1
Motorola Bipolar Power Transistor Device Data
$ " $# %
#)% %"&&'#% )'
"'%' # '#%!''%
# " ( '" "'
"'&'(%'#" ')#%
The BUL44D2 is state–of–art High Speed High gain BIPolar transistor (H2BIP).
High dynamic characteristics and lot to lot minimum spread (±150 ns on storage time)
make it ideally suitable for light ballast applications. Therefore, there is no need to
guarantee an hFE window.
Main features:
• Low Base Drive Requirement
• High Peak DC Current Gain (55 Typical) @ IC = 100 mA
• Extremely Low Storage Time Min/Max Guarantees Due to the
H2BIP Structure which Minimizes the Spread
• Integrated Collector–Emitter Free Wheeling Diode
• Fully Characterized and Guaranteed Dynamic V
CE(sat)
• “6 Sigma” Process Providing Tight and Reproductible Parameter Spreads
It’s characteristics make it also suitable for PFC application.
ОООООООО
ОООООООО
ОООООООО
Collector–Emitter Sustaining Voltage
ОООООООО
ОООООООО
ОООООООО
Collector–Base Breakdown Voltage
ОООООООО
ОООООООО
ОООООООО
Collector–Emitter Breakdown Voltage
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Collector Current — Continuous
— Peak (1)
ОООООООО
ОООООООО
ОООООООО
Base Current — Continuous
Base Current — Peak (1)
ОООООООО
ОООООООО
ОООООООО
ОООООООО
*Total Device Dissipation @ TC = 25_C
*Derate above 25°C
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Operating and Storage Temperature
ОООООООО
ОООООООО
ОООООООО
Thermal Resistance
— Junction to Case
— Junction to Ambient
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Maximum Lead Temperature for Soldering Purposes:
1/8″ from case for 5 seconds
ОООООООО
ОООООООО
ОООООООО
ОООООООО
_
C
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.
Designer’s and SWITCHMODE are trademarks of Motorola, Inc.
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.
SEMICONDUCTOR TECHNICAL DATA
Order this document
by BUL44D2/D
POWER TRANSISTORS
2 AMPERES
700 VOLTS
50 WATTS
CASE 221A–06
TO–220AB
BUL44D2
2
Motorola Bipolar Power Transistor Device Data
ELECTRICAL CHARACTERISTICS
(T
C
= 25°C unless otherwise noted)
Collector–Emitter Sustaining Voltage
(IC = 100 mA, L = 25 mH)
Collector–Base Breakdown Voltage
(I
CBO
= 1 mA)
Emitter–Base Breakdown Voltage
(I
EBO
= 1 mA)
Collector Cutoff Current
(VCE = Rated V
CEO
, IB = 0)
Collector Cutoff Current (VCE = Rated V
CES
, VEB = 0)
Collector Cutoff Current (VCE = 500 V, VEB = 0)
@ TC = 25°C
@ TC = 125°C
@ TC = 125°C
Emitter–Cutoff Current
(VEB = 10 Vdc, IC = 0)
Base–Emitter Saturation Voltage
(IC = 0.4 Adc, IB = 40 mAdc)
(IC = 1 Adc, IB = 0.2 Adc)
Collector–Emitter Saturation Voltage
(IC = 0.4 Adc, IB = 40 mAdc)
(IC = 1 Adc, IB = 0.2 Adc)
(IC = 0.4 Adc, IB = 20 mAdc)
DC Current Gain
(IC = 0.4 Adc, VCE = 1 Vdc)
(IC = 1 Adc, VCE = 1 Vdc)
Forward Diode Voltage
(IEC = 1 Adc)
Forward Recovery Time (see Figure 22 bis)
(IF = 0.2 Adc, di/dt = 10 A/µs)
(IF = 0.4 Adc, di/dt = 10 A/µs)
(IF = 1 Adc, di/dt = 10 A/µs)
V
BE(sat)
Vdc
V
CE(sat)
h
FE
V
EC
T
Vdc
fr
—
V
ns
BUL44D2
3
Motorola Bipolar Power Transistor Device Data
ELECTRICAL CHARACTERISTICS (T
C
= 25°C unless otherwise noted)
DYNAMIC SATURATION VOLTAGE
Dynamic Saturation
Voltage:
Determined 1 µs and
µs and
3 µs respectively after
rising IB1 reaches
Current Gain Bandwidth
(IC = 0.5 Adc, VCE = 10 Vdc, f = 1 MHz)
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 1 MHz)
Input Capacitance
(VEB = 8 Vdc)
SWITCHING CHARACTERISTICS: Resistive Load (D.C. ≤ 10%, Pulse Width = 40 µs)
IB2 = 250 mAdc
VCC = 300 Vdc
IB2 = 0.5 Adc
VCC = 300 Vdc
SWITCHING CHARACTERISTICS: Inductive Load (V
clamp
= 300 V, VCC = 15 V, L = 200 µH)
IC = 0.4 Adc
IB1 = 40 mAdc
I
= 0.2 Adc
IC = 1 Adc
IB1 = 0.2 Adc
I
= 0.5 Adc
IC = 0.8 Adc
IB1 = 160 mAdc
I
= 160 mAdc
IC = 0.4 Adc
IB1 = 40 mAdc
I
= 40 mAdc
IC = 0.4 A
V
CE(dsat)
IC = 1 A
IC = 0.5 Adc, IB1 = 50 mAdc
IC = 1 Adc, IB1 = 0.2 Adc
BUL44D2
4
Motorola Bipolar Power Transistor Device Data
TYPICAL STATIC CHARACTERISTICS
Figure 1. DC Current Gain @ 1 Volt
100
80
60
40
20
0
1010.10.010.001
IC, COLLECTOR CURRENT (AMPS)
h
FE
, DC CURRENT GAIN
TJ = 125°C
TJ = 25°C
TJ = –20°C
VCE = 1 V
Figure 2. DC Current Gain @ 5 Volt
100
80
60
40
20
0
1010.10.010.001
IC, COLLECTOR CURRENT (AMPS)
h
FE
, DC CURRENT GAIN
TJ = 125°C
TJ = 25°C
TJ = –20°C
VCE = 5 V
Figure 3. Collector Saturation Region
4
2
0
1000100101
IB, BASE CURRENT (mA)
IC = 200 mA
Figure 4. Collector–Emitter Saturation Voltage
10
1
0.1
1010.10.010.001
IC, COLLECTOR CURRENT (AMPS)
TJ = 125
°
C
TJ = 25°C
TJ = –20°C
IC/IB = 5
V
CE
, VOLTAGE (VOLTS)
V
CE
, VOLTAGE (VOLTS)
3
1
TJ = 25°C
400 mA
1 A
1.5 A
2 A
Figure 5. Collector–Emitter Saturation Voltage
10
1
0.1
100.10.010.001
IC, COLLECTOR CURRENT (AMPS)
Figure 6. Collector–Emitter Saturation Voltage
10
1
0.1
10.10.010.001
IC, COLLECTOR CURRENT (AMPS)
TJ = 125
°
C
TJ = 25°C
TJ = –20°C
V
CE
, VOLTAGE (VOLTS)
V
CE
, VOLTAGE (VOLTS)
1
IC/IB = 10
TJ = 125°C
TJ = 25°C
TJ = –20°C
IC/IB = 20