XXXBCL Ceramic MC14XXXBD SOIC
TA = – 55° to 125°C for all packages.
P SUFFIX
PLASTIC
CASE 648
D SUFFIX
SOIC
CASE 751B
13
14
15
16
9
10
11
125
4
3
2
1
8
7
6
Q7
Q6
Q5
OUTPUT ENABLE
V
DD
Q
S
Q
S
Q8
Q1
CLOCK
DATA
STROBE
V
SS
Q4
Q3
Q2
PIN ASSIGNMENT
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, pre­cautions must be taken to avoid applications of any voltage higher than maximum rated volt­ages to this high–impedance circuit. For proper operation, Vin and V
out
should be constrained
to the range VSS v (Vin or V
out
) v VDD.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V
SS
or VDD). Unused outputs must be left open.
MOTOROLA CMOS LOGIC DATAMC14094B
2
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V
SS
)
V
– 55_C
25_C
125_C
Characteristic
Symbol
V
DD
Vdc
Min
Max
Min
Typ #
Max
Min
ÎÎÎ
ÎÎÎ
ÎÎÎ
Max
Unit
Output Voltage
“0” Level
Vin = VDD or 0
V
OL
5.0 10 15
— — —
0.05
0.05
0.05
— — —
0 0 0
0.05
0.05
0.05
— — —
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
0.05
0.05
0.05
Vdc
“1” Level
Vin = 0 or V
DD
V
OH
5.0 10 15
4.95
9.95
14.95
— — —
4.95
9.95
14.95
5.0 10 15
— — —
4.95
9.95
14.95
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
— — —
Vdc
Input Voltage
“0” Level (VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc)
V
IL
5.0 10 15
— — —
1.5
3.0
4.0
— — —
2.25
4.50
6.75
1.5
3.0
4.0
— — —
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
1.5
3.0
4.0
Vdc
“1” Level (VO = 0.5 or 4.5 Vdc) (VO = 1.0 or 9.0 Vdc) (VO = 1.5 or 13.5 Vdc)
V
IH
5.0 10 15
3.5
7.0 11
— — —
3.5
7.0 11
2.75
5.50
8.25
— — —
3.5
7.0 11
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
— — —
Vdc
Output Drive Current
(VOH = 2.5 Vdc) Source (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)
I
OH
5.0
5.0 10 15
– 3.0
– 0.64
– 1.6 – 4.2
— — — —
– 2.4
– 0.51
– 1.3 – 3.4
– 4.2 – 0.88 – 2.25
– 8.8
— — — —
– 1.7
– 0.36
– 0.9 – 2.4
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
— — — —
mAdc
(VOL = 0.4 Vdc) Sink (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)
I
OL
5.0 10 15
0.64
1.6
4.2
— — —
0.51
1.3
3.4
0.88
2.25
8.8
— — —
0.36
0.9
2.4
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
— — —
mAdc
Input Current
I
in
15
± 0.1
±0.00001
± 0.1
ÎÎÎ
ÎÎÎ
ÎÎÎ
± 1.0
µAdc
Input Capacitance
(Vin = 0)
C
in
5.0
7.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
pF
Quiescent Current
(Per Package)
I
DD
5.0 10 15
— — —
5.0 10 20
— — —
0.005
0.010
0.015
5.0 10 20
— — —
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
150 300 600
µAdc
Total Supply Current**†
(Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching)
I
T
5.0 10 15
IT = (4.1 µA/kHz) f + I
DD
IT = (14 µA/kHz) f + I
DD
IT = (140 µA/kHz) f + I
DD
µAdc
3–State Output Leakage Current
I
TL
15
± 0.1
± 0.0001
± 0.1
ÎÎÎ
ÎÎÎ
ÎÎÎ
± 3.0
µA
#Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance. **The formulas given are for the typical characteristics only at 25_C. †To calculate total supply current at loads other than 50 pF:
IT(CL) = IT(50 pF) + (CL – 50) Vfk
where: IT is in µA (per package), CL in pF, V = (VDD – VSS) in volts, f in kHz is input frequency, and k = 0.001.
Loading...
+ 4 hidden pages