1
Motorola Bipolar Power Transistor Device Data
"#
&" "$
"##$ "# &$ #$$"
!%!
The BUT34 Darlington transistor is designed for high–voltage, high–speed, power
switching in inductive circuits where fall time is critical. They are particularly suited for
line–operated SWITCHMODE applications such as:
• AC and DC Motor Controls
• Switching Regulators
• Inverters
• Solenoid and Relay Drivers
• Fast Turn–Off Times
0.7 µs Inductive Fall Time at 25_C (Typ)
1.8 µs Inductive Storage Time at 25_C (Typ)
• Operating Temperature Range –65 to 200_C
ОООООООО
ОООООООО
ОООООООО
Collector–Emitter Voltage
ОООООООО
ОООООООО
ОООООООО
Collector–Emitter Voltage
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Collector Current — Continuous
Collector Current — Peak (1)
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Base Current — Continuous
Base Current — Peak (1)
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Free Wheel Diode Forward Current — Continuous
Free Wheel Diode Forward Current — Peak
ОООООООО
ОООООООО
ОООООООО
Total Power Dissipation @ TC = 25_C
@ TC = 100_C
Derate above 25_C
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Operating and Storage Junction Temperature Range
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Thermal Resistance, Junction to Case
ОООООООО
ОООООООО
ОООООООО
Maximum Lead Temperature for Soldering Purpose:
1/8″ from Case for 5 Seconds
ОООООООО
ОООООООО
ОООООООО
ОООООООО
_
C
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle x10%.
Designer’s and SWITCHMODE are trademarks of Motorola, Inc.
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.
SEMICONDUCTOR TECHNICAL DATA
Order this document
by BUT34/D
50 AMPERES
NPN SILICON
POWER DARLINGTON
TRANSISTOR
850 VOLTS
250 WATTS
CASE 197A–05
TO–204AE
(TO–3)
≈
50
≈
8
REV 7
BUT34
2
Motorola Bipolar Power Transistor Device Data
ELECTRICAL CHARACTERISTICS (T
C
= 25_C unless otherwise noted)
Collector–Emitter Sustaining Voltage (Table 1)
(IC = 100 mA, IB = 0)
Collector Cutoff Current
(V
CEV
= Rated Value, V
BE(off)
= 1.5 Vdc)
(V
CEV
= Rated Value, V
BE(off)
= 1.5 Vdc, TC = 100_C)
Emitter Cutoff Current
(VEB = 2.0 V, IC = 0)
Second Breakdown Collector Current with base forward biased
Clamped Inductive SOA with Base Reverse Biased
DC Current Gain
(IC = 16 A, VCE = 5 V)
(IC = 32 A, VCE = 5 V)
Collector–Emitter Saturation Voltage
(IC = 16 A, IB = 0.8 A)
(IC = 32 A, IB = 3.2 A)
(IC = 40 A, IB = 4 A)
(IC = 50 A, IB = 10 A)
Base–Emitter Saturation Voltage
(IC = 16 A, IB = 0.8 A)
(IC = 32 A, IB = 3.2 A)
(IC = 40 A, IB = 4 A)
Diode Forward Voltage
(IF = 40 A)
SWITCHING CHARACTERISTICS
Inductive Load, Clamped (Table 1)
µs
(1) Pulse Test: PW = 300 µs, Duty Cycle 2%.
BUT34
3
Motorola Bipolar Power Transistor Device Data
TYPICAL CHARACTERISTICS
V
CE
, COLLECTOR–EMITTER VOLTAGE (VOLTS)
V
CE
, COLLECTOR–EMITTER VOLTAGE (VOLTS)
3.2
1
IC, COLLECTOR CURRENT (AMPS)
2 3 7 10 50
2.8
2.5
2.2
1.9
2.5
IC, COLLECTOR CURRENT (AMPS)
2.2
1.9
1.6
1.3
1.0
0.7
0.4
TC = 25°C
IC/IB = 10
1.6
1.3
20
IC = 40 A
400
1
Figure 1. DC Current Gain
IC, COLLECTOR CURRENT (AMPS)
1
2 3 4 7 10 20 30 40 60
100
30
20
10
Figure 2. Collector Saturation Region
0.1
IB, BASE CURRENT (AMPS)
0
0.2 0.3 0.5 1
4
3
2
1
200
50
h
FE
, DC CURRENT GAIN
5
3
2
TC = 25°C
VCE = 5.0 V
IC = 20 A
TC = 25°C
2 3 5 7 10
Figure 3. Collector–Emitter Saturation Voltage
3051 2 3 7 10 5020 305
TC = 25°C
IC/IB = 10
1.0
Figure 4. Base–Emitter Voltage
t, TIME (ms)
1
0.01
0.01
0.5
0.2
0.1
0.05
0.02
r(t), EFFECTIVE TRANSIENT THERMAL
0.05 1 2 5 10 20 50 100 200 500
R
θ
JC
(t) = r(t) R
θ
JC
R
θ
JC
= 1.17
°
C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t
1
T
J(pk)
– TC = P
(pk)
R
θ
JC
(t)
P
(pk)
t
1
t
2
DUTY CYCLE, D = t1/t
2
D = 0.5
0.2
0.05
0.02
0.01
SINGLE PULSE
0.1
0.7
0.3
0.07
0.03
0.02 0.1 0.50.2
RESISTANCE (NORMALIZED)
100
0
Figure 5. Thermal Response
0.03
0.3
3 30 300
40°C
25°C
100°C
25°C
100°C
, BASE–EMITTER VOLTAGE (VOLTS)
BE
V