MOTOROLA CMOS LOGIC DATAMC14040B
150
The MC14040B 12–stage binary c ounter i s constructed with MOS
P–channel a nd N –channel e nhancement m ode devices i n a single
monolithic structure. This part is designed with an input wave shaping circuit
and 12 stages of ripple–carry binary counter. The device advances the count
on the negative–going edge of the clock pulse. Applications include time
delay circuits, counter controls, and frequency–driving circuits.
• Fully Static Operation
• Diode Protection on All Inputs
• Supply Voltage Range = 3.0 Vdc to 18 Vdc
• Capable of Driving Two Low–power TTL Loads or One Low–power
Schottky TTL Load Over the Rated Temperature Range
• Common Reset Line
• Pin–for–Pin Replacement for CD4040B
MAXIMUM RATINGS* (Voltages Referenced to V
SS
)
Input or Output Voltage (DC or Transient)
Input or Output Current (DC or Transient),
per Pin
Power Dissipation, per Package†
Lead Temperature (8–Second Soldering)
_
C
*Maximum Ratings are those values beyond which damage to the device may occur.
†Temperature Derating:
Plastic “P and D/DW” Packages: – 7.0 mW/_C From 65_C To 125_C
Ceramic “L” Packages: – 12 mW/_C From 100_C To 125_C
LOGIC DIAGRAM
CLOCK
10
RESET
11
Q1 Q2 Q3 Q10 Q11 Q12
9 7 6 14 15 1
Q4 = PIN 5
Q5 = PIN 3
Q6 = PIN 2
Q7 = PIN 4
Q8 = PIN 13
Q9 = PIN 12
VDD = PIN 16
VSS = PIN 8
C Q
R
C Q
C Q
R
C Q
C Q
R
C Q
C Q
R
C Q
C Q
R
C Q
C Q
R
C
SEMICONDUCTOR TECHNICAL DATA
Motorola, Inc. 1995
REV 3
1/94
L SUFFIX
CERAMIC
CASE 620
ORDERING INFORMATION
MC14XXXBCP Plastic
MC14XXXBCL Ceramic
MC14XXXBD SOIC
TA = – 55° to 125°C for all packages.
P SUFFIX
PLASTIC
CASE 648
D SUFFIX
SOIC
CASE 751B
TRUTH TABLE
Clock Reset Output State
0 No Change
0 Advance to next state
X 1 All Outputs are low
X = Don’t Care
MOTOROLA CMOS LOGIC DATA
151
MC14040B
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V
SS
)
“1” Level
Vin = 0 or V
DD
“0” Level
(VO = 4.5 or 0.5 Vdc)
(VO = 9.0 or 1.0 Vdc)
(VO = 13.5 or 1.5 Vdc)
“1” Level
(VO = 0.5 or 4.5 Vdc)
(VO = 1.0 or 9.0 Vdc)
(VO = 1.5 or 13.5 Vdc)
Output Drive Current
(VOH = 2.5 Vdc) Source
(VOH = 4.6 Vdc)
(VOH = 9.5 Vdc)
(VOH = 13.5 Vdc)
– 4.2
– 0.88
– 2.25
– 8.8
(VOL = 0.4 Vdc) Sink
(VOL = 0.5 Vdc)
(VOL = 1.5 Vdc)
Input Capacitance
(Vin = 0)
Quiescent Current
(Per Package)
Total Supply Current**†
(Dynamic plus Quiescent,
Per Package)
(CL = 50 pF on all outputs, all
buffers switching)
IT = (0.42 µA/kHz) f + I
DD
IT = (0.85 µA/kHz) f + I
DD
IT = (1.43 µA/kHz) f + I
DD
µAdc
#Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
**The formulas given are for the typical characteristics only at 25_C.
†To calculate total supply current at loads other than 50 pF:
IT(CL) = IT(50 pF) + (CL – 50) Vfk
where: IT is in µA (per package), CL in pF, V = (VDD – VSS) in volts, f in kHz is input frequency, and k = 0.001.
This device contains protection circuitry to guard against damage
due to high static voltages or electric fields. However, precautions must
be taken to avoid applications of any voltage higher than maximum rated
voltages to this high-impedance circuit. For proper operation, Vin and
V
out
should be constrained to the range VSS ≤ (Vin or V
out
) ≤ VDD.
Unused inputs must always be tied to an appropriate logic voltage
level (e.g., either VSS or VDD). Unused outputs must be left open.
PIN ASSIGNMENT
13
14
15
16
9
10
11
125
4
3
2
1
8
7
6
Q9
Q8
Q10
Q11
V
DD
Q1
C
R
Q7
Q5
Q6
Q12
V
SS
Q2
Q3
Q4