(Always read these instructions before using this equipment.)
Before using this product, please read this manual and the relevant manuals introduced in this manual
carefully and pay full attention to safety to handle the product correctly.
The instructions given in this manual are concerned with this product. For the safety instructions of the
programmable logic controller system, please read the CPU module User's Manual.
In this manual, the safety instructions are ranked as "DANGER" and "CAUTION".
DANGER
!
CAUTION
!
Note that the !CAUTION level may lead to a serious consequence according to t he circumstances.
Always follow the instructions of both levels because they are important to personal safety.
Please save this manual to make it accessible when required and always forw ard it to the end user.
Indicates that incorrect handling may cause hazardous conditions,
resulting in death or severe injur y.
Indicates that incorrect handling may cause hazardous conditions,
resulting in medium or slight personal injury or physical damage.
[Design Instructions]
!
DANGER
Provide a safety circuit outside the programmable logic controller so that the entire system will
operate safely even when an external power supply error or PLC fault occurs.
Failure to observe this could lead to accidents for incorrect outputs or malfunctioning.
(1) Configure an emergency stop circuit and interlock circuit such as a positioning upper
limit/lower limit to prevent mechanical damage outside t he PLC.
(2) The machine OPR operation is controlled by the OPR direction and OPR speed data.
Deceleration starts when the near-point dog turns ON. Thus, if the OPR direction is
incorrectly set, deceleration will not start and the machine will continue t o tr avel. Configure
an interlock circuit to prevent mechanical damage outside the PLC.
(3) When the module detects an error, normally deceleration st op or sudden stop w ill take
place according to the parameter stop group settings.
Set the parameters to the positioning system specifications.
Make sure that the OPR parameter and positioning data are within the parameter setting
values.
A - 1
[Design Instructions]
!
CAUTION
Do not bundle or adjacently lay the control wire or communication cable with the main circuit or
power wire.
Separate these by 100mm (3.94in.) or more.
Failure to observe this could lead to malfunctioning caused by noise.
[Mounting Instructions]
!
CAUTION
Use the PLC within the general specifications environment giv en in this manual.
Using the PLC outside the general specification range environ ment could lead to electr ic
shocks, fires, malfunctioning, product damage or deterioration.
While pressing the installation lever located at the bottom of module, insert the module fixing
tab into the fixing hole in the base unit until it stops. Then, securely mount the module with the
fixing hole as a supporting point.
Incorrect loading of the module can cause a malfunction, failure or drop.
When using the PLC in the environment of much vibration, tighten the module with a screw.
Tighten the screw in the specified torque range.
Undertightening can cause a drop, short circuit or malfunction.
Overtightening can cause a drop, short circuit or malfunction due to damage to the screw or
module.
Completely turn off the externally supplied power used in the system before mounting or
removing the module.
Not doing so may damage the product.
[Wiring Instructions]
!
DANGER
Always confirm the terminal layout before connecting the wires to the module.
[Startup/Maintenance Instructions]
!
DANGER
Completely turn off the externally supplied power used in the system before cleaning or
tightening the screws.
Failure to turn all phases OFF could lead to electric shocks.
A - 2
[Startup/Maintenance Instructions]
!
CAUTION
Never disassemble or modify the module.
Failure to observe this could lead to trouble, malfunctioning, injuries or fires.
Completely turn off the externally supplied power used in the system before installing or
removing the module.
Failure to turn all phases OFF could lead to module trouble or malfunctioning.
Do not mount/remove the module onto/from the base unit more than 50 times (IEC61131-2-
compliant), after the first use of the product. Failure to do so may cause malfunction.
Before starting test operation, set the parameter speed limit value to the slowest value, and
make sure that operation can be stopped immediately if a hazardous state occurs.
Always make sure to touch the grounded metal to discharge the electricity charged in t he body,
etc., before touching the module.
Failure to do so may cause a failure or malfunctions of the module.
[Precautions for use]
!
CAUTION
Note that when the reference axis speed is designated for interpolation operation, the speed of
the partner axis (2nd axis, 3rd axis and 4th axis) may be larger than the set speed (larger than
the speed limit value).
[Disposal Instructions]
!
CAUTION
When disposing of the product, handle it as industrial waste.
A - 3
REVISIONS
The manual number is given on the bottom left of the back cov er
Manual NumberRevision
Print Date
Dec., 1999SH (NA)-08005 8-A First edition
Oct., 2000SH (NA)-080058-B Addition of function version B
(Overall revisions based on the Japanese Manual Version
SH-080047-E)
Jun., 2001SH (NA)-080058-C The software package names (GPP function software package,
QD75 software package) have been replaced by the product names
(GX Developer, GX Configurator-QP) for standardization.
Partial corrections and additions
CONTENTS, About Manuals, Generic Terms and Abbreviations,
Section 1.4, Section 2.2, Section 2.3, Section 3.2.2 to Section 3.2.4,
Section 3.3.2, Section 3.3.3, Section 3.4.1, Section 3.4.3, Section
Partial correcti on s an d ad di t ion s
SAFETY INSTRUCTIONS, Section 1.4, Section 2.3, Section 2.4,
Section 4.2.1, Section 4.3.1, Section 4.5.1, Section 5.1.7,
Section 5.2.1, Section 5.2.6, Section 5.6.2, Section 6.1,
Section 9.2.19, Section 12.2.1, Section 12.4.4, Section 12.7.4,
Appendix 1.1, Appendix 9.1
Partial correcti on s an d ad di t ion s
Section 5.1.2, Section 9.1.2, Section 9.2.10, Section 9.2.21,
Section 10.3.8, Section 11.4.1, Section 12.5.2, Section 12.7.1,
Section 12.7.6, Section 15.1, Section 15.2
Japanese Manual Version SH-0800047-L
This manual confers no industrial property rights or any rights of any other kind, nor doe s it confer any patent licenses.
Mitsubishi Electric Corporation cannot be held responsible for any problems inv olv ing industria l property rights which
may occur as a result of using the contents noted in this manual.
1999 MITSUBISHI ELECTRIC CORPORATION
A - 5
INTRODUCTION
Thank you for purchasing the Mitsubishi general-purpose programmable logic controller MELSEC-Q Series.
Always read through this manual, and fully comprehend the functions and performance of the Q Series PLC
before starting use to ensure correct usage of this product.
About Manuals ..............................................................................................................................................A- 13
Using This Manual.........................................................................................................................................A- 13
Conformation to the EMC AND LOW-VOLTAGE DIRECTIVES.................................................................A- 13
Generic Terms and Abbreviations................................................................................................................A- 14
Component List .............................................................................................................................................A- 15
1.1.1 Features of QD75..............................................................................................................................1- 2
1.1.2 Purpose and applications of positioning control...............................................................................1- 5
1.1.3 Mechanism of positioning control .....................................................................................................1- 7
1.1.4 Outline design of positioning system................................................................................................1- 9
1.1.5 Communicating signals between QD75 and each module.............................................................1- 12
1.2 Flow of system operation........................................................................................................................1- 15
1.2.1 Flow of all processes........................................................................................................................1- 15
1.2.2 Outline of starting ...................................................................................................... .......................1- 18
1.2.3 Outline of stopping ...........................................................................................................................1- 20
1.2.4 Outline for restarting.........................................................................................................................1- 21
1.3 Restrictions with a system using a stepping motor................................................................................1- 22
1.4 Function additions/modifications according to function version B.........................................................1- 22
2. System Configuration2- 1 to 2- 6
2.1 General image of system.........................................................................................................................2- 2
2.2 Component list .........................................................................................................................................2- 4
3.2 List of functions .......................................................................................................................................3- 4
3.2.1 QD75 control functions......................................................................................................................3- 4
3.2.2 QD75 main functions......................................................................................................................... 3- 6
3.2.3 QD75 sub functions and common functions ....................................................................................3- 8
3.2.4 Combination of QD75 main functions and sub functions................................................................3- 12
3.3 Specifications of input/output signals with PLC CPU.............................................................................3- 14
3.3.1 List of input/output signals with PLC CPU.......................................................................................3- 14
3.3.2 Details of input signals (QD75
3.3.3 Details of output signals (PLC CPU
3.4 Specifications of input/output interfaces with external devices .............................................................3- 17
3.4.1 Electrical specifications of input/output signals...............................................................................3- 17
3.4.2 Signal layout for external device connection connector..................................................................3- 19
3.4.3 List of input/output signal details......................................................................................................3- 20
4. Installation, Wiring and Maintenance of the Product4- 1 to 4- 16
4.1 Outline of installation, wiring and maintenance....................................................................................... 4- 2
4.1.1 Installation, wiring and maintenance procedures.............................................................................4- 2
4.1.2 Names of each part...........................................................................................................................4- 3
4.3.1 Precautions for wiring........................................................................................................................4- 8
4.3.2 Wiring of the differential driver common terminal............................................................................4- 13
4.4 Confirming the installation and wiring.....................................................................................................4- 14
4.4.1 Items to confirm when installation and wiring are completed.........................................................4- 14
5. Data Used for Positioning Control (List of buffer memory addresses)5- 1 to 5-132
5.1 Types of data............................................................................................................................................5- 2
5.1.1 Parameters and data required for control.........................................................................................5- 2
5.1.2 Setting items for positioning parameters..........................................................................................5- 4
5.1.3 Setting items for OPR parameters....................................................................................................5- 6
5.1.4 Setting items for positioning data......................................................................................................5- 7
5.1.5 Setting items for block start data .....................................................................................................5- 10
5.1.6 Setting items for condition data .......................................................................................................5- 11
5.1.7 Types and roles of monitor data......................................................................................................5- 12
5.1.8 Types and roles of control data .......................................................................................................5- 16
A - 7
5.2 List of parameters ...................................................................................................................................5- 20
5.3 List of positioning data ............................................................................................................................5- 58
5.4 List of block start data .............................................................................................................................5- 74
5.5 List of condition data...............................................................................................................................5- 80
5.6 List of monitor data..................................................................................................................................5- 86
5.6.1 System monitor data ........................................................................................................................5- 86
5.7 List of control data..................................................................................................................................5-110
5.7.1 System control data.........................................................................................................................5-110
5.7.2 Axis control data..............................................................................................................................5-112
6. Sequence Program Used for Positioning Control6- 1 to 6- 44
6.1 Precautions for creating program............................................................................................................6- 2
6.2 List of devices used..................................................................................................................................6- 5
6.3 Creating a program .................................................................................................................................6- 11
6.3.1 General configuration of program....................................................................................................6- 11
6.3.2 Positioning control operation program.............................................................................................6- 12
6.4 Positioning program examples...............................................................................................................6- 15
6.5 Program details.......................................................................................................................................6- 24
6.5.1 Initialization program ........................................................................................................................6- 24
6.5.5 Restart program ...............................................................................................................................6- 39
7. Memory Configuration and Data Process7- 1 to 7- 12
7.1 Configuration and roles of QD75 memory...............................................................................................7- 2
7.1.1 Configuration and roles of QD75 memory........................................................................................7- 2
7.1.2 Buffer memory area configuration ....................................................................................................7- 5
7.2 Data transmission process ......................................................................................................................7- 6
A - 8
Section 2 Control Details and Setting
8. OPR Control8- 1 to 8- 22
8.1 Outline of OPR control.............................................................................................................................8- 2
8.1.1 Two types of OPR control.................................................................................................................8- 2
8.3 Fast OPR.................................................................................................................................................8- 20
8.3.1 Outline of the fast OPR operation....................................................................................................8- 20
9. Major Positioning Contro l9- 1 to 9-114
9.1 Outline of major positioning controls .......................................................................................................9- 2
9.1.1 Data required for major positioning control ......................................................................................9- 4
9.1.2 Operation patterns of major positioning controls .............................................................................9- 5
9.1.3 Designating the positioning address................................................................................................9- 15
9.1.4 Confirming the current value............................................................................................................9- 16
9.1.5 Control unit "degree" handling.........................................................................................................9- 18
9.2 Setting the positioning data ...................................................................................................................9- 25
9.2.1 Relation between each control and positioning data ......................................................................9- 25
9.2.2 1-axis linear control ..........................................................................................................................9- 27
9.2.3 2-axis linear interpolation control.....................................................................................................9- 29
9.2.4 3-axis linear interpolation control.....................................................................................................9- 33
9.2.5 4-axis linear interpolation control.....................................................................................................9 -39
10.6.2 Example of a start program for high-level positioning control.....................................................10- 24
11. Manual Control11- 1 to 11- 36
11.1 Outline of manual control ....................................................................................................................11- 2
11.1.1 Three manual control methods.....................................................................................................11- 2
11.2 JOG operation......................................................................................................................................11- 4
11.2.1 Outline of JOG operation..............................................................................................................11- 4
11.2.2 JOG operation execution procedure ............................................................................................11- 7
11.2.3 Setting the required parameters for JOG operation.....................................................................11- 8
11.2.4 Creating start programs for JOG operation.................................................................................11- 10
11.2.5 JOG operation example...............................................................................................................11- 13
11.4.3 Setting the required parameters for manual pulse generator operation ....................................11- 32
A - 10
11.4.4 Creating a program to enable/disable the manual pulse generator operation ..........................11- 33
12. Control Sub Functions12- 1 to 12- 98
12.1 Outline of sub functions .......................................................................................................................12- 2
12.1.1 Outline of sub functions.................................................................................................................12- 2
12.2 Sub functions specifically for machine OPR.......................................................................................12- 4
12.2.2 OP shift function ...........................................................................................................................12- 8
12.3 Functions for compensating the control .............................................................................................12- 11
12.3.3 Near pass function .......................................................................................................................12- 18
12.4 Functions to limit the control...............................................................................................................12- 21
12.5.3 Acceleration/deceleration time change function .........................................................................12- 44
12.5.4 Torque change function ...............................................................................................................12- 48
12.6 Absolute position restoration function ................................................................................................12- 50
12.7 Other functions....................................................................................................................................12- 58
13.3 Execution data backup function...........................................................................................................13- 5
13.4 External I/O signal logic switching function.........................................................................................13- 7
13.5 External I/O signal monitor function ....................................................................................................13- 8
14. Dedicated instructions14- 1 to 14- 22
14.1 List of dedicated instructions ...............................................................................................................14- 2
14.2 Interlock during dedicated instruction is executed..............................................................................14- 2
15.1 Error and warning details.....................................................................................................................15- 2
15.2 List of errors .........................................................................................................................................15- 6
15.3 List of warnings ...................................................................................................................................15- 32
15.4 LED display functions .........................................................................................................................15- 38
AppendicesAppendix- 1 to Appendix-108
Appendix 1 Version up of the functions............................................................................................Appendix- 2
Appendix 1.1 Comparison of functions according to function versions.......................................Appendix- 2
Appendix 2 Format sheets................................................................................................................Appendix- 4
and MR-H A (Differential driver) ...............Appendix- 37
and MR-C A (Differential driver) ...............Appendix- 39
and VEXTA UPD (Open collector)................Appendix- 40
and MINAS-A series (Differential driver)......Appendix- 41
and PYO series (Differential driver)..............Appendix- 42
and Σ- series (Differential driver) .................Appendix- 43
A - 12
About Manuals
Related Manu al s
The following manuals are also related to this product.
In necessary, order them by quoting the details in the tables below.
Manual Name
Type QD75P/QD75D Positioning Module User's Manual
(Hardware)
Describes the performance, specifications, I/O interface, component names, and startup procedure of
the respective positioning modules: QD75P1, QD75P2, QD75P4, QD75D1, QD75D2, and QD75D4.
(The manual is supplied with the module.)
GX Configurator-QP Operating Manual
Describes how to use GX Configurator-QP for the following and other purposes: creating data
(parameters, positioning data, etc.), sending the data to the module, monitoring the positioning
operations, and testing. (The manual is supplied with the software.)
Using This Manual
The symbols used in this manual are shown below.
Pr.
Da.
........ Symbol indicating positioning parameter and OPR parameter item.
....... Symbol indicating positioning data, block start data and condition
data item.
Md.
Cd.
....... Symbol indicating m onitor dat a item.
....... Symbol indicating control data item.
Manual Number
(Model Code)
IB-0800063
(13JQ73)
SH-080172
(13JU19)
(A serial No. is inserted in the
mark.)
Representation of numerical values used in this manual.
Buffer memory addresses, error codes and warning codes are represented in
decimal.
X/Y devices are represented in hexadecimal.
Setting data and monitor data are represented in decimal or hexadecimal. Data
ended by "H" are represented in hexadecimal.
(Example) 10.........Decimal
10H......Hexadecimal
Conformation to the EMC AND LOW-VOLTAGE DIRECTIVES
For details on making Mitsubishi PLC conform to the EMC and Low Voltage
Directives when installing it in your product, please refer to Chapter 3, “EMC AND
LOW-VOLTAGE DIRECTIVES” of the using PLC CPU module User’s Manual
(Hardware).
The CE logo is printed on the rating plate on the main body of the PLC that
conforms to the
EMC and Low Voltage Directives
To make this product conform to the
refer to Section 4.3.1 "Precautions for wiring".
A - 13
.
EMC and Low Voltage Directives
, please
Generic Terms and Abbreviations
Unless specially noted, the following generic terms and abbreviations are used in this
manual.
Generic term/abbreviationDetails of generic term/abbreviation
PLC CPUGeneric term for PLC CPU on which QD75 can be mounted.
QD75Generic term for positioning module QD75P1, QD75P2, QD75P4, QD75D 1, QD75D 2, and
QD75D4.
The module type is described to indicate a specifi c modul e.
Peripheral deviceGeneric term for DOS/V personal computer that can run the following "GX D ev eloper" and "GX
Configurator-QP".
GX Configurator-QPAbbreviation for GX Configurator-QP (SW2D5C-QD75P-E or later).
GX DeveloperAbbreviation for GX Developer (SW4D5C-GPPW-E or later).
Drive unit (servo amplifier) Abbreviation for pulse input compatible drive unit (servo amplifier).
Manual pulse generatorAbbreviation for manual pulse generator (prepared by user).
DOS/V personal computer
Personal computerGeneric term for DOS/V personal computer.
WorkpieceGeneric term for moving body such as workpiece and tool, and for v arious control targ ets.
Axis 1, axis 2, axis 3,
axis 4
1-axis, 2-axis, 3-axis,
4-axis
IBM PC/AT
Indicates each axis connected to QD75.
Indicates the number of axes. (Example: 2-ax is = Indicates tw o ax es such as axis 1 and axis 2,
axis 2 and axis 3, and axis 3 and axis 1.)
®
and compatible DOS/V compliant personal computer.
A - 14
Component List
The table below shows the component included in respective positioning modules:
Module nameDescriptionQuantity
QD75P1QD75P1 Positioning Module(1-axis open collector output system)1
QD75P2QD75P2 Positioning Module(2-axes open collector output system)1
QD75P4QD75P4 Positioning Module(4-axes open collector output system)1
Section 1 is configured for the following purposes (1) to (5).
(1) To understand the outline of positioning control, and the QD75 specifications
and functions
(2) To carry out actual work such as installation and wiring
(3) To set parameters and data required for positioning control
(4) To create a sequence program required for positioning control
(5) To understand the memory configuration and data transmission process
Section 1
Read Section 2 for details on each control.
Chapter 1Product outline .............................................................................................. 1- 1 to 1- 22
Chapter 2System configuration .................................................................................... 2- 1 to 2- 6
Chapter 3Specifications and Functions........................................................................ 3- 1 to 3- 24
Chapter 4Installation, Wiring and Maintenance of the Product................................... 4- 1 to 4- 16
Chapter 5Data Used for Positioning Control................................................................ 5- 1 to 5-132
Chapter 6Sequence Program Used for Positioning Control........................................ 6- 1 to 6- 44
Chapter 7Memory Configuration and Data Process.................................................... 7- 1 to 7- 12
MEMO
Chapter 1 Product Outline
The purpose and outline of positioning control using QD75 are explained in this chapter.
Reading this chapter will help you understand what can be done using the positioning
system and which procedure to use for a specific purpose.
1
By understanding "What can be done", and "Which procedure to use" beforehand, the
positioning system can be structured smoothly.
1.1.1Features of QD75 ...........................................................................................1- 2
1.1.2Purpose and applications of positioning control ............................................1- 5
1.1.3Mechanism of positioning control...................................................................1- 7
1.1.4Outline design of positioning system .............................................................1- 9
1.1.5Communicating signals between QD75 and each module ..........................1- 12
1.2 Flow of system operation ............................................................................................1- 15
1.2.1Flow of all processes .....................................................................................1- 15
1.2.2Outline of starting...........................................................................................1- 18
1.2.3Outline of stopping.........................................................................................1- 20
1.2.4Outline for restarting ......................................................................................1- 21
1.3 Restrictions with a system using a stepping motor....................................................1- 22
1.4 Function additions/modifications according to function version B.............................1- 22
1 - 1
1 PRODUCT OUTLINE
1.1 Positioning control
1.1.1 Features of QD75
The features of the QD75 are shown below.
(1) Availability of one, two, and four axis modules
MELSEC-Q
(a) One, two and four axis modules are available for both the open collector
system pulse output (QD75P1, QD75P2, and QD75P4) and differential
driver system pulse output (QD75D1, QD75D2, and QD75D4), comprising
six different models.
A model is determined by the drive unit type and number of axes. (Refer to
Section 2.2.)
(b) For connecting any of the QD75 modules to the base unit, a single slot and
32 dedicated I /O chan nel s a re requ i red .
Within the limit imposed by the maximum number of inputs and outputs
supported by the PLC CPU, up to 64 modules can be used. (Refer to
Section 3.1.)
(2) Wide variety of positioning control functions
(a) A wide variety of positioning control functions essential to any positioning
system are supported: positioning to an arbitrary position, fixed-feed
control, equal-speed control, and so on. (Refer to Section 5.3 and 9.2.)
1) Up to 600 positioning data items, including such information as
positioning addresses, control systems, and operation patterns, can be
prepared for each axis.
Using the prepared positioning data, the positioning control is
performed independently for each axis. (In addition, such controls as
interpolation involving two to four axes and simultaneous startup of
multiple axes are possible.)
2) Independent control of each axis can be achieved in linear control
mode (executable simultaneously over four axes).
Such control can ei th e r be t he in de pe nden t po si tio ni ng con t rol u sing a
single positioning data or the continuous positioning control enabled by
the continuous processing of multiple positioning data.
3) Coordinated control over multiple axes can take the form of either the
linear interpolation through the speed or position control of two to four
axes or the circular interpolation involving two axes.
Such control can ei th e r be t he in de pe nden t po si tio ni ng con t rol u sing a
single positioning data or the continuous positioning control enabled by
the continuous processing of multiple positioning data.
(b) For each positioning data, the user can specify any of the following control
systems: position control, speed control, speed-position switching control,
position-speed switching control, and so on. (Refer to Section 5.3 and 9.2.)
1 - 2
1 PRODUCT OUTLINE
MELSEC-Q
(c) Continuous positioning control using multiple positioning data can be
executed in accordance with the operation patterns the user assigned to
the positioning data. (Refer to Section 5.3 and 9.1.2)
Continuous positioning control can be executed over multiple blocks, where
each block consists of multiple positioning data. (Refer to Section 10.3.2.)
(d) OPR control is given additional features (Refer to Section 8.2.)
1) Six different machine OPR methods are provided: near point dog
method (one method), stopper methods (three methods), and count
methods (two methods).
2) OPR retry function facilitates the machine OPR control from an
arbitrary position.
(The machine OP a p remie r re fe ren ce po si t ion fo r positioning cont rol.
The machine is set to the machine OP through one of the machine
OPR methods mentioned in 1) above.)
(e) Two acceleration/deceleration control methods are provided: automatic
trapezoidal acceleration/deceleration and S-pattern
acceleration/deceleration. (Refer to Section 12.7.7.)
(The S-pattern acceleration/deceleration control is disabled if stepping
motors are used. Refer to Section 1.3.)
(3) Quick startup (Refer to Section 3.1.)
A positioning operation starts up quickly taking as little as 6 ms to 7 ms.
When operation using simultaneous start function or interpolation operation is
executed, the axes start without delay.
(Example)Axis 1 and Axis 3 are started by the
simultaneous start function
Axis 2 and Axis 4 are started by the
interpolation operation
: No delay in Axis 1 and
Axis 3 start
: No delay in Axis 2 and
Axis 4 start
(4) Faster pulse output and allowance of longer distance to dr i ve unit
(Refer to Section 3.1.)
The modules with a differential driver (QD75D1, QD75D2, and QD75D4)
incorporate the improvements in pulse output speed and maximum distance to
the drive unit.
• QD75D1/QD75D2/QD75D4: 1 Mpulse/s, 10 m max.
• QD75P1/QD75P 2/QD 75P 4: 20 0 kpu l se/ s, 2 m max.
(5) Easy maintenance
Each QD75 positioning module incorporates the following improvements in
maintainability:
(a) Data such as the positioning data and parameters can be stored on a flash
ROM inside the QD75, eliminating the need of a battery for retaining data.
(Refer to Section 7.1.1.)
(b) Error messages are classified in more detail to facilitate the initial
troubleshooting procedure. (Refer to Section 15.1.)
(c) The module retains 16 error messages and 16 warning messages recently
output, offering more complete error and warning histories.
(Refer to Section 5.6.1.)
1 - 3
1 PRODUCT OUTLINE
(6) Support of intelligent function module dedicated instructions
(7) Setups, monitoring, and testing thr oug h GX Configurator-QP
MELSEC-Q
Dedicated instructions such as the absolute position restoration instruction,
positioning start instruction, and teaching instruction are provided.
The use of such dedicated instruction simplifies sequence programs.(Refer to
Chapter 14. )
Using GX Configurator-QP, the user can control the QD75 parameters and
positioning data without having to be conscious of the buffer memory addresses.
Moreover, GX Configurator-QP has a test function which allows the user to check
the wiring before creating a sequence program for positioning control, or test
operation the QD75 using created parameters and positioning data for checking
their integrity.
The control monitor function of GX Configurator-QP allows the user to debug
programs efficiently.
1 - 4
1 PRODUCT OUTLINE
)
a
1.1.2 Purpose and applications of positioni ng contr ol
"Positioning" refers to moving a moving body, such as a workpiece or tool (hereinafter,
generically called "workpiece") at a designated speed, and accurately stopping it at the
target position. The main application examples are shown below.
MELSEC-Q
Punch press (X, Y feed positioning
Gear and ball screw
Conveyor control
Servomotor
(with brakes)
Servo amplifier
Teaching unitAD75TU
Press head
Servo
amplifier
Reduction
gears
Y axis
X axis
servomotor
G
Ball screw
(From QD75)
AD75
Servo
mplifier
Palletizer
Y axis
servomotor
)
X axis
Conveyor
320mm
Y axis
X axis
Gear and rack & pinion
PLC
MELSEC-Q
160mm
Press
punching
12 s
PLC
MELSEC-Q
X axis
Y axis
Position detector
Palletizer
Unloader control
QD75
15m/min
(2000r/min
15m/min
(1875r/min)
QD75
AD75
•
To punch insulation material or leather, etc.,
as the same shape at a high yield, positioning
is carried out with the X axis and Y axis
servos.
•
After positioning the table with the X axis
servo, the press head is positioned with the Y
axis servo, and is then punched with the
press.
•
When the material type or shape changes, the
press head die is changed, and the positioning
pattern is changed.
•
Using the servo for one axis, the palletizer is
positioned at a high accuracy.
•
The amount to lower the palletizer according to
the material thickness is saved.
Compact machining center (ATC magazine positioning)
•
The ATC tool magazine for a compact
machining center is positioned.
•
The relation of the magazine's current value
and target value is calculated, and positioning
is carried out with forward run or reverse run to
achieve the shortest access time.
Servo
amplifier
QD75
AD75
Servomotor
Coupling
Positioning
pin
PLC
MELSEC-Q
Reduction
gears
ATC tool
magazine
Tool
(12 pcs., 20 pcs.)
Rotatio n di r e c t io n
for calling
11, 12, 1, 2 or 3
Current
value
retrieval
position
Rotation direction
for calling 5, 6, 7, 8, 9 or 10
<No. of tools: 12><No. of tools: 20>
Rotatio n di r e c t io n
for calling
17 to 20, 1 to 5
Rotatio n di r e c t io n
for calling 7 to 16
Current
value
retrieval
position
1 - 5
1 PRODUCT OUTLINE
Lifter (Sto rage o f Br au n tub e s on to aging rack)
B conveyor
LifterC
Counterweight
Reduction
gears
G1
Servomotor
(with brakes)
Index table (High-accuracy indexing of angle)
PLC
MELSEC-Q
conveyor
A conveyorServo amplifier
Loader
Servomotor
Servo amplifier
Aging rack
G2
Positioni n g modu le
QD75
AD75
QD75
Unloader
Loader/unloader
PLC MELSEC-Q
MELSEC-Q
•
During the aging process of braun tubes,
storage onto the rack is carried out by
positioning with the AC servo.
•
The up/down positioning of the lifter is carried
out with the 1-axis servo, and the horizontal
position of the aging rack is positioned with the
2-axis servo.
•
The index table is positioned at a high accuracy
using the 1-axis servo.
Digital switch
Index table
Worm gears
Inner surface grinder
Servomotor
Inverter
Servo
amplifier
220VAC
60Hz
QD75
PLC
MELSEC-Q
Motor
1M
G
Fix the grinding
stone, feed the
workpiece, and grind.
Operation panel
a
b
c
Workpiece
Grinding stone
a. Total feed
amount (mm)
d
b. Finishing
e
feed amount (mm)
c. Compensation
amount (mm)
Detector
Servomotor
Motor
G
1M
Inverter
Servo
amplifier
d. Rough grind ing speed (mm/s)
e. Fine grindi ng
speed (mm/s)
•
The grinding of the workpiece's inner surface
is controlled with the servo and inverter.
•
The rotation of the workpiece is controlled with
the 1-axis inverter, and the rotation of the
grinding stone is controlled with the 2-axis
inverter. The workpiece is fed and ground with
the 3-axis servo.
1 - 6
1 PRODUCT OUTLINE
1.1.3 Mechanism of positioning control
Positioning control using the QD75 is carried out with "pulse signals". (The QD75 is a
module that generates pulses). In the positioning system using the QD75, various
software and devices are used for the following roles. The QD75 realizes complicated
positioning control when it reads in various signals, parameters and data and is
controlled with the PLC CPU.
MELSEC-Q
Creates control order and
conditions as a sequence
program.
GX Developer
GX
Configurator
-QP
Sets the parameters and
positioning data for control.
Outputs the start command for
JOG operation, etc., during test
operation with the test mode.
Monitors the positioning operation.
PLC CPU
QD75 positioning
module
Servo
amplifier
Stores t he creat e d program.
The QD75 outputs the start signal and
stop signal following the stored program.
QD75 errors, etc., are detected.
Outputs signals such as the start
signal, stop signal, limit signal and
control changeover signal to the QD75.
External signal
Stores the parameter and data.
Outputs pulses to the servo according to the
instructions from the PLC CPU, GX Configurator-QP,
external signals and manual pulse generator.
Manual pulse
generator
Receives pulse commands from QD75, and
drives the motor.
Outputs the drive unit READY signal and
zero signal to the QD75.
Issues commands by
transmitting pulses.
Motor
Workpiece
1 - 7
Carries out the actual work according to commands
from the servo.
1 PRODUCT OUTLINE
A
The principle of "position control" and "speed control" operation is shown below.
Position control
The total No. of pulses required to move the designated distance is obtained in the
following manner.
MELSEC-Q
Positioning
module
Total No. of pulses
required to move
designated distance
The No. of pulses required for the motor to rotate once is the "encoder resolution"
described in the motor catalog specification list.
=
Movement amount of machine (load)
side when motor rotates once
Designated distance
No. of pulses
required for motor to
rotate once
When this total No. of pulses is issued from the QD75 to the servo amplifier, control to
move the designated distance can be executed.
The machine side movement amount when one pulse is issued to the servo amplifier is
called the "movement amount per pulse". This value is the min. value for the workpiece
to move, and is also the electrical positioning precision.
Speed control
The "Total No. of pulses" mentioned above is invariably required for controlling the
distance. For positioning or speed control, the speed must be controlled as well.
The speed is determined by the frequency of pulses sent from the QD75 to the drive
unit.
Servo
amplifier
Servo
motor
Detector
(Pulse
encoder)
Pulse frequency
[pps]
This area is the total
No. of commanded
pulses.
Speed = Pulses frequency
Movement amount = No.of pulses
Feedback pulses =
Pulses generated by detector
Fig. 1.1 Relationship between position control and speed control
POINT
The QD75 controls the position with the "total No. of pulses", and the speed with
the "pulse frequency".
Feedback pulses
tatd (s)
0.41.20.4
Movement amount t = 2
1 - 8
1 PRODUCT OUTLINE
1.1.4 Outline design of positioning system
The outline of the positioning system operation and design, using the QD75, is shown
below.
(1) Positioning system using QD75
MELSEC-Q
PLC CPU
Program
Peripheral
devices
interface
Read, write, etc.
GX Configurator-QP
Fig. 1.2 Outline of the operation of positioning system using QD75
Forward run
pulse train
Reverse run
pulse train
Deviation
counter
Read, write, etc.
Read, write, etc.
Positioning module
QD75
Setting data
(a) Positioning operation by the QD75
1) The QD75 output is a pulse train.
The pulse train output by the QD75 is counted by and stored in the
deviation counter in the drive unit.
The D/A conve rte r out pu ts an an alog DC current pr op o rti on at e t o th e
count maintained by the deviation counter (called "pulse droop"). The
analog DC current serves as the servomotor speed control signal.
2) The motor rotation is controlled by the speed control signal from the
drive unit.
As the motor rotates, the pulse encoder (PLG) attached to the motor
generates feedback pulses, the frequency of which is proportionate to
the rotati on spee d.
The feedback pulses are fed back to the drive unit and decrements the
pulse droop, the pulse count maintained by the deviation counter.
The motor keeps on rotating as the pulse droop is maintained at a
certain level.
3) When the QD75 terminates the output of a pulse train, the motor
decelerates as the pulse droop decreases and stops when the count
drops to zero.
Thus, the motor rotation speed is proportionate to the pulse frequency,
while the overall motor rotation angle is proportionate to the total
number of pulses output by the QD75.
Therefore, when a movement amount per pulse is given, the overall
movement amount can be determined by the number of pulses in the
pulse train.
The pulse frequency, on the other hand, determines the motor rotation
speed (feed speed).
Drive unit
D/A
converter
Speed
command
Interface
Feedback pulse
Servo
amplifier
Servomotor
M
PLG
1 - 9
1 PRODUCT OUTLINE
MELSEC-Q
(b) Pulse train output from the QD75
1) As shown in Fig. 1.3, the pulse frequency increases as the motor
accelerates. The pulses are sparse when the motor starts and more
frequent when the motor speed comes close to the target speed.
2) The pulse frequency stab iliz e s when t he mot o r spee d equ al s the targe t
speed.
3) The QD75 decreases the pulse frequency (sparser pulses) to
decelerate the motor before it finally stops the output.
There will be a little difference in timing between the decrease in the
pulse frequency and the actual deceleration and stopping of the motor.
This difference, called "the stop settling time", is required for gaining a
stopping accuracy.
Servomotor
Speed V
Pulse droop
amount
Pulse
distribution
speed
Pulse encoder
(PLG)
Servomotor
Acceleration
Pulse train RoughDenseRough
Deceleration
Time t
Stop
settling time
Fig. 1.3 QD75 output pulses
(2) Movement amount and speed in a sy stem using w or m gear s
A : Movement amount per pulse (mm/pulse)
V
Workpiece
Table
P0
Worm gear
L
R
Fig. 1.4 System using worm gears
Vs : Command pulse frequency (pulse/s)
n : Pulse encoder resolution (pulse/rev)
L : Worm gear lead (mm/rev)
R : Deceleration ratio
V : Movable section speed (mm/s)
N : Motor speed (r/min)
K : Position loop gain (1/s)
P
: D ev iation co unter droo p pulse amount
ε
P0 : OP (pulse)
P : Address (pulse)
1 - 10
Loading...
+ 738 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.